Подпишись и читай
самые интересные
статьи первым!

Сопротивление изгибу. Деформация изгиба. Осевой момент сопротивления изгиба

Если брус находится под действием двух пар сил (см. рис. 228,д), расположенных в плоскости его продольной оси, то возникает деформация изгиба. При деформации изгиба часть волокон удлиняется, а часть становится короче. Между зонами растяжения и сжатия располагается нейтральный слой.

В нейтральном слое волокна не подвергаются деформации и сохраняют свою длину неизменной. Чем дальше волокна расположены от нейтрального слоя, тем большую деформацию они испытывают.

Таким образом, при изгибе в поперечных сечениях бруса под действием внутренних сил возникают нормальные напряжения растяжения и сжатия, и их величина зависит от положения точки в сечении. Наибольшие напряжения возникают в наиболее удаленных точках от нейтральной оси. Эти напряжения в зоне растяжения обозначаются +σ max , а в зоне сжатия -σ max .

В точках, расположенных на нейтральной осп, напряжения равны нулю. Это простейший вид изгиба под действием пары сил. Но изгиб может возникнуть и при ином нагружении бруса, например под действием сил и реакций, перпендикулярных оси балки. В таких случаях для определения внутренних силовых факторов применяют метод поперечных сечений.

Рассмотрим (рис. 230, а) любое сечение, например I-I. Рассечем брус, отбросим левую часть и рассмотрим равновесие оставшейся (рис. 230,б). Для равновесия требуется соблюдение трех условий. Первое условие - равенство нулю суммы сил, направленных параллельно оси У. Это условие дает Q=R в. Второе условие - равенство нулю суммы сил, наравленных параллельно оси X, соблюдается тождественно, так как обе силы, и внешняя и равнодействующая внутренних сил, направлены перпендикулярно этой оси.

Рис. 230. Изгиб под действием силы и реакций :

а - схема бруса, б - схема равновесия правой части бруса

Соблюдение третьего условия - равенство нулю суммы моментов всех сил - подсказывает нам, что в сечении должны дополнительно действовать внутренние силы, приводящие к образованию пары сил, т. е. изгибающего момента M и =R в Х 1 . Таким образом выясняется, что в сечении действуют такие силовые факторы: поперечная сила и изгибающий момент. Первый - это следствие деформации сдвига, а второй - следствие деформации изгиба. Однако, как показала практика, главную опасность для прочности материала при поперечном изгибе представляют нормальные напряжения, поэтому в дальнейшем при рассмотрении подобных случаев мы не будем учитывать внутренних касательных сил.

Выше мы отмечали, что чем дальше от нейтрального слоя расположены в брусе волокна, тем больше они деформируются, а следовательно, и большее оказывают сопротивление деформации. Сопротивление деформации зависит не только от размеров поперечного сечения бруса, но и от ориентации его по отношению к изгибающей силе.

Итак, поскольку основное сопротивление изгибу оказывают периферийные слои материала, при изгибе целесообразно применять брусья с сечениями, в которых материал расположен дальше от нейтральной оси. Так, при одной и той же площади применение кольцевого сечения (трубы) целесообразнее применения сплошного; прямоугольные выгоднее квадратного, причем рациональней большее отношение высоты к ширине. Наиболее выгодными являются специальные профили: двутавры, швеллеры.

Учитывая, что по закону Гука напряжение в каждой точке деформируемого поперечного сечения пропорционально относительной деформации, а сама относительная деформация пропорциональна расстоянию точки от нейтральной оси, можно с помощью математических преобразований, приравняв сумму моментов внутренних сил внешнему моменту (метод сечения), определить величину максимальных напряжений изгиба, т. е.

Сам вывод не приводится ввиду его сложности.

Знаки «±» означают, что в точках, наиболее удаленных от нейтральной оси но расположенных по разные стороны от нее, будут различные по характеру деформации нормальные напряжения: в одном случае напряжения растяжения, в другом - напряжения сжатия.

Величина W (см. выше) называется осевым моментом сопротивления изгиба. Она характеризует способность поперечного сечения сопротивляться деформации изгиба относительно нейтральной оси.

Величина W зависит от формы и размеров поперечного сечения, а также от его ориентации по отношению к изгибающей силе. Для фиксации последнего к обозначению добавляют индекс, соответствующий обозначению нейтральной оси, например W z или W y . Размерность W - м 3 , см 3 , мм 3 .

Для квадратного сечения со стороной а W z =W y =a 3:6.

Для прямоугольного сечения с размерами b и h W z =bh 2:6 и W y =hb 2:6.

Для специальных сечений типа двутавров и швеллеров величины осевых моментов сопротивления изгибу приводятся в справочниках.

При проектных расчетах определяют минимальные размеры опасного поперечного сечения, которые при заданной нагрузке обеспечат прочность. Для этого используют формулу M и:W≤[σ и ], затем находят осевой момент по формуле W≥М и:[σ и ] и по вышеприведенным формулам рассчитывают необходимые размеры поперечного сечения.

При проверочных расчетах определяют максимальные действительные напряжения, т. е. напряжения в наиболее опасных точках опасного сечения и сравнивают их с допускаемыми. В этом случае предварительно находят изгибающий момент в опасном сечении и допускаемые напряжения

Деформация изгиба рассматривается на примере тела, имеющего простую форму. Например, брус. Брусом называется твёрдое тело, у которого длина значительно больше поперечных величин одного порядка. Ось бруса может быть кривой или прямой линией. Брусья с прямолинейной осью называются стержнями, балками, стойками, в зависимости от назначения.

Брусья с прямолинейной осью, положенные на опоры и изгибаемые приложенными к ним нагрузками (равномерно распределённая нагрузка, сосредоточенная сила, изгибающий момент) называются балками.

Балки служат для передачи действующих на них нагрузок на опоры, на которых они покоятся. Если балка имеет свешивающиеся концы, такую балку принято называть консольной, свешивающиеся концы – консолями. На опорах балки возникают реакции, с определения которых следует начинать решение всех задач, связанных с изгибом балок.

В зависимости от числа и устройства опор балки число реакций, подлежащих определению, бывает различно. Опоры балок по их устройству могут быть разделены на следующие три основных типа:

1) Шарнирно-неподвижная опора. Такая опора не даёт концу балки возможности передвигаться в каком-либо направлении, позволяя ему только поворачиваться относительно центра шарнира О. Неизвестную по величине и направлению реакцию R всегда можно заменить двумя составляющими: вертикальной R у по оси Oy и горизонтальной R x по оси Ox.

2) Шарнирно-подвижная опора. Такая опора отличается от шарнирно неподвижной тем, что у неё опорная подушка поставлена на катки, дающие возможность передвигаться концу балки вдоль оси по опорной плоскости. Направление опорной реакции всегда перпендикулярно к оси балки.

3) Жёстко защемляющая опора. Такая опора препятствует всякому перемещению конца балки в плоскости действия внешних нагрузок. И ещё препятствует вращению конца балки. Неизвестную реакцию R можно всегда заменить двумя составляющими: вертикальной R у по оси Oy и горизонтальной R х по оси Ox. И ещё неизвестный реактивный момент М R , препятствующий повороту балки.

В практике при изгибе чаще всего силы действуют перпендикулярно к продольной оси балки. В этих случаях число неизвестных реакций, возникающих на опорах, уменьшается, так как реакция по оси Ox в шарнирно неподвижной опоре и жёстко защемляющей опоре становится равной 0.

Определение опорных реакций балок.

В случае действия на балку сил, лежащих в одной плоскости, статика даёт три уравнения равновесия:

– сумма проекций всех сил, приложенных к балке, вместе с

Реакциями опор на оси Ox и Oy равны 0.

– сумма моментов всех сил должная быть равна 0.

В случае действия сил перпендикулярно оси Ox уравнение обращается в тождество.

Поперечная сила и изгибающий момент.

Для определения численного значения и направления поперечной силы и изгибающего момента применяют метод сечений. Для этого нужно мысленно разрезать балку сечением перпендикулярным к горизонтальной оси, отстоящем на расстоянии x от конца балки. Отбросив ту часть балки, где действует больше нагрузок, рассматривают равновесие оставшейся части. Все внешние силы, действующие на оставшуюся часть балки, могут быть заменены парой сил и силой, действующей в сечении.

Момент М пары внутренних сил , действующий в сечении, численно равный алгебраической сумме моментов всех внешних сил, действующих на оставшуюся часть балки, называется изгибающим моментом в сечении. Всегда направлен в положительном направлении, т. е. изгибает оставшуюся часть балки выпуклостью вниз. Т. е. если часть балки левая, то вращает оставшуюся часть балки против часовой стрелки. Если часть балки правая, то вращает по часовой стрелке.

Сила Q – результирующая внутренних сил, действующая в сечении, численно равная алгебраической сумме всех внешних сил, приложенных к оставшейся части балки, называется поперечной или перерезывающей силой в сечении. Поперечную силу будем считать положительной для левой части, если она действует вниз. Для правой части считается положительной действие поперечной силы вверх.

Изгиб бруса, производимый двумя равными моментами, направленными в противоположные стороны, называется чистым изгибом. В поперечной сечении возникает только один внутренний силовой фактор – .

Волокна, расположенные вдоль по длине балки, растягиваются по одной стороне; по другой – сжимаются. Вследствие удлинения одних волокон на выпуклой стороне и укорочения других на вогнутой стороне, вызываемых в брусе изгибающими моментами, в поперечных сечениях бруса возникают нормальные напряжения растяжения и сжатия (направлены перпендикулярно сечению). На границе между растянутым и сжатым слоем – нейтральный слой, волокна которого не растягиваются и не сжимаются, проходящий через центр тяжести сечения.

Поперечным изгибом называется изгиб бруса, при котором в поперечном сечении возникает два внутренних силовых фактора: Q – поперечная или перерезывающая сила, – изгибающий момент. Поперечные силы вызывают касательные напряжения.

При чистом и при поперечном изгибе плоские поперечные сечения остаются плоскими и после деформации. Плоские сечения взаимно поворачиваются одно относительно другого.

В случае чистого изгиба строят эпюру изгибающего момента.

В сечении, где имеет максимальное значение, вычисляют нормальное напряжение. Это значение напряжения сравнивают с допускаемым и делают вывод: прочность обеспечена или не обеспечена.

В случае поперечного изгиба строят эпюру изгибающего момента и перерезывающей силы. По максимальному изгибающему моменту рассчитывают нормальное напряжение.

По максимальной перерезывающей силе рассчитывают касательное напряжение. С помощью нормального и касательного напряжения находят эквивалентное нормальное по гипотезе прочности. Эквивалентное значение напряжения сравнивают с допускаемым. Делают вывод об обеспечении прочности.

Для наглядности изменения нагрузок по длине балки строят эпюры поперечной силы Q и изгибающего момента .

Правила построения эпюр:

Балку разбивают на участки. Проводят вниз вертикальные линии в точках приложения сосредоточенных сил и сосредоточенных моментов. Нумерация участков слева направо, если балка на двух и более опорах. Если балка со свободным концом (жесткая заделка – консоль), нумерацию следует выполнять со свободной стороны.

1. Ниже проводят две базовые нулевые линии для построения эпюры поперечной силы Q и изгибающего момента .

2. Положительные значения поперечной силы и изгибающего момента откладываются вверх от нулевой линии, отрицательные – вниз.

Для проверки правильности нахождения опорных реакций и определения внутренних силовых факторов Q и , исходя из условия равновесия для оставшейся части балки, выполняют анализ эпюр.

Анализ правильности построения эпюр:

1. На участке, где нет равномерно-распределённой нагрузки, эпюра поперечной силы представляет собой прямую, параллельную нулевой оси. Эпюра изгибаюшего момента представляет собой наклонную прямую. В точке, где приложена сосредоточенная сила, на эпюре поперечной силы должен быть скачок, равный по величине сосредоточенной силе. На эпюре изгибающего момента изменяется угол наклона.

2. Если на участке есть равномерно-распределённая нагрузка, то эпюра поперечной силы представляет собой наклонную прямую. Эпюра изгибающего момента будет параболой. При действии равномерно-распределённой нагрузки вниз, значение поперечной силы на эпюре будет убывать. Эпюра изгибающего момента будет параболой выпуклостью вверх. В точке пересечении поперечной силой нулевой линии и смене знака с плюса на минус на эпюре изгибающего момента будет максимум. При действии равномерно-распределённой нагрузки вверх, значение поперечной силы на эпюре будет возрастать. Эпюра изгибающего момента будет параболой вогнутостью вниз. В точке пересечения нулевой линии и смене знака с минуса на плюс на эпюре изгибающего момента будет минимум.

3. В точке, где приложен сосредоточенный момент, на эпюре изгибающего момента должен быть скачок, равный по величине сосредоточенному моменту. На эпюре поперечной силы изменений нет.

4. При изгибе справедливы дифференциальные зависимости: - интенсивность равномерно-распределённой нагрузки рана первой производной от поперечной силы (тангенс угла наклона эпюры поперечной силы) и второй производной от изгибающего момента. Поперечная сила равна первой производной от изгибающего момента и равна тангенсу угла наклона касательной к кривой изгибающего момента

Примеры построения простейших эпюр.

Пример 1: Консоль нагружена сосредоточенным моментом, построить эпюры поперечной силы и изгибающего момента.

Эпюра поперечной силы представляет собой нулевую линию.

Эпюра изгибающего момента представляет собой линию, параллельную нулевой оси. Решение: Проведем сечение на расстоянии х от свободного, незакреплённого конца. Поперечная или перерезывающей силы так как по условию равновесия отсечённой части поперечная сила равна сумме внешних сил, действующих на отсечённую часть. Внешних сил, приложенных к конструкции нет.

Положительное направление изгибающего момента , принадлежащего сечению считается направление по часовой. Изгибающий момент должен нижние волокна растягивать, верхние сжимать. В уравнении равновесия для отсечённой части он будет взят со знаком минус.

От нулевой линии откладываем вниз.

Пример 2: Консоль нагружена сосредоточенной силой, построить эпюры поперечной силы и изгибающего момента.Решение: Проведем сечение на расстоянии х от свободного, незакреплённого конца. Выберем положительное направление поперечной перерезывающей силы и изгибающего момента . Положительным считается направление поперечной силы вверх. Так как она должна разворачивать отсечённую часть по часовой стрелке. Вычисляем значение изгибающего момента в граничных точках участка при х=0 и при х=l.

Строим эпюры поперечной силы и изгибающего момента.

Деформация сдвига, кручения, изгиба - это изменение объема и формы тела при воздействии на него дополнительной нагрузки. При этом меняются расстояния между молекулами или атомами, приводящие к появлению Рассмотрим основные и их характеристики.

Сжатие и растяжение

Деформация растяжения связана с относительным либо абсолютным удлинением тела. В качестве примера можно привести однородный стержень, который закреплен с одного конца. При приложении вдоль оси силы, действующей в противоположном направлении, наблюдается растягивание стержня.

Сила же, прикладываемая по направлению к закрепленному концу стержня, приводит к сжатию тела. В процессе сжатия либо растяжения происходит изменение площади сечения тела.

Деформация растяжения - это изменения состояния объекта, сопровождающиеся смещением его слоев. Данный вид можно проанализировать на модели твердого тела, состоящего из параллельных пластин, которые между собой соединены пружинками. За счет горизонтальной силы осуществляется сдвиг пластин на какой-то угол, объем тела при этом не меняется. В случае между силой, приложенной к телу, и углом сдвига выявлена прямо пропорциональная зависимость.


Деформация изгиба

Рассмотрим примеры деформации данного вида. В случае изгиба, выпуклая часть тела подвергается некоторому растяжению, а вогнутый фрагмент сжимается. Внутри тела, подвергающегося данному варианту деформации, есть слой, который не испытывает ни сжатия, ни растяжения. Его принято называть нейтральным участком деформируемого тела. Вблизи него можно уменьшить площадь тела.

В технике примеры деформации данного типа используют для экономии материалов, а также для уменьшения веса возводимых конструкций. Сплошные брусья и стержни заменяют трубами, рельсами, двутавровыми балками.


Деформация кручения

Эта продольная деформация является неоднородным сдвигом. Она возникает при действии сил, направленных параллельно либо противоположно на стержень, у которого закреплен один конец. Чаще всего сложным деформациям подвергаются различные детали и механизмы, применяемые в конструкциях и машинах. Но благодаря сочетанию нескольких вариантов деформаций, существенно облегчается вычисление их свойств.

Кстати, в процессе существенной эволюции кости птиц и животных приняли трубчатый вариант строения. Такое изменение способствовало максимальному упрочнению скелета при определенной массе тела.


Деформации на примере организма человека

Тело человека подвергается серьезным механическим нагрузкам от собственных усилий и веса, появляющихся по мере физической деятельности. Вообще, деформация (сдвиг) характерна для человеческого организма:

  • Сжатие испытывает позвоночник, покровы ступней, нижние конечности.
  • Растяжению подвергаются связки, верхние конечности, мышцы, сухожилья.
  • Изгиб характерен для конечностей, костей таза, позвонков.
  • Кручениям подвергается во время поворота шея, при вращении ее испытывают кисти рук.

Но при превышении показателей предельного напряжения, возможен разрыв, например костей плеча, бедра. В связках же ткани соединяются настолько эластично, что допускается растягивание их в два раза. Кстати, деформация сдвига объясняет всю опасность передвижения женщин на высоких каблуках. Вес тела будет переноситься на пальцы, что приведет к повышению нагрузки на кости в два раза.

По результатам медицинских осмотров, проводимых в школах, из десяти детей лишь одного можно считать здоровым. Как деформации связаны с детским здоровьем? Сдвиг, кручение, сжатие - основные причины нарушения осанки у детей и подростков.


Прочность и деформации

Несмотря на многообразие живого и неживого мира, на создание человеком многочисленных материальных объектов, у всех предметов и живых существ есть общее свойство - прочность. Под ней принято понимать способность материала сохраняться на протяжении длительного временного промежутка без видимых разрушений. Существует прочность конструкций, молекул, сооружений. Эта характеристика уместна для кровеносных сосудов, человеческих костей, кирпичной колонны, стекла, воды. Деформация сдвига - вариант проверки сооружения на прочность.

Применение разных видов деформаций человеком имеет глубокие исторические корни. Все начиналось с желания соединить между собой палку и острый наконечник, чтобы охотиться на древних животных. Уже в те далекие времена человека интересовала деформация. Сдвиг, сжатие, растяжение, изгиб помогали ему создавать жилища, орудия труда, готовить пищу. По мере развития техники человечеству удалось использовать различные виды деформаций так, чтобы они приносили весомую пользу.


Закон Гука

Математические расчеты, необходимые в строительстве, технике, позволили применять для деформации сдвига. Формула показывала прямую связь между силой, прикладываемой к телу, и его удлинением (сжатием). Гук использовал коэффициент жесткости, показывая связь между материалом и возможностью его деформации.

По мере развития и совершенствования технических средств, аппаратов и приборов, разработки теории сопротивления, были проведены серьезные исследования пластичности и упругости. Результаты проведенных фундаментальных экспериментов стали применять в строительной технике, теории сооружений, теоретической механике.

Благодаря комплексному подходу к проблемам, связанным с различными видами деформации, удалось развить строительную отрасль, осуществлять профилактику правильной осанки у подрастающего поколения страны.

Заключение

Деформации, рассматриваемые в курсе школьной физики, оказывают влияние на процессы, происходящие в живом мире. В организмах человека, животных постоянно происходит кручение, изгиб, растяжение, сжатие. И для того чтобы осуществлять своевременную и полноценную профилактику проблем, связанных с осанкой или избыточным весом, медики используют зависимости, выявленные физиками при проведении фундаментальных исследований.

Например, прежде чем осуществлять протезирование нижних конечностей, выполняется детальный расчет максимальной нагрузки, на которую он должен быть рассчитан. Протезы подбираются для каждого человека индивидуально, так как важно учесть вес, рост и подвижность последнего. При нарушениях осанки применяют специальные коррекционные пояса, основанные на использовании деформации сдвига. Современная реабилитационная медицина не смогла бы существовать без использования физических законов и явлений, в том числе и без учета закономерностей различных видов деформаций.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари