Подпишись и читай
самые интересные
статьи первым!

Выбор толщины стенки трубы по внешнему давлению. Определение толщины стенки трубопровода

17142 0 3

Расчет трубы на прочность – 2 простых примера расчета трубных конструкций

Обычно, когда трубы используются в быту (в качестве каркаса или опорных частей какой-нибудь конструкции), то внимание вопросам устойчивости и прочности не уделяется. Нам заведомо известно, что нагрузка будет небольшой и расчет на прочность не понадобится. Но знание методики оценки прочности и устойчивости точно не будет лишним, все-таки лучше твердо быть уверенным в надежности постройки, чем уповать на счастливый случай.

В каких случаях нужен расчет на прочность и устойчивость

Расчет прочности и устойчивости чаще всего нужен строительным организациям, ведь им нужно обосновать принятое решение, а делать сильный запас нельзя ввиду удорожания конечной конструкции. Сложные конструкции, конечно, вручную никто не рассчитывает, можно пользоваться тем же SCAD или ЛИРА САПР для расчета, но простенькие конструкции можно рассчитать и своими руками.

Вместо ручного расчета можно воспользоваться и разными онлайн-калькуляторами, в них, как правило, представлено несколько простейших расчетных схем, дается возможность выбора профиля (не только труба, но и двутавры, швеллеры). Задав нагрузку и указав геометрические характеристики, человек получает максимальные прогибы и значения поперечной силы и изгибающего момента в опасном сечении.

В принципе, если вы сооружаете простенький навес над крыльцом или делаете перильное ограждение лестницы у себя дома из профильной трубы, то можно обойтись и вовсе без расчета. Но лучше все же потратить пару минут и прикинуть – достаточной ли будет несущая способность вашего для навеса или столбов для забора.

Если в точности следовать правилам расчета, то согласно СП 20.13330.2012 нужно сперва определить такие нагрузки как:

  • постоянная – имеется ввиду собственный вес конструкции и прочие типы нагрузок, которые будут оказывать воздействие на протяжении всего срока службы;
  • временная длительная – речь идет о продолжительном воздействии, но со временем это нагрузка может исчезнуть. Например, вес оборудования, мебели;
  • кратковременная – как пример можно привести вес снежного покрова на крыше/козырьке над крыльцом, ветровое воздействие и т. д.;
  • особые – те, которые предсказать невозможно, это может быть и землетрясение, и стойки из трубы машиной.

Согласно тому же нормативу расчет трубопроводов на прочность и устойчивость выполняется с учетом самого неблагоприятного сочетания нагрузок из всех возможных. При этом определяются такие параметры трубопровода как толщина стенки самой трубы и переходников, тройников, заглушек. Расчет отличается в зависимости от того, проходит трубопровод под или над землей.

В быту усложнять себе жизнь точно не стоит. Если вы планируете простенькую постройку (из труб будет возведен каркас для забора или навеса, беседки), то вручную считать несущую способность нет смысла, нагрузка все равно будет мизерная и запас прочности будет достаточный. Даже трубы 40х50 мм с головой хватит для устройства навеса или стоек для будущего еврозабора.

Для оценки несущей способности можно воспользоваться готовыми таблицами, в которых в зависимости от длины пролета указана максимальная нагрузка, которую труба может выдержать. При этом уже учтен собственный вес трубопровода, а нагрузка представлена в виде сосредоточенной силы, приложенной по центру пролета.

Например, труба 40х40 с толщиной стенки 2 мм при пролете 1 м способна выдержать нагрузку в 709 кг, но при увеличении пролета до 6 м максимально допустимая нагрузка сокращается до 5 кг .

Отсюда и первое важное замечание – не делайте пролеты слишком большими, это сокращает допустимую нагрузку на него. Если нужно перекрыть большое расстояние лучше установите пару стоек, получите увеличение допустимой нагрузки на балку.

Классификация и расчет простейших конструкций

В принципе, из труб можно создать конструкцию любой сложности и конфигурации, но в быту чаще всего используются типовые схемы. Например, схема балки, с жестким защемлением с одного конца может использоваться как модель опоры будущего столба забора или опоры под навес. Так что рассмотрев расчет 4-5 типовых схем можно считать, что большинство задач в частном строительстве решить удастся.

Область применения трубы в зависимости от класса

Изучая ассортимент проката, вы можете столкнуться с такими терминами как группа прочности труб, класс прочности, класс качества и т. д. Все эти показатели позволяют сразу узнать назначение изделия и ряд его характеристики.

Важно! Все, о чем будет идти речь далее, касается металлических труб. В случае с ПВХ, полипропиленовыми трубами тоже, конечно, можно определить прочность, устойчивость, но учитывая сравнительно мягкие условия их работы такую классификацию приводить нет смысла.

Так как металлические трубы работают в напорном режиме, периодически могут возникать гидравлические удары, особое значение приобретает постоянство размеров и соответствие эксплуатационным нагрузкам.

Например, по группам качества можно выделить 2 типа трубопровода:

  • класс А – контролируются механические и геометрические показатели;
  • класс D – учитывается и стойкость к гидравлическим ударам.

Возможно и разделение трубного проката на классы в зависимости от назначения, в этом случае:

  • 1 класс – говорит о том, что прокат может использоваться для организации водо-и газоснабжения;
  • 2 класс – указывает на повышенную стойкость к давлению, гидроударам. Такой прокат уже подойдет, например, для строительства магистрали.

Классификация по прочности

Классы прочности труб приводятся в зависимости от того, какое временное сопротивление растяжению показывает металл стенки. По маркировке можно сразу судить о прочности трубопровода, например, обозначение К64 означает следующее: буква К говорит о том, что речь идет о классе прочности, число показывает временное сопротивление растяжению (единицы измерения кг∙с/мм2).

Минимальный показатель прочности составляет 34 кг∙с/мм2, а максимальный — 65 кг∙с/мм2. При этом класс трубы по прочности подбирается исходя не только из максимальной нагрузки на металл, условия эксплуатации также учитываются.

Существует несколько нормативов, описывающих требования к трубам по прочности, например, для проката, который используется при строительстве газонефтепроводов актуален ГОСТ 20295-85.

Помимо классификации по прочности вводится и разделение в зависимости от типа труб:

  • тип 1 – прямошовные (используется контактная сварка высокочастотным током), диаметр составляет до 426 мм;
  • тип 2 – спиральношовные;
  • тип 3 – прямошовные.

Также отличаться трубы могут и по составу стали, высокопрочный прокат выпускается из низколегированной стали. Углеродистая сталь идет на производство проката с классом прочности К34 – К42.

Что касается физических характеристик, то для класса прочности К34 сопротивление на разрыв равно 33,3 кг∙с/мм2, предел текучести как минимум 20,6 кг∙с/мм2, а относительное удлинение не более 24%. Для более прочной трубы К60 эти показатели уже составляют 58,8 кг∙с/мм2, 41,2 кг∙с/мм2 и 16% соответственно.

Расчет типовых схем

В частном строительстве сложные конструкции из труб не используются. Их просто слишком сложно создавать, да и нет нужды в них по большому счету. Так что при строительстве с чем-то сложнее треугольной фермы (под стропильную систему) вы вряд ли столкнетесь.

В любом случае все расчеты можно выполнить своими руками, если вы еще не забыли основы сопромата и строительной механики.

Расчет консоли

Консоль – обычная балка, жестко закрепленная с одной стороны. Как пример можно привести столбик под забор или кусок трубы, который вы прикрепили к дома, чтобы сделать навес над крыльцом.

В принципе, нагрузка может быть какой-угодно, это может быть:

  • одиночная сила, приложенная либо к краю консоли, либо где-нибудь в пролете;
  • равномерно распределенная по всей длине (либо на отдельном участке балки) нагрузка;
  • нагрузка, интенсивной которой меняется по какому-либо закону;
  • также на консоль могут действовать пары сил, вызывающие изгиб балки.

В быту чаще всего приходится иметь дело именно с нагрузкой балки единичной силой и равномерно распределенной нагрузкой (например, ветровая нагрузка). В случае с равномерно распределенной нагрузкой максимальный изгибающий момент будет наблюдаться непосредственно у жесткой заделки, а его величину можно определить по формуле

где М – изгибающий момент;

q – интенсивность равномерно распределенной нагрузки;

l – длина балки.

В случае же с сосредоточенной силой, приложенной к консоли, и считать то нечего – для того, чтобы узнать максимальный момент в балке достаточно перемножить величину силы на плечо, т.е. формула примет вид

Все эти расчеты нужны для единственной цели – проверить достаточно ли будет прочность балки при эксплуатационных нагрузках, любая инструкция этого требует. При расчете нужно, чтобы полученное значение было ниже справочной величины предела прочности, желательно, чтобы был запас хотя бы 15-20%, все-таки предусмотреть все типы нагрузок сложно.

Для определения максимального напряжения в опасном сечении используется формула вида

где σ – напряжение в опасном сечении;

Mmax – максимальный изгибающий момент;

W – момент сопротивления сечения, справочная величина, хотя ее и можно рассчитать вручную, но лучше просто подсмотреть ее значение в сортаменте.

Балка на двух опорах

Еще один простейший вариант использования трубы – в качестве легкой и прочной балки. Например, для устройства перекрытий в доме или при строительстве беседки. Вариантов загружений здесь тоже может быть несколько, мы остановимся только на простейших.

Сосредоточенная сила по центру пролета – самый простой вариант нагружения балки. При этом опасное сечение будет располагаться непосредственно под точкой приложения силы, а определить величину изгибающего момента можно по формуле.

Чуть более сложный вариант – равномерно распределенная нагрузка (например, собственный вес перекрытия). В этом случае максимальный изгибающий момент будет равен

В случае с балкой на 2 опорах важным становится и ее жесткость, то есть максимальное перемещение под нагрузкой, чтобы условие по жесткости выполнялось нужно, чтобы прогиб не превышал допустимую величину (задается как часть длины пролета балки, например, l/300).

При действии на балку сосредоточенной силы максимальный прогиб будет находиться под точкой приложения силы, то есть по центру.

Расчетная формула имеет вид

где E – модуль упругости материала;

I – момент инерции.

Модуль упругости – величина справочная, для стали, например, он равен 2∙105 Мпа, а момент инерции указывается в сортаменте для каждого размера трубы, так что вычислять его отдельно не нужно и расчет своими руками выполнить сможет даже гуманитарий.

Для равномерно распределенной нагрузки, приложенной по всей длине балки, максимальное перемещение будет наблюдаться по центру. Определить его можно по формуле

Чаще всего если при расчете на прочность все условия выполнились и есть запас хотя бы 10%, то и с жесткостью никаких проблем нет. Но изредка могут быть случаи, когда прочность достаточна, а вот прогиб превышает допустимый. В таком случае просто увеличиваем сечение, то есть берем следующую по сортаменту трубу и повторяем расчет до тех пор, пока условие не выполнится.

Статически неопределимые конструкции

В принципе, с такими схемами работать тоже несложно, но нужны хотя бы минимальные познания в сопромате, строительной механике. Статически неопределимые схемы хороши тем, что позволяют более экономно использовать материал, ну а минус их в том, что расчет усложняется.

Простейший пример – представьте себе пролет длиной 6 метров, нужно перекрыть его одной балкой. Вариантов решения задачи 2:

  1. просто уложить длинную балку с максимально крупным сечением. Но за счет только собственного веса ее прочностной ресурс будет почти полностью выбран, да и цена такого решения будет немалой;
  2. установить в пролете пару стоек, система станет статически неопределимой, зато допустимая нагрузка на балку возрастет на порядок. В итоге можно взять меньшее сечение и сэкономить на материале без снижения прочности и жесткости.

Заключение

Конечно, перечисленные варианты нагрузок не претендуют на полный перечень всех возможных вариантов загружения. Но для использования в быту этого вполне достаточно, тем более что далеко не все занимаются самостоятельно расчетом своих будущих построек.

Но если вы все же решитесь взять в руки калькулятор и проверить прочность и жесткость уже существующих/только планирующихся конструкций, то предложенные формулы лишними не будут. Главное в этом деле – не экономить на материале, но и не брать слишком большой запас, нужно найти золотую середину, расчет на прочность и жесткость позволяет сделать это.

На видео в этой статье показан пример расчета трубы на изгиб в SolidWorks.

В комментариях оставляйте свои замечания/предложения по поводу расчета трубных конструкций.

27 августа 2016г.

Если вы хотите выразить благодарность, добавить уточнение или возражение, что-то спросить у автора - добавьте комментарий или скажите спасибо!

Создано 05.08.2009 19:15

ПОСОБИЕ

по определению толщин стенок стальных труб, выбору марок, групп и категорий сталей для наружных сетей водоснабжения и канализации
(к СНиП 2.04.02-84 и СНиП 2.04.03-85)

Содержит указания по определению толщин стенок стальных подземных трубопроводов наружных сетей водоснабжения и канализации в зависимости от расчетного внутреннего давления, прочностных характеристик сталей труб и условий прокладки трубопроводов.
Даны примеры расчета, сортамента стальных труб и указания по определению внешних нагрузок на подземные трубопроводы.
Для инженерно-технических, научных работников проектных и научно-исследовательских организаций, а также для преподавателей и студентов средних и высших учебных заведений и аспирантов.

СОДЕРЖАНИЕ
1. ОБЩИЕ ПОЛОЖЕНИЯ


3. ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ СТАЛЕЙ И ТРУБ

5. ГРАФИКИ ВЫБОРА ТОЛЩИНЫ СТЕНКИ ТРУБ ПО РАСЧЕТНОМУ ВНУТРЕННЕМУ ДАВЛЕНИЮ
Рис. 2. Графики выбора толщины стенки труб в зависимости от расчетного внутреннего давления и расчетного сопротивления стали для трубопроводов 1-го класса по степени ответственности
Рис. 3. Графики выбора толщины стенки труб в зависимости от расчетного внутреннего давления и расчетного сопротивления стали для трубопроводов 2-го класса по степени ответственности
Рис. 4. Графики выбора толщины стенки труб в зависимости от расчетного внутреннего давления и расчетного сопротивления стали для трубопроводов 3-го класса по степени ответственности
6. ТАБЛИЦЫ ДОПУСТИМЫХ ГЛУБИН ЗАЛОЖЕНИЯ ТРУБ В ЗАВИСИМОСТИ ОТ УСЛОВИЙ УКЛАДКИ
Приложение 1. СОРТАМЕНТ СТАЛЬНЫХ СВАРНЫХ ТРУБ, РЕКОМЕНДУЕМЫХ ДЛЯ ТРУБОПРОВОДОВ ВОДОСНАБЖЕНИЯ И КАНАЛИЗАЦИИ
Приложение 2. СТАЛЬНЫЕ СВАРНЫЕ ТРУБЫ, ВЫПУСКАЕМЫЕ ПО НОМЕНКЛАТУРНОМУ КАТАЛОГУ ПРОДУКЦИИ МИНЧЕРМЕТА СССР, РЕКОМЕНДУЕМЫЕ ДЛЯ ТРУБОПРОВОДОВ ВОДОСНАБЖЕНИЯ И КАНАЛИЗАЦИИ
Приложение 3. ОПРЕДЕЛЕНИЕ НАГРУЗОК НА ПОДЗЕМНЫЕ ТРУБОПРОВОДЫ





НОРМАТИВНЫЕ И РАСЧЕТНЫЕ НАГРУЗКИ ОТ СОБСТВЕННОГО ВЕСА ТРУБ И ВЕСА ТРАНСПОРТИРУЕМОЙ ЖИДКОСТИ
Приложение 4. ПРИМЕР РАСЧЕТА

1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Пособие по определению толщин стенок стальных труб, выбору марок, групп и категорий сталей для наружных сетей водоснабжения и канализации составлено к СНиП 2.04.02-84 Водоснабжение. Наружные сети и сооружения и СНиП 2.04.03-85 Канализация. Наружные сети и сооружения.
Пособие распространяется на проектирование подземных трубопроводов диаметром от 159 до 1620 мм, прокладываемых в грунтах с расчетным сопротивлением не менее 100 кПа, транспортирующих воду, бытовые и промышленные сточные воды при расчетном внутреннем давлении, как правило, до 3 МПа.
Применение стальных труб для указанных трубопроводов допускается в условиях, определенных п. 8.21 СНиП 2.04.02-84.
1.2. В трубопроводах следует применять стальные сварные трубы рационального сортамента по стандартам и техническим условиям, указанным в прил. 1. Допускается по предложению заказчика применять трубы по ТУ, указанным в прил. 2.
Для изготовления фасонных частей методом гнутья должны применяться только бесшовные трубы. Для фасонных частей, изготовляемых методом сварки, могут применяться те же трубы, что и для линейной части трубопровода.
1.3. С целью уменьшения расчетных толщин стенок трубопроводов в проектах рекомендуется предусматривать мероприятия, направленные на снижение воздействия внешних нагрузок на трубы: отрывку траншей предусматривать по возможности с вертикальными стенками и минимально допустимой шириной по дну; укладку труб предусматривать на спрофилированное по форме трубы грунтовое основание или с контролируемым уплотнением грунта засыпки.
1.4. Трубопроводы должны подразделяться на отдельные участки по степени ответственности. Классы по степени ответственности определяются п. 8.22 СНиП 2.04.02-84.
1.5. Определение толщин стенок труб производится на основании двух раздельных расчетов:
статического расчета на прочность, деформацию и устойчивость на воздействие внешней нагрузки с учетом образования вакуума; расчета на внутреннее давление при отсутствии внешней нагрузки.
Расчетные приведенные внешние нагрузки определяются по прил. 3 для следующих нагрузок: давление грунта и грунтовой воды; временных нагрузок на поверхности земли; веса транспортируемой жидкости.
Расчетное внутреннее давление для стальных трубопроводов подземной прокладки принимается равным наибольшему возможному по условиям эксплуатации давлению па различных участках (при наиболее невыгодном режиме работы) без учета его повышения при гидравлическом ударе.
1.6. Порядок определения толщин стенок, выбора марок, групп и категорий сталей по данному Пособию.
Исходными данными для расчета являются: диаметр трубопровода ; класс по степени ответственности; расчетное внутреннее давление ; глубина заложения (до верха труб) ; характеристика грунтов засыпки (условная группа грунтов определяется по табл. 1 прил. 3).
Для расчета весь трубопровод должен быть разбит на отдельные участки, для которых все перечисленные данные постоянны.
По разд. 2 производится выбор марки, группы и категории стали труб и на основании этого выбора по разд. 3 устанавливается или вычисляется значение расчетного сопротивления стали . Толщина стенки труб принимается большей из двух значений, полученных расчетом на внешние нагрузки и внутреннее давление, с учетом сортаментов труб, приведенных в прил. 1 и 2.
Выбор толщины стенки при расчете на внешние нагрузки, как правило, производится по таблицам, приведенным в разд. 6. Каждая из таблиц для заданного диаметра трубопровода, класса по степени ответственности и типа грунта засыпки дает соотношения между: толщиной стенки; расчетным сопротивлением стали , глубиной заложения и способом укладки труб (тип основания и степень уплотнения грунтов засыпки - рис. 1).


Рис. 1. Способы опирания труб на основание
а - плоское грунтовое основание; б- спрофилированное грунтовое основание с углом охвата 75°; I - с песчаной подушкой; II- без песчаной подушки; 1 - засыпка местным грунтом без уплотнения; 2 - засыпка местным грунтом с нормальной или повышенной степенью уплотнения; 3 - естественный грунт; 4 - подушка из песчаного грунта
Пример пользования таблицами дан в прил. 4.
Если исходные данные не удовлетворяют следующим данным: м; МПа; временная нагрузка - НГ-60; укладка труб в насыпи или траншее с откосами, необходимо проводить индивидуальный расчет, включающий в себя: определение расчетных приведенных внешних нагрузок по прил. 3 и определение толщины стенки по расчету на прочность, деформацию и устойчивость по формулам разд. 4.
Пример такого расчета дан в прил. 4.
Выбор толщины стенки при расчете на внутреннее давление производится по графикам разд. 5 или по формуле (6) разд. 4. Эти графики показывают соотношения между величинами: и позволяют определить любое из них при известных остальных величинах.
Пример пользования графиками дан в прил. 4.
1.7. Внешняя и внутренняя поверхность труб должна защищаться от коррозии. Выбор методов защиты необходимо производить в соответствии с указаниями п. п. 8.32-8.34 СНиП 2.04.02-84. При применении труб с толщиной стенки до 4 мм независимо от коррозионной активности транспортируемой жидкости рекомендуется предусматривать защитные покрытия внутренней поверхности труб.

2. РЕКОМЕНДАЦИИ ПО ВЫБОРУ МАРОК, ГРУПП И КАТЕГОРИЙ СТАЛЕЙ ТРУБ
2.1. При выборе марки, группы и категорий стали следует учитывать поведение сталей и их свариваемость при низких температурах наружного воздуха, а также возможность экономии стали за счет применения высокопрочных тонкостенных труб.
2.2. Для наружных сетей водоснабжения и канализации рекомендуется, как правило, применять следующие марки сталей:
для районов с расчетной температурой наружного воздуха ; углеродистую по ГОСТ 380-71* - ВСт3; низколегированную по ГОСТ 19282-73* - типа 17Г1С;
для районов с расчетной температурой наружного воздуха ; низколегированную по ГОСТ 19282-73* - типа 17Г1С; углеродистую конструкционную по ГОСТ 1050-74**-10; 15; 20.
При применении труб в районах с в заказе стали должно быть оговорено минимальное значение ударной вязкости 30 Дж/см (3 кгс·м/см) при температуре -20°С.
В районах с низколегированную сталь следует применять, если это приводит к более экономичным решениям: снижение расхода стали или снижение трудозатрат (за счет ослабления требований по укладке труб).
Углеродистые стали могут применяться следующих степеней раскисления: спокойная (сп) - в любых условиях; полуспокойная (пс) - в районах с для всех диаметров, в районах с для диаметров труб не более 1020 мм; кипящая (кп) - в районах с и при толщине стенки не более 8 мм.
2.3. Допускается применение труб из сталей других марок, групп и категорий в соответствии с табл. 1 и другими материалами настоящего Пособия.
При выборе группы углеродистой стали (кроме основной рекомендуемой группы В по ГОСТ 380-71* следует руководствоваться следующим: стали группы А могут применяться в трубопроводах 2 и 3 класса по степени ответственности с расчетным внутренним давлением не более 1,5 МПа в районах с ; стали группы Б могут применяться в трубопроводах 2 и 3 класса по степени ответственности в районах с ; стали группы Д могут применяться в трубопроводах 3 класса по степени ответственности при расчетном внутреннем давлении не более 1,5 МПа в районах с .
3. ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ СТАЛЕЙ И ТРУБ
3.1. Расчетное сопротивление материала труб определяется формулой
(1)
где - нормативное сопротивление растяжению металла труб, равное минимальному значению предела текучести , нормируемого стандартами и техническими условиями на изготовление труб; - коэффициент надежности по материалу; для прямошовных и спиральношовных труб из низколегированной и углеродистой стали - равный 1,1.
3.2. Для труб групп А и В (с нормируемым пределом текучести) расчетное сопротивление следует принимать по формуле (1).
3.3. Для труб групп Б и Д (без нормируемого предела текучести) величина расчетного сопротивления должна быть не более величин допускаемых напряжений , которые принимаются для вычисления величины заводского испытательного гидравлического давления по ГОСТ 3845-75*.
В случае, если величина оказывается больше , то за расчетное сопротивление принимают величину
(2)
где - величина заводского испытательного давления; - толщина стенки трубы.
3.4. Прочностные показатели труб, гарантируемые стандартами на их изготовление.

4. РАСЧЕТ ТРУБ НА ПРОЧНОСТЬ, ДЕФОРМАЦИЮ И УСТОЙЧИВОСТЬ
4.1. Толщину стенки труб , мм, при расчете на прочность от воздействия внешних нагрузок на опорожненный трубопровод следует определять по формуле
(3)
где - расчетная приведенная внешняя нагрузка на трубопровод, определяемая по прил. 3 как сумма от всех действующих нагрузок в их наиболее опасном сочетании, кН/м; - коэффициент, учитывающий совместное действие отпора грунта и внешнего давления; определяется по п. 4.2.; - общий коэффициент, характеризующий работу трубопроводов, равный ; - коэффициент, учитывающий кратковременность испытания, которому подвергаются трубы после их изготовления, принимаемый равным 0,9; - коэффициент надежности, учитывающий класс участка трубопровода по степени ответственности, принимаемый равным: 1 - для участков трубопроводов 1 класса по степени ответственности, 0,95 - для участков трубопроводов 2 класса, 0,9 - для участков трубопроводов 3 класса; - расчетное сопротивление стали, определяемое в соответствии с разд. 3 данного Пособия, МПа; - наружный диаметр трубы, м.
4.2. Значение коэффициента следует определять по формуле
(4)
где -.параметры, характеризующие жесткость грунта и трубы, определяются согласно прил. 3 данного Пособия, МПа; - величина вакуума в трубопроводе, принимаемая равной до 0,8 МПа; (значение задается технологическими отделами), МПа; - величина внешнего гидростатического давления, учитываемого при прокладке трубопроводов ниже уровня грунтовых вод, МПа.
4.3. Толщину трубы , мм, при расчете на деформацию (укорочение вертикального диаметра на 3% от воздействия суммарной приведенной внешней нагрузки) следует определять по формуле
(5)
4.4. Расчет толщины стенки трубы , мм, от воздействия внутреннего гидравлического давления при отсутствии внешней нагрузки следует производить по формуле
(6)
где - расчетное внутреннее давление, МПа.
4.5. Дополнительным является расчет на устойчивость круглой формы поперечного сечения трубопровода при образовании в ней вакуума, производимый исходя из неравенства
(7)
где - коэффициент приведения внешних нагрузок (см. прил. 3).
4.6. За расчетную толщину стенки подземного трубопровода следует принимать наибольшее значение толщины стенки, определенное по формулам (3), (5), (6) и проверенное по формуле (7).
4.7. По формуле (6) построены графики выбора толщин стенок в зависимости от расчетного внутреннего давления (см. разд. 5), позволяющие без проведения расчетов определять соотношения между величинами: для от 325 до 1620 мм.
4.8. По формулам (3), (4) и (7) построены таблицы допустимых глубин заложения труб в зависимости от толщины стенки и других параметров (см. разд. 6).
По таблицам можно без проведения расчетов определять соотношения между величинами: и для следующих наиболее часто встречающихся условий: - от 377 до 1620 мм; - от 1 до 6 м; - от 150 до 400 МПа; основание под трубы грунтовое плоское и спрофилированное (75°) с нормальной или повышенной степенью уплотнения грунтов засыпки; временная нагрузка на поверхности земли - НГ-60.
4.9. Примеры расчета труб по формулам и подбора толщин стенок по графикам и таблицам даны в прил. 4.
ПРИЛОЖЕНИЕ 1
СОРТАМЕНТ СТАЛЬНЫХ СВАРНЫХ ТРУБ, РЕКОМЕНДУЕМЫХ ДЛЯ ТРУБОПРОВОДОВ ВОДОСНАБЖЕНИЯ И КАНАЛИЗАЦИИ

Диаметр, мм Трубы по
условный наружный ГОСТ 10705-80* ГОСТ 10706-76* ГОСТ 8696-74* ТУ 102-39-84
Толщина стенки, мм
из углеро-
дистых сталей по ГОСТ 380-71* и ГОСТ 1050-74*
из углеро-
дистой стали по ГОСТ 280-71*
из углеро-
дистой стали по ГОСТ 380-71*
из низколе-
гированной стали по ГОСТ 19282-73*
из углеро-
дистой стали по ГОСТ 380-71*

150

159

4-5

-

(3) 4

(3); 3,5; 4

4-4,5
200 219 4-5 - (3) 4-5 (3; 3,5); 4 4-4,5
250 273 4-5,5 - (3) 4-5 (3; 3,5); 4 4-4,5
300 325 4-5,5 - (3) 4-5 (3; 3,5); 4 4-4,5
350 377 (4; 5) 6 - (3) 4-6 (3; 3,5); 4-5 4-4,5
400 426 (4; 5) 6 - (3) 4-7 (3; 3,5); 4-6 4-4,5
500 530 (5-5,5); 6; 6,5 (5; 6); 7-8 5-7 4-5 -
600 630 - (6); 7-9 6-7 5-6 -
700 720 - (5-7); 8-9 6-8 5-7 -
800 820 - (6; 7) 8-9 7-9 6-8 -
900 920 - 8-10 8-10 (6; 7) - -
1000 1020 - 9-11 9-11 (8) 7-10 -
1200 1220 - 10-12 (8; 9); 10-12 7-10 -
1400 1420 - - (8-10); 11-13 8-11 -
1600 1620 - - 15-18 15-16 -

Примечание. В скобках указаны толщины стенок, которые в настоящее время не освоены заводами. Применение труб с такими толщинами стенок допускается только по согласованию с Минчерметом СССР.

ПРИЛОЖЕНИЕ 2
СТАЛЬНЫЕ СВАРНЫЕ ТРУБЫ, ВЫПУСКАЕМЫЕ ПО НОМЕНКЛАТУРНОМУ КАТАЛОГУ ПРОДУКЦИИ МИНЧЕРМЕТА СССР, РЕКОМЕНДУЕМЫЕ ДЛЯ ТРУБОПРОВОДОВ ВОДОСНАБЖЕНИЯ И КАНАЛИЗАЦИИ

Технические условия

Диаметры (толщина стенок), мм

Марка сталей, испытательное гидравлическое давление

ТУ 14-3-377-75 на электросварные прямошовные трубы

219-325 (6,7,8);
426 (6-10)

ВСт3сп по ГОСТ 380-71*
10, 20 по ГОСТ 1050-74*
определяется величиной 0,95
ТУ 14-3-1209-83 на электросварные прямошовные трубы 530,630 (7-12)
720 (8-12)
1220 (10-16)
1420 (10-17,5)
ВСт2, ВСт3 категории 1-4, 14ХГС, 12Г2С, 09Г2ФБ, 10Г2Ф, 10Г2ФБ, Х70
ТУ 14-3-684-77 на электросварные спиральношовные трубы общего назначения (с термообработкой и без нее) 530,630 (6-9)
720 (6-10),
820 (8-12),
1020 (9-12),
1220 (10-12),
1420 (11-14)
ВСт3пс2, ВСт3сп2 по
ГОСТ 380-71*; 20 по
ГОСТ 1050-74*;
17Г1С, 17Г2СФ, 16ГФР по ГОСТ 19282-73; классы
К45, К52, К60
ТУ 14-3-943-80 на сварные прямошовные трубы (с термообработкой и без нее) 219-530 по
ГОСТ 10705-80 (6,7,8)
ВСт3пс2, ВСт3сп2, ВСт3пс3 (по требованию ВСт3сп3) по ГОСТ 380-71*; 10сп2, 10пс2 по ГОСТ 1050-74*

ПРИЛОЖЕНИЕ 3
ОПРЕДЕЛЕНИЕ НАГРУЗОК НА ПОДЗЕМНЫЕ ТРУБОПРОВОДЫ
Общие указания
По данному приложению для подземных трубопроводов из стальных, чугунных, асбестоцементных, железобетонных, керамических, полиэтиленовых и других труб определяются нагрузки от: давления грунта и грунтовой воды; временных нагрузок на поверхности земли; собственного веса труб; веса транспортируемой жидкости.
В особых грунтовых или природных условиях (например: просадочные грунты, сейсмичность выше 7 баллов и др.) должны дополнительно учитываться нагрузки, вызываемые деформациями грунтов или земной поверхности.
В зависимости от продолжительности действия в соответствии со СНиП 2.01.07-85 нагрузки подразделяются на постоянные, временные длительные, кратковременные и особые:
к постоянным нагрузкам относятся: собственный вес труб, давление грунта и грунтовой воды;
к временным длительным нагрузкам относятся: вес транспортируемой жидкости, внутреннее рабочее давление в трубопроводе, давление от транспортных нагрузок в местах, предназначенных для проезда или давление от временных длительных нагрузок, расположенных на поверхности земли, температурные воздействия;
к кратковременным нагрузкам относятся: давление от транспортных нагрузок в местах, не предназначенных для движения, испытательное внутреннее давление;
к особым нагрузкам относятся: внутреннее давление жидкости при гидравлическом ударе, атмосферное давление при образовании в трубопроводе вакуума, сейсмическая нагрузка.
Расчет трубопроводов должен производиться на наиболее опасные сочетания нагрузок (принимаемые по СНиП 2.01.07-85), возникающие в стадиях хранения, транспортировки, монтажа, испытания и эксплуатации труб.
При расчете внешних нагрузок следует иметь в виду, что на их величину оказывают существенное влияние следующие факторы: условия укладки труб (в траншею, насыпь или узкую прорезь - рис. 1); способы опирания труб на основание (плоское грунтовое, грунтовое профилированное по форме трубы или на бетонный фундамент - рис. 2); степень уплотнения грунтов засыпки (нормальная, повышенная или плотная, достигаемая намывом); глубина заложения, определяемая высотой засыпки над верхом трубопровода.

Рис. 1. Укладка труб в узкую прорезь
1 - подбивка из песчаного или суглинистого грунта


Рис. 2. Способы опирания трубопроводов
- на плоское грунтовое основание; - на грунтовое спрофилированное основание с углом охвата 2; - на бетонный фундамент
При засыпке трубопровода должно производиться послойное уплотнение с обеспечением коэффициента уплотнения не менее 0,85 - при нормальной степени уплотнения и не менее 0,93 - при повышенной степени уплотнения грунтов засыпки.
Наиболее высокая степень уплотнения грунта достигается гидронамывом.
Для обеспечения расчетной работы трубы уплотнение грунта должно производиться на высоту не менее, чем на 20 см выше трубы.
Грунты засыпки трубопровода по степени их воздействия на напряженное состояние труб подразделяются на условные группы в соответствии с табл. 1.
Таблица 1
НОРМАТИВНЫЕ И РАСЧЕТНЫЕ НАГРУЗКИ ОТ ДАВЛЕНИЯ ГРУНТА И ГРУНТОВОЙ ВОДЫ
Схема нагрузок, действующих на подземные трубопроводы, приведена на рис. 3 и 4.

Рис. 3. Схема нагрузок на трубопровод от давления грунта и нагрузок, передающихся через грунт

Рис. 4. Схема нагрузок на трубопровод от давления грунтовой воды
Равнодействующая нормативной вертикальной нагрузки на единицу длины трубопровода от давления грунта , кН/м, определяется по формулам:
при укладке в траншее
(1)
при укладке в насыпи
(2)
при укладке в прорези
(3)
Если при укладке труб в траншее и расчете по формуле (1), произведение окажется больше, чем произведение в формуле (2), определенные для одних и тех же грунтов основания и способа опирания трубопровода, то вместо формулы (1) следует пользоваться формулой (2).
Где - глубина заложения до верха трубопровода, м; - наружный диаметр трубопровода, м; - нормативное значение удельного веса грунта засыпки, принимаемое по табл. 2, кН/м.
Таблица 2
Условная группа грунтов Нормативная плотность Нормативный удельный вес Нормативный модуль деформации грунтов , МПа, при степени уплотнения
засыпки грунтов , т/м грунтов, , кН/м нормальной повышенной плотной (при намыве)

Гз-I

1,7

16,7

7

14

21,5
Гз-II 1,7 16,7 3,9 7,4 9,8
Гз-III 1,8 17,7 2,2 4,4 -
Гз-IV 1,9 18,6 1,2 2,4 -
- ширина траншеи на уровне верха трубопровода, м; - коэффициент, зависящий от отношения и от вида грунта засыпки, принимаемый по табл. 3; - ширина траншеи на уровне середины расстояния между поверхностью земли и верхом трубопровода, м; - ширина прорези, м; - коэффициент, учитывающий разгрузку трубы грунтом, находящимся в пазухах между стенками траншеи и трубопроводом, определяемый по формуле (4), причем, если коэффициент окажется меньше величины , то в формуле (2) принимается
, (4)
- коэффициент, зависящий от вида грунта основания и от способа опирания трубопровода, определяемый:
для жестких труб (кроме стальных, полиэтиленовых и других гибких труб) при отношении - по табл. 4, при в формуле (2), вместо подставляется величина , определяемая по формуле (5), причем, величина , входящая в эту формулу, определяется по табл. 4.
. (5)
При коэффициент принимаем равным 1;
для гибких труб коэффициент определяется по формуле (6), причем, если окажется, что , то в формуле (2) принимается .
, (6)
- коэффициент, принимаемый в зависимости от величины отношения , где - величина заглубления в прорезь верха трубопровода (см. рис. 1).
0,1 0,3 0,5 0,7 1
0,83 0,71 0,63 0,57 0,52
=0,125 - параметр, характеризующий жесткость грунта засыпки, МПа; - параметр, характеризующий жесткость трубопровода, МПа, определяемый по формуле
(7)
где - модуль деформации грунта засыпки, принимаемый по табл. 2, МПа; -модуль деформации, МПа; - коэффициент Пуассона материала трубопровода; - толщина стенки трубопровода, м; - средний диаметр поперечного сечения трубопровода, м; - часть вертикального наружного диаметра трубопровода, находящегося выше плоскости основания, м.
Таблица 3


Коэффициент в зависимости от грунтов засылки
Гз-I Гз-II, Гз-III Гз-IV

0

1

1

1
0,1 0,981 0,984 0,986
0,2 0,962 0,868 0,974
0,3 0,944 0,952 0,961
0,4 0,928 0,937 0,948
0,5 0,91 0,923 0,936
0,6 0,896 0,91 0,925
0,7 0,881 0,896 0,913
0,8 0,867 0,883 0,902
0,9 0,852 0,872 0,891
1 0,839 0,862 0,882
1,1 0,826 0,849 0,873
1,2 0,816 0,84 0,865
1,3 0,806 0,831 0,857
1,4 0,796 0,823 0,849
1,5 0,787 0,816 0,842
1,6 0,778 0,809 0,835
1,7 0,765 0,79 0,815
1,8 0,75 0,775 0,8
1,9 0,735 0,765 0,79
2 0,725 0,75 0,78
3 0,63 0,66 0,69
4 0,555 0,585 0,62
5 0,49 0,52 0,56
6 0,435 0,47 0,505
7 0,39 0,425 0,46
8 0,35 0,385 0,425
9 0,315 0,35 0,39
10 0,29 0,32 0,35
15 0,195 0,22 0,255
Расчетные вертикальные нагрузки от давления грунта получаются путем умножения нормативных на коэффициент надежности по нагрузке .
Равнодействующая нормативной горизонтальной нагрузки , кН/м, по всей высоте трубопровода от бокового давления грунта с каждой стороны определяется по формулам:
при укладке в траншее
; (8)
при укладке в насыпи
, (9)
где - коэффициенты, принимаемые по табл. 5.
При укладке трубопровода в прорези боковое давление грунта не учитывается.
Расчетные горизонтальные нагрузки от давления грунта получаются путем умножения нормативных нагрузок на коэффициент надежности по нагрузке .
Таблица 4

Грунты основания


Коэффициент при отношении и укладке труб на ненарушенный грунт с
плоским основанием профилированным с углом охвата опиранием на бетонный фундамент с
75° 90° 120°

Скальные, глинистые (очень прочные)

1,6

1,6

1,6

1,6

1,6
Пески гравелистые, крупные, средней крупности и мелкие плотные. Глинистые грунты прочные 1,4 1,43 1,45 1,47 1,5
Пески гравелистые, крупные, средней крупности и мелкие средней плотности. Пески пылеватые плотные; глинистые грунты средней плотности 1,25 1,28 1,3 1,35 1,4
Пески гравелистые, крупные, средней крупности и мелкие рыхлые. Пески пылеватые средней плотности; глинистые грунты слабые 1,1 1,15 1,2 1,25 1,3
Пески пылеватые рыхлые; грунты текучие 1 1 1 1,05 1,1
Примечание. При устройстве под трубопроводом свайного основания принимается независимо от вида грунта основания.
Для всех грунтов, кроме глин, при заложении трубопроводов ниже постоянного уровня грунтовых вод, следует учитывать уменьшение удельного веса грунта, находящегося ниже этого уровня. Кроме того, отдельно учитывается давление грунтовых вод на трубопровод.
Таблица 5

Коэффициенты при степени уплотнения засыпки
Условные группы грунтов засыпки нормальной повышенной и плотной с помощью намыва
При укладке труб в
траншее насыпи траншее насыпи

Гз-I

0,1

0,95

0,3

0,86

0,3

0,86

0,5

0,78

Гз-II, Гз-III

0,05

0,97

0,2

0,9

0,25

0,88

0,4

0,82

Гз-IV

0

1

0,1

0,95

0,2

0,9

0,3

0,86
Нормативное значение удельного веса взвешенного в воде грунта , кН/м, следует определять по формуле
, (10)
где - коэффициент пористости грунта.
Нормативное давление грунтовой воды на трубопровод учитывается в виде двух составляющих (см. рис. 4):
равномерной нагрузки кН/м, равной напору над трубой, и определяется по формуле
; (11)
неравномерной нагрузки , кН/м, которая у лотка трубы определяется по формуле
. (12)
Равнодействующая этой нагрузки , кН/м, направлена вертикально вверх и определяется по формуле
, (13)
где - высота столба грунтовой воды над верхом трубопровода, м.
Расчетные нагрузки от давления грунтовой воды получаются путем умножения нормативных нагрузок на коэффициент надежности по нагрузке, который принимается равный: - для равномерной части нагрузки и при расчете на всплытие для неравномерной части; - при расчете на прочность и деформацию для неравномерной части нагрузки.
НОРМАТИВНЫЕ И РАСЧЕТНЫЕ НАГРУЗКИ ОТ ВОЗДЕЙСТВИЯ ТРАНСПОРТНЫХ СРЕДСТВ И РАВНОМЕРНО РАСПРЕДЕЛЕННОЙ НАГРУЗКИ НА ПОВЕРХНОСТИ ЗАСЫПКИ
Временные нагрузки от подвижных транспортных средств следует принимать:
для трубопроводов, прокладываемых под автомобильными дорогами - нагрузку от колонн автомобилей Н-30 или колесную нагрузку НК-80 (по большему силовому воздействию на трубопровод);
для трубопроводов, прокладываемых в местах, где возможно нерегулярное движение автомобильного транспорта - нагрузку от колонны автомобилей Н-18 или от гусеничного транспорта НГ-60 в зависимости от того, какая из этих нагрузок вызывает большее воздействие на трубопровод;
для трубопроводов различного назначения, прокладываемых в местах, где движение автомобильного транспорта невозможно - равномерно распределенную нагрузку с интенсивностью 5 кН/м;
для трубопроводов, прокладываемых под железнодорожными путями - нагрузки от подвижного состава К-14 или другую, соответствующую классу данной железнодорожной линии.
Величину временной нагрузки от подвижных транспортных средств, исходя из конкретных условий работы проектируемого трубопровода, при соответствующем обосновании, допускается увеличивать или уменьшать.
Равнодействующие нормативной вертикальной и горизонтальной нагрузок и кН/м, на трубопровод от автомобильного и гусеничного транспорта определяются по формулам:
; (14)
, (15)
где - динамический коэффициент подвижной нагрузки, зависящий от высоты засыпки вместе с покрытием
, м... 0,5 0,6 0,7 0,8 0,9
... 1,17 1,14 1,1 1,07 1,04 1
- нормативное равномерно распределенное давление от автомобильного и гусеничного транспорта, кН/м, принимаемое по табл. 6 в зависимости от приведенной глубины заложения трубопровода, которая определяется по формуле
, (16)
где - толщина слоя покрытия, м; - модуль деформации покрытия (дорожной одежды), определяемый в зависимости от его конструкции, материала покрытия, МПа.
Расчетные нагрузки получаются путем умножения нормативных нагрузок на коэффициенты надежности по нагрузке, принимаемые равными: - для вертикального давления нагрузок Н-30, Н-18 и Н-10; - для вертикального давления нагрузок НК-80 и НГ-60 и горизонтального давления всех нагрузок.
Равнодействующие нормативных вертикальной и горизонтальной нагрузок и , кН/м, от подвижного железнодорожного состава на трубопроводы, прокладываемые под железнодорожными путями, определяются по формулам:
(17)
, (18)
где - нормативное равномерное распределенное давление, кН/м, определяемое для нагрузки К-14 - по табл. 7.

Равнодействующие нормативных вертикальной и горизонтальной нагрузок и , кН/м, на трубопроводы от равномерно распределенной нагрузки интенсивностью,, кН/м, определяются по формулам:
(19)
. (20)
Для получения расчетных нагрузок нормативные нагрузки умножаются на коэффициент надежности по нагрузке: - для вертикального давления; - для горизонтального давления.
Таблица 6

, м

Нормативное равномерно распределенное давление , кН/м, при , м
0,1 0,3 0,5 0,7 0,9 1,1
0,5 136 128,7 122,8 116,6 110,5 104,9 101
0,75 106,7 101,9 97,4 93,8 90 87,9 85,1
1 79,8 75,9 73,3 71,1 69,2 68,5 68,1
1,25 56,4 55,2 54,3 53,1 52 51,6 51,4
1,5 35,4 35,3 35,2 35,1 35 34,9 34,8
1,75 30,9 30,9 30,8 30,7 30,6 30,5 30,4
2 26,5 26,5 26,4 26,4 26,3 26,2 26,1
2,25 24
2,5 22,5
2,75 21
3 19,6
3,25 18,3
3,5 17,1
3,75 15,8
4 14,7
4,25 13,7
4,5 12,7
4,75 11,9
5 11,1
5,25 10,3
5,5 9,61
5,75 9
6 8,43
6,25 7,84
6,5 7,35
6,75 6,86
7 6,37
7,25 6,08
7,5 5,59
7,75 5,29
8 5,1
0,6 59,8 59,8 58,8 56,9 54,9 52 49
0,75 44,1 44,1 43,3 42,7 41,7 40,9 40,2
1 35,3 35,3 34,8 34,5 34,4 34,3 34,3
1,25 29,8
1,5 25,4
1,75 21,7
2 18,7
2,25 17,6
2,5 16,5
2,75 15,5
3 14,5
3,25 13,7
3,5 12,9
3,75 12,2
4 11,4
4,25 10,4
4,5 9,81
4,75 9,12
5 8,43
5,25 7,45
5,5 7,16
5,75 6,67
6 6,18
6,5 5,39
7 4,71
7,5 4,31
0,5 111,1 111,1 102,7 92,9 82,9 76,8 70,3
0,75 56,4 56,4 53,1 49,8 46,2 42,5 39,2
1 29,9 29,9 29,2 28,2 27,2 25,9 24,5
1,25 21,5 21,5 21,3 20,4 20 19,4 19,2
1,5 16,3 16,3 16,1 15,9 15,9 15,9 15,9
1,75 14,5 14,5 14,4 14,3 14,1 14 13,8
2 13 13 12,8 12,6 12,6 12,4 12,2
2,25 11,8 11,8 11,6 11,5 11,3 11,1 10,9
2,5 10,5 10,5 10,4 10,2 10,1 9,9 9,71
3 8,53 8,53 8,43 8,34 8,24 8,14 8,04
3,5 6,86
4 5,59
4,25 5,1
4,5 4,71
4,75 4,31
5 4,02
5,25 3,73
5,5 3,43
6 2,94
6,5 2,55
7 2,16
7,5 1,96
0,5 111,1 111,1 102 92,9 83,2 75,9 69,1
0,75 51,9 51,9 48,2 45,6 42,9 40 38
1 28,1 28,1 27,2 25,6 24,5 23 21,6
1,25 18,3 18,3 17,8 17,3 16,8 16,3 15,8
1,5 13,4 13,4 13,3 13,1 12,9 12,8 12,7
1,75 10,5 10,5 10,4 10,3 10,2 10,1 10,1
2 8,43
2,25 7,65
2,5 6,86
2,75 6,18
3 5,49
3,25 4,8
3,5 4,22
3,75 3,63
4 3,04
4,25 2,65
4,5 2,45
4,75 2,26
5 2,06
5,25 1,86
5,5 1,77
5,75 1,67
6 1,57
6,25 1,47
6,5 1,37
6,75 1,27
7 1,27
7,25 1,18
7,5 1,08
Таблица 7

, м

Для нагрузки К-14 , кН/м

1

74,3
1,25 69,6
1,5 65,5
1,75 61,8
2 58,4
2,25 55,5
2,5 53
2,75 50,4
3 48,2
3,25 46,1
3,5 44,3
3,75 42,4
4 41
4,25 39,6
4,5 38,2
4,75 36,9
5 35,7
5,25 34,5
5,5 33,7
5,75 32,7
6 31,6
6,25 30,8
6,5 30
6,75 29
НОРМАТИВНЫЕ И РАСЧЕТНЫЕ НАГРУЗКИ ОТ СОБСТВЕННОГО ВЕСА ТРУБ И ВЕСА ТРАНСПОРТИРУЕМОЙ ЖИДКОСТИ
Равнодействующая нормативной вертикальной нагрузки

При строительстве и обустройстве дома трубы не всегда используются для транспортировки жидкостей или газов. Часто они выступают как строительный материал — для создания каркаса различных построек, опор для навесов и т.д. При определении параметров систем и сооружений необходимо высчитать разные характеристики ее составляющих. В данном случае сам процесс называют расчет трубы, а включает он в себя как измерения, так и вычисления.

Для чего нужны расчеты параметров труб

В современном строительстве используются не только стальные или оцинкованные трубы. Выбор уже довольно широк — ПВХ, полиэтилен (ПНД и ПВД), полипропилен, металлопластк, гофрированная нержавейка. Они хороши тем, что имеют не такую большую массу, как стальные аналоги. Тем не менее, при транспортировке полимерных изделий в больших объемах знать их массу желательно — чтобы понять, какая машина нужна. Вес металлических труб еще важнее — доставку считают по тоннажу. Так что этот параметр желательно контролировать.

Знать площадь наружной поверхности трубы надо для закупки краски и теплоизоляционных материалов. Красят только стальные изделия, ведь они подвержены коррозии в отличие от полимерных. Вот и приходится защищать поверхность от воздействия агрессивных сред. Используют их чаще для строительства , каркасов для хозпостроек ( , сараев, ), так что условия эксплуатации — тяжелы, защита необходима, потому все каркасы требуют окраски. Вот тут и потребуется площадь окрашиваемой поверхности — наружная площадь трубы.

При сооружении системы водоснабжения частного дома или дачи, трубы прокладывают от источника воды ( или скважины) до дома — под землей. И все равно, чтобы они не замерзли, требуется утепление. Рассчитать количество утеплителя можно зная площадь наружной поверхности трубопровода. Только в этом случае надо брать материал с солидным запасом — стыки должны перекрываться с солидным запасом.

Сечение трубы необходимо для определения пропускной способности — сможет ли данное изделие провести требуемое количество жидкости или газа. Этот же параметр часто нужен при выборе диаметра труб для отопления и водопровода, расчета производительности насоса и т.д.

Внутренний и наружный диаметр, толщина стенки, радиус

Трубы — специфический продукт. Они имеют внутренний и наружный диаметр, так как стенка у них толстая, ее толщина зависит от типа трубы и материала из которого она изготовлена. В технических характеристиках чаще указывают наружный диаметр и толщину стенки.

Если же наоборот, имеется внутренний диаметр и толщина стенки, а нужен наружный — к имеющемуся значению добавляем удвоенную толщину стеки.

С радиусами (обозначаются буквой R) еще проще — это половина от диаметра: R = 1/2 D. Например, найдем радиус трубы диаметром 32 мм. Просто 32 делим на два, получаем 16 мм.

Что делать, если технических данных трубы нет? Измерять. Если особая точность не нужна, подойдет и обычная линейка, для более точных измерений лучше использовать штангенциркуль.

Расчет площади поверхности трубы

Труба представляет собой очень длинный цилиндр, и площадь поверхность трубы рассчитывается как площадь цилиндра. Для вычислений потребуется радиус (внутренний или наружный — зависит от того, какую поверхность вам надо рассчитать) и длина отрезка, который вам необходим.

Чтобы найти боковую площадь цилиндра, перемножаем радиус и длину, полученное значение умножаем на два, а потом — на число «Пи», получаем искомую величину. При желании можно рассчитать поверхность одного метра, ее потом можно умножать на нужную длину.

Для примера рассчитаем наружную поверхность куска трубы длиной 5 метров, с диаметром 12 см. Для начала высчитаем диаметр: делим диаметр на 2, получаем 6 см. Теперь все величины надо привести к одним единицам измерения. Так как площадь считается в квадратных метрах, то сантиметры переводим в метры. 6 см = 0,06 м. Дальше подставляем все в формулу: S = 2 * 3,14 * 0,06 * 5 = 1,884 м2. Если округлить, получится 1,9 м2.

Расчет веса

С расчетом веса трубы все просто: надо знать, сколько весит погонный метр, затем эту величину умножить на длину в метрах. Вес круглых стальных труб есть в справочниках, так как этот вид металлопроката стандартизован. Масса одного погонного метра зависит от диаметра и толщины стенки. Один момент: стандартный вес дан для стали плотностью 7,85 г/см2 — это тот вид, который рекомендован ГОСТом.

В таблице Д — наружный диаметр, условный проход — внутренний диаметр, И еще один важный момент: указана масса обычных стального проката, оцинкованные на 3% тяжелее.

Как высчитать площадь поперечного сечения

Например, площадь сечения трубы диаметром 90 мм. Находим радиус — 90 мм / 2 = 45 мм. В сантиметрах это 4,5 см. Возводим в квадрат: 4,5 * 4,5 = 2,025 см 2 , подставляем в формулу S = 2 * 20,25 см 2 = 40,5 см 2 .

Площадь сечения профилированной трубы считается по формуле площади прямоугольника: S = a * b, где a и b — длины сторон прямоугольника. Если считать сечение профиля 40 х 50 мм, получим S = 40 мм * 50 мм = 2000 мм 2 или 20 см 2 или 0,002 м 2 .

Как рассчитать объем воды в трубопроводе

При организации системы отопления бывает нужен такой параметр, как объем воды, которая поместится в трубе. Это необходимо при расчете количества теплоносителя в системе. Для данного случая нужна формула объема цилиндра.

Тут есть два пути: сначала высчитать площадь сечения (описано выше) и ее умножить на длину трубопровода. Если считать все по формуле, нужен будет внутренний радиус и общая длинна трубопровода. Рассчитаем сколько воды поместится в системе из 32 миллиметровых труб длиной 30 метров.

Сначала переведем миллиметры в метры: 32 мм = 0,032 м, находим радиус (делим пополам) — 0,016 м. Подставляем в формулу V = 3,14 * 0,016 2 * 30 м = 0,0241 м 3 . Получилось = чуть больше двух сотых кубометра. Но мы привыкли объем системы измерять литрами. Чтобы кубометры перевести в литры, надо умножить полученную цифру на 1000. Получается 24,1 литра.

С опорами, стойками, колоннами, емкостями из стальных труб и обечаек мы сталкиваемся на каждом шагу. Область использования кольцевого трубного профиля неимоверно широка: от дачных водопроводов, столбиков заборов и опор козырьков до магистральных нефтепроводов и газопроводов, ...

Огромных колонн зданий и сооружений, корпусов самых разнообразных установок и резервуаров.

Труба, имея замкнутый контур, обладает одним очень важным преимуществом: она имеет значительно большую жесткость, чем открытые сечения швеллеров, уголков, С-профилей при одинаковых габаритных размерах. Это означает, что из труб конструкции получаются легче – их масса меньше!

Выполнить расчет трубы на прочность при приложенной осевой сжимающей нагрузке (довольно часто встречающаяся на практике схема) на первый взгляд довольно просто – поделил нагрузку на площадь сечения и сравнил полученные напряжения с допускаемыми. При растягивающей трубу силе этого будет достаточно. Но не в случае сжатия!

Есть понятие — «потеря общей устойчивости». Эту «потерю» следует проверить, чтобы избежать позднее серьезных потерь иного характера. Подробнее об общей устойчивости можете при желании почитать . Специалисты – проектировщики и конструкторы об этом моменте хорошо осведомлены.

Но есть еще одна форма потери устойчивости, которую не многие проверяют – местная. Это когда жесткость стенки трубы «заканчивается» при приложении нагрузок раньше общей жесткости обечайки. Стенка как бы «подламывается» внутрь, при этом кольцевое сечение в этом месте локально значительно деформируется относительно исходных круговых форм.

Для справки: круглая обечайка – это лист, свернутый в цилиндр, кусок трубы без дна и крышки.

Расчет в Excel основан на материалах ГОСТ 14249-89 Сосуды и аппараты. Нормы и методы расчета на прочность. (Издание (апрель 2003 г.) с Поправкой (ИУС 2-97, 4-2005)).

Цилиндрическая обечайка. Расчет в Excel.

Работу программы рассмотрим на примере простого часто задаваемого в Интернете вопроса: «Сколько килограммов вертикальной нагрузки должна нести 3-х метровая стойка-опора из 57-ой трубы (Ст3)?»

Исходные данные:

Значения для первых 5-и исходных параметров следует взять в ГОСТ 14249-89. По примечаниям к ячейкам их легко найти в документе.

В ячейки D8 – D10 записываются размеры трубы.

В ячейки D11– D15 пользователем задаются нагрузки, действующие на трубу.

При приложении избыточного давления изнутри обечайки значение наружного избыточного давления следует задать равным нулю.

Аналогично, при задании избыточного давления снаружи трубы значение внутреннего избыточного давления следует принять равным нулю.

В рассматриваемом примере к трубе приложена только центральная осевая сжимающая сила.

Внимание!!! В примечаниях к ячейкам столбца «Значения» содержатся ссылки на соответствующие номера приложений, таблиц, чертежей, пунктов, формул ГОСТ 14249-89.

Результаты расчетов:

Программа вычисляет коэффициенты нагрузок – отношения действующих нагрузок к допускаемым. Если полученное значение коэффициента больше единицы, то это означает, что труба перегружена.

В принципе, пользователю достаточно видеть только последнюю строку расчетов – суммарный коэффициент общей нагрузки, который учитывает совместное влияние всех сил, момента и давления.

По нормам примененного ГОСТа труба ø57×3,5 из Ст3 длиной 3 метра при указанной схеме закрепления концов «способна нести» 4700 Н или 479,1 кг центрально приложенной вертикальной нагрузки с запасом ~2%.

Но стоит сместить нагрузку от оси на край сечения трубы – на 28,5 мм (что на практике может реально произойти), появится момент:

М =4700*0,0285=134 Нм

И программа выдаст результат превышения допустимых нагрузок на 10%:

k н =1,10

Не стоит пренебрегать запасом прочности и устойчивости!

Всё — расчет в Excel трубы на прочность и устойчивость закончен.

Заключение

Конечно, примененный стандарт устанавливает нормы и методы именно для элементов сосудов и аппаратов, но что нам мешает распространить эту методику на другие области? Если вы разобрались в теме, и запас, заложенный в ГОСТе, считаете чрезмерно большим для вашего случая – замените значение коэффициента запаса устойчивости n y с 2,4 на 1,0. Программа выполнит расчет вообще без учета какого-либо запаса.

Значение 2,4, применяемое для рабочих условий сосудов, может служить в иных ситуациях просто ориентиром.

С другой стороны — очевидно, что, рассчитанные по нормативам для сосудов и аппаратов, стойки из трубы будут работать сверхнадежно!

Предложенный расчет трубы на прочность в Excel отличается простотой и универсальностью. С помощью программы можно выполнить проверку и трубопровода, и сосуда, и стойки, и опоры – любой детали, изготовленной из стальной круглой трубы (обечайки).

2.3 Определение толщины стенки трубопровода

По приложению 1 выбираем, что для сооружения нефтепровода применяются трубы Волжского трубного завода по ВТЗ ТУ 1104-138100-357-02-96 из стали марки 17Г1С (временное сопротивление стали на разрыв σвр=510МПа, σт=363 МПа, коэффициент надежности по материалу k1=1,4). Перекачку предполагаем вести по системе «из насоса в насос», то np= 1,15; так как Dн= 1020>1000 мм, то kн = 1,05.

Определяем расчетное сопротивление металла трубы по формуле (3.4.2)

Определяем расчетное значение толщины стенки трубопровода по формуле (3.4.1)

δ = =8,2 мм.

Полученное значение округляем в большую сторону до стандартного значения и принимаем толщину стенки равной 9,5 мм.

Определяем абсолютное значение максимального положительного и максимального отрицательного температурных перепадов по формулам (3.4.7) и (3.4.8):

(+) =

(-) =

Для дальнейшего расчета принимаем большее из значений, =88,4 град.

Рассчитаем продольные осевые напряжения σпрN по формуле (3.4.5)

σпрN = - 1,2·10-5·2,06·105·88,4+0,3 = -139,3 МПа.

где внутренний диаметр определяем по формуле (3.4.6)

Знак «минус» указывает на наличие осевых сжимающих напряжений, поэтому вычисляем коэффициент по формуле (3.4.4)

Ψ1= = 0,69.

Пересчитываем толщину стенки из условия (3.4.3)


δ == 11,7 мм.

Таким образом, принимаем толщину стенки 12 мм.


3. Расчет на прочность и устойчивость магистрального нефтепровода

Проверку на прочность подземных трубопроводов в продольном направлении производят по условию (3.5.1).

Вычисляем кольцевые напряжения от расчетного внутреннего давления по формуле (3.5.3)

194,9 МПа.

Коэффициент, учитывающий двухосное напряженное состояние металла труб определяется по формуле (3.5.2), так как нефтепровод испытывает сжимающие напряжения

0,53.

Следовательно,

Так как МПа, то условие прочности (3.5.1) трубопровода выполняется.

Для предотвращения недопустимых пластических деформаций трубопроводов проверку производят по условиям (3.5.4) и (3.5.5).

Вычисляем комплекс


где R2н= σт=363 МПа.

Для проверки по деформациям находим кольцевые напряжения от действия нормативной нагрузки – внутреннего давления по формуле (3.5.7)

185,6 МПа.

Вычисляем коэффициент по формуле (3.5.8)

=0,62.

Находим максимальные суммарные продольные напряжения в трубопроводе по формуле (3.5.6), принимая минимальный радиус изгиба 1000 м

185,6<273,1 – условие (3.5.5) выполняется.

МПа>МПа – условие (3.5.4) не выполняется.

Так как проверка на недопустимые пластичные деформации не соблюдается, то для обеспечения надежности трубопровода при деформациях необходимо увеличить минимальный радиус упругого изгиба, решая уравнение (3.5.9)

Определяем эквивалентное осевое усилие в сечении трубопровода и площадь сечения металла трубы по формулам (3.5.11) и (3.5.12)

Определяем нагрузку от собственного веса металла трубы по формуле (3.5.17)

Определяем нагрузку от собственного веса изоляции по формуле (3.5.18)

Определяем нагрузку от веса нефти, находящегося в трубопроводе единичной длины по формуле (3.5.19)

Определяем нагрузку от собственного веса заизолированного трубопровода с перекачивающей нефтью по формуле (3.5.16)

Определяем среднее удельное давление на единицу поверхности контакта трубопровода с грунтом по формуле (3.5.15)

Определяем сопротивление грунта продольным перемещениям отрезка трубопровода единичной длины по формуле (3.5.14)

Определяем сопротивление вертикальным перемещения отрезка трубопровода единичной длины и осевой момент инерции по формулам (3.5.20), (3.5.21)

Определяем критическое усилие для прямолинейных участков в случае пластической связи трубы с грунтом по формуле (3.5.13)

Следовательно

Определяем продольное критическое усилие для прямолинейных участков подземных трубопроводов в случае упругой связи с грунтом по формуле (3.5.22)

Следовательно

Проверка общей устойчивости трубопровода в продольном направлении в плоскости наименьшей жесткости системы производят по неравенству (3.5.10) обеспечена

15,97МН<17,64MH; 15,97<101,7MH.

Проверяем общую устойчивость криволинейных участков трубопроводов, выполненных с упругим изгибом. По формуле (3.5.25) вычисляем

По графику рисунок 3.5.1 находим =22.

Определяем критическое усилие для криволинейных участков трубопровода по формулам (3.5.23), (3.5.24)

Из двух значений выбираем наименьшее и проверяем условие (3.5.10)

Условие устойчивости криволинейных участков не выполнено. Поэтому необходимо увеличить минимальный радиус упруго изгиба

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари