Подпишись и читай
самые интересные
статьи первым!

Электромагнитные транспортные средства и аппараты. Транспорт на магнитной подушке

Поезда на магнитной подушке - это экологический чистый, бесшумный и быстрый транспорт. Они не могут слететь с рельсов и в случае неполадки способны безопасно остановиться. Но почему же такой транспорт не получил широкого распространения, и люди по-прежнему пользуется обычными электричками и поездами?

В 1980-е годы считалось, что поезда с магнитной левитацией (маглевы) это транспорт будущего, который уничтожит внутренние авиарейсы. Эти поезда могут перевозить пассажиров со скоростью 800 км/ч и не наносят практически никакого вреда окружающей среде.

Маглевы способны ездить в любую погоду и не могут сойти со своего единственного рельса - чем дальше поезд отклоняется от путей, тем сильнее его толкает обратно магнитная левитация. Все маглевы двигаются с одинаковой частотой, поэтому не будет никаких неполадок с сигналами. Представьте себе, какой эффект оказали бы такие поезда на экономику и транспорт, если бы расстояние между отдаленными крупными городами преодолевалось за полчаса.

Но почему вы до сих пор не можете ездить по утрам на работу со сверхзвуковой скоростью? Концепт маглевов существует уже более века, еще с начала 1900-х было оформлено множество патентов, использующих эту технологию. Однако до наших дней дожило лишь три рабочие системы поездов на магнитной подушке, причем все они есть только в Азии.

Японский маглев. Фото: Yuriko Nakao/Reuters

До этого первый рабочий маглев появился в Великобритании: в период с 1984 по 1995 из аэропорта Бирмингема ходил шаттл AirLink . Маглев был популярным и дешевым транспортом, но его обслуживание обходилось очень дорого, поскольку некоторые запчасти были единичного производства и их было тяжело найти.

В конце 1980-х Германия тоже обратилась к этой идее: ее беспилотный поезд M-Bahn ездил между тремя станциями западного Берлина. Однако технологию левитирующих поездов решили отложить на потом, и линию закрыли. Ее производитель TransRapid проводил испытания маглевов до тех пор, пока в 2006 году на тренировочном полигоне в Латене не произошел несчастный случай, в котором погибло 23 человека.

Это происшествие могло поставить крест на немецких маглевах, если бы компания TransRapid не подписала до этого договор на строительство в 2001 году маглева для Шанхайского аэропорта. Сейчас этот маглев является самым быстрым электропоездом в мире, который ездит со скоростью 431 км/ч. С его помощью расстояние от аэропорта до бизнес-квартала Шанхая можно преодолеть всего за восемь минут. На обычном транспорте для этого понадобился бы целый час. В Китае есть еще один среднескоростной маглев (его скорость составляет около 159 км/ч), который работает в столице провинции Хунань, Чанша. Китайцы настолько полюбили эту технологию, что к 2020 году планируют запустить еще несколько маглевов в 12 городах.

Канцлер Германии Ангела Меркель первой проехала на маглеве TransRapid до Шанхайского аэропорта. Фото: Rolf Vennenbernd/EPA

В Азии сейчас ведется работа и над другими проектами поездов на магнитной подушке. Один из самых известных - это беспилотный шаттл EcoBee, который ездит от южнокорейского аэропорта Инчхон с 2012 года. На его самой короткой линии расположено семь станций, между которыми маглев проносится со скоростью 109 км/ч. А еще поездки на нем абсолютно бесплатны.

Магнитоплан или Маглев (от англ. magnetic levitation) — это поезд на магнитном подвесе, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является сила аэродинамического сопротивления.

Скорость, достижимая маглев, сравнима со скоростью самолета и позволяет составить конкуренцию воздушным сообщениям на малых (для авиации) расстояниях (до 1000 км). Хотя сама идея такого транспорта не нова, экономические и технические ограничения не позволили ей развернуться в полной мере: для публичного использования технология воплощалась всего несколько раз. В настоящее время, Маглев не может использовать существующую транспортную инфраструктуру, хотя есть проекты с расположением элементов магнитной дороги между рельсов обычной железной дороги или под полотном автотрассы.

На данный момент существует 3 основных технологии магнитного подвеса поездов:

1. На сверхпроводящих магнитах (электродинамическая подвеска, EDS).

Созданная в Германии “железная дорога будущего” и прежде вызывала протесты жителей Шанхая. Но на этот раз власти, напуганные демонстрациями, грозящими вылиться в крупные волнения, пообещали разобраться с поездами. Чтобы вовремя пресекать демонстрации, чиновники даже развесили видеокамеры в тех местах, где чаще всего происходят массовые протесты. Китайская толпа очень организованна и мобильна, она может в считанные секунды собраться и превратиться в демонстрацию с лозунгами.

Это крупнейшие народные выступления в Шанхае со времен антияпонских маршей в 2005 году. Это уже не первый протест, вызванный озабоченностью китайцев ухудшающейся экологией. Минувшим летом многотысячные толпы демонстрантов заставили правительство отложить строительство химического комплекса.

2. Поезда MAGLEV: основные характеристики и перспективы эксплуатации

3. Летающие экспрессы. Отечественные и зарубежные разработки

3.1 Разработки новых видов транспорта

3.2 Высокоскоростной транспорт на магнитном подвесе

Заключение

Список литературы

Введение

Недавно знаменитый английский писатель-фантаст Артур Кларк сделал очередное предсказание. «...Мы, возможно, стоим на пороге создания космического аппарата нового типа, который сможет покидать Землю с минимальными затратами за счет преодоления гравитационного барьера, - считает он. - Тогда нынешние ракеты станут тем же, чем были воздушные шары до первой мировой войны». На чем же основано такое суждение? Ответ нужно искать в современных идеях создания транспорта на магнитной подушке.

Еще полвека назад магнитная подушка была чем-то из области фантастики. Однако сейчас ученые многих стран работают по созданию транспорта на магнитной подушке. Поезда будущего будут «парить» над землей, они как бы «подвешиваются» к рельсам, или отталкиваются от них, в зависимости от того, какая будет применена система, то есть электромагнитный или электродинамический подвес. В первом случае путь представляет собой стальные рельсы с «подвешенным» к ним экипажем. Во втором случае состав пойдет по металлическому полотну, в котором возникают электрические токи. В качестве тягового механизма в таких поездах будут использованы линейные двигатели.

Следует отметить, что поезд на магнитной подвеске начали эксплуатировать восьмидесятых годах прошлого века в Бирмингеме. Правда, после одиннадцати лет работы этот поезд был снят с линии из-за технических проблем. В настоящее время транспортная система на магнитной подушке действует в Китае, соединяя центр Шанхая с международным аэропортом Пудон. А в Японии экспериментальный поезд на магнитной подушке MLX01 в 2003 году установил абсолютный для данного вида транспорта рекорд скорости, разогнавшись до 581км/ч.

Цель данной контрольной работы – описать основные характеристики транспорта на магнитной подушке и дальнейшие перспективы использования транспорта будущего.

Реализация достижения цели достигается посредством решения следующих задач:

· дать описание теоретических предпосылок к созданию транспорта на магнитной подушке;

· дать описание технических характеристик и перспектив эксплуатации поездов на магнитной подушке;

· дать описание новейших отечественных и зарубежных разработок транспортных средств, функционирующих на основе эффекта левитации.

1. Левитация против гравитации: импульс к созданию транспорта на магнитной подушке

Буквальное значение слова «левитация» - подъем. По крайней мере, так определяется Британской энциклопедией возможность поднятия какого-либо тела (в том числе и человеческого) без контакта с чем бы то ни было. В технический обиход оно вошло сравнительно недавно, в связи с попытками создания транспорта на магнитной подушке.

Ее суть можно понять из наглядного опыта, часто демонстрируемого в школе. Берут два ферритовых колечка, представляющих собой сильные постоянные магниты, и нанизывают их на стеклянную палочку, поставленную вертикально. При этом верхний из магнитов как бы повисает в воздухе. Однако стоит убрать палочку, и магнитное кольцо перевернется и упадет. Вот почему инженерам приходится прилагать немалые усилия, чтобы стабилизировать магнитную подушку. Вот почему магнитный левитационный транспорт, над которым работают вот уже четверть века, так и не вышел за пределы полигонов.

Тем удивительнее фокус, который продемонстрировал изобретатель-исследователь Александр Кушелев. На столе он разместил керамический магнит от громкоговорителя диаметром 80 мм. Тщательно отъюстировал деревянными клинышками горизонтальность его положения. Прикрыл магнит сверху пластинкой оргстекла, на которой раскрутил самолично сделанный им волчок. И произошло необъяснимое: магнит оторвался от поверхности оргстекла и завис в воздухе.

Секунд через 40 он замедлил свое вращение, потерял устойчивость и кувыркнулся вниз. Объяснить это можно так: волчок тоже магнитный, а вращение за счет гироскопического эффекта стабилизирует его положение точно так же, как упоминавшаяся стеклянная палочка. На вопрос, нельзя ли на основе данного эффекта построить какое-либо левитирующее транспортное средство, Кушелев ответил, что как раз над этим он и размышляет.

Кроме того, магнитную левитацию можно в принципе осуществить и с помощью сверхпроводимости. Если взять сверхпроводник, пропустить через него электроток и поместить над магнитом, то он зависнет в воздухе и будет парить до тех пор, пока не отключат питание. Здесь стабилизация осуществляется как бы сама собой - любое перемещение сверхпроводника вызывает в нем вихревые токи, магнитные поля которых, точно-зеркальные по отношению к полю магнита, загоняют его на прежнее место. Естественно, это справедливо и к любому перемещению магнита (при неподвижном сверхпроводнике). Подобный способ магнитной подвески уже нашел применение в технике при создании сверхточных гироскопов для систем наведения ракет и самолетов. Более того: как выяснилось совсем недавно, использование сверхпроводимости дает уникальный побочный эффект.

Возможно ли укротить гравитацию? В 1996 г. в том убедился физик Джон Шнурер из Эниочского колледжа в Йеллоу-Спринг, штат Огайо. Когда над висящим в воздухе сверхпроводящим диском диаметром в 2,5 см он поместил маленький кусочек пластика, прикрепленный к точным весам, те показали уменьшение веса примерно на 5%. Сначала Шнурер не поверил собственным глазам. Он 12 раз провел эксперимент, прежде чем пришел к окончательному выводу: феномен повторяется регулярно. Тут он вспомнил, что еще в начале 90-х годов подобное же явление заметил наш соотечественник, специалист в области материаловедения Евгений Подклетнов, работавший в то время в Технологическом университете г. Тампере (Финляндия). Но тогда наблюдавшиеся результаты сочли ошибкой эксперимента.

Теперь же аналогичные опыты пытаются воспроизвести в Центре космических полетов имени Дж. Маршала, NASA и еще нескольких государственных лабораториях США. По словам руководителя Отделения перспективных концепций NASA Уита Брэнтли, люди так увлечены исследованиями, что порой тратят собственные деньги на покупку недостающего оборудования. К делу подключились и теоретики. Скажем, итальянец Джиованни Моданези из Национального агентства ядерной физики и физики высоких энергий полагает, что в данном случае мы имеем дело с возникновением «гравитационного экрана». А ведущий специалист Алабамского университета Нинг Ли считает, что при определенных условиях поля атомов сверхпроводника способны так экзотически взаимодействовать друг с другом, что возникает левитация.

Однако существует и другой способ создания левитации. «Одним из направлений дальнейшего поиска станет пересмотр природы тяготения - на базе электромагнитных и электростатических явлений, - полагает кандидат технических наук из подмосковного г. Лыткарино Владимир Пономарев.- Обратить внимание на электростатику заставляет хотя бы уже тот факт, что математические формулировки закона Ньютона и закона Кулона внешне весьма схожи, только в первом выражении в числителе стоят массы взаимодействующих тел, а во втором - их электрические заряды».

Причем при внимательном рассмотрении выясняется, что аналогии идут глубже внешнего сходства. Согласно общепринятым представлениям, явление гравитации основывается на взаимодействии неких квантов тяготения - гравитонов; однако до сих пор никто экспериментально не обнаружил ни их самих, ни излучаемых ими гравитационных волн. А что если гравитоны в какой-то мере тождественны элементарным электростатическим зарядам (назовем их кулонами)?

Такое предположение подталкивает вот к следующим рассуждениям. Поскольку любое тело во Вселенной имеет температуру выше абсолютного нуля, внутри него атомы испытывают тепловые колебания. А эти колебания, в соответствии с принципами электромагнитной теории Максвелла-Лоренца, неизбежно приводят к флуктуации микроскопических поляризованных зарядов. Суммируясь, те и образуют общий заряд. Таким образом, гравитационное притяжение, в принципе, может быть заменено электростатическим. Скажем, система Земля-Солнце находится в равновесии потому, что центробежная сила, бегущей по своей орбите Земли, равна силе взаимного притяжения разноименных электростатических зарядов ее и Солнца. А вот в системе Земля-Луна такое равновесие нарушено. И из-за этого Луна постепенно удаляется от нашей планеты; правда, понемногу - всего на 1,3 см в год.

Использование эффекта левитации на базе электромагнитных и электростатических явлений открывает широкие перспективы на практике. Электростатические поля надо использовать для создания летательного аппарата нового типа, полагает Пономарев. Его движение в околоземном пространстве будет обусловлено взаимодействием электростатических полей планеты и создаваемого в рабочем органе машины.

Пока в аппарате отсутствуют свободные электрические заряды необходимой величины и знака, он покоится на поверхности планеты. Но как только внутри него накапливаются ионы, получаемые ионизированием газа того же знака, что и электростатическое поле планеты, аппарат взлетит. Причем, согласно расчетам В.И.Пономарева, получается, что такая схема, как минимум, на порядок увеличит эффективность летательных аппаратов по сравнению с нынешними самолетами и ракетами. Конструкция такого летательного аппарата вполне может быть применена не только при исследовании малых планет или астероидов Солнечной системы, но и в открытом межзвездном пространстве.

Очередную попытку укрощения левитации предприняли в конце 1997 г. японские исследователи, которые работают по контракту с международной корпорацией «Мацусита». Они решили использовать для создания машины, преодолевающей силу тяжести, обыкновенный гироскоп. Их опыты подкупающе просты. Небольшой гироскоп раскручивают до 18 000 об/мин и помещают в герметичный контейнер, из которого выкачан воздух, и тот сбрасывают вниз. При падении контейнер преодолевает фиксированную дистанцию около 2 м, причем время замеряется точнейшим образом с помощью двух лазерных лучей. Когда пересекается один (старт), запускается электронный секундомер, когда же другой (финиш) - он останавливается.

15/06/2016

Они будут парить над рельсом, используя изобретенную петербургскими учеными технологию RusMaglev. Поначалу составы сделают грузовыми. В Минтрансе 13 мая состоялось совещание, на котором был представлен проект.


У же подписан договор с инвестором о его реализации. Начаты исследования по другому проекту, использующему принцип Hyperloop - полета поездов в вакуумной трубе. Эти поезда смогут передвигаться быстрее самолетов. Зачем нам все это и когда поезда, наконец, полетят? - узнавал «Город 812».

Один вагон уже взлетел

В конце мая в Петербурге состоялась международная конференция, посвященная созданию и развитию в мире нового, пятого, вида транспорта - маглева. Маглевы, или магнитные поезда, используют принцип магнитной левитации и парят над рельсом, не касаясь земли. Это позволяет развивать скорости, сравнимые с самолетными, и при этом экономить энергию. Такие поезда уже есть в Японии, Китае и Южной Корее. Многие страны начали развивать маглевы.
Петербургские ученые изобрели собственную магнитолевитационную технологию - RusMaglev. На ее основе создан первый в мире проект грузовой магнитолевитационной трассы между Петербургом и Москвой.

Составы, состоящие из контейнеров, будут парить над рельсом, удерживаемые в воздухе магнитной левитацией. Опытный образец летающего вагона массой 32 тонны создан в Петербургском госуниверситете путей сообщения (ПГУПС). Вагон был подвешен в воздухе на высоте 2,5 см от магнитного основания примерно год назад и с тех пор продолжает парить.

За это время левитационный зазор не уменьшился ни на миллиметр! - говорит глава Центра инновационного развития пассажирских перевозок ПГУПС, экс-министр путей сообщения РФ Анатолий Зайцев.

По его словам, для поддержания вагона в воздухе не требуется никаких внешних источников энергии. Он висит сам по себе, удерживаемый только магнитным полем. Такие вагоны, весом до 80 тонн каждый, смогут передвигаться со скоростью 400 км/час и более. Расход электроэнергии у них в два раза ниже, чем, например, у поездов ВСМ, так как нет соприкосновения с поверхностью и не нужно преодолевать силы трения. Магнитная магистраль длиной в 720 км протянется из порта Усть-Луга (Ленобласть) в логистический центр «Белый Раст» в Подмосковье.

Трасса пройдет по эстакаде на средней высоте в 5,5 метра. Строительство будет вестись в несколько этапов. Сначала в районе Гатчины (другой вариант - Шушары) возведут опытный участок пути, на котором отработают новую технологию. Затем путь продлят до грузового порта Усть-Луга, далее возможен заход в порт Бронка. Конечная точка - грузовые терминалы Москвы. Стоимость проекта - 22 миллиарда долларов. Уже подписан договор с инвестором - международной финансовой корпорацией Gordon Atlantic Development Corp, готовой привлечь финансирование для строительства первого русского маглева.

Магистраль должна пройти по территории пяти регионов - Петербурга, Ленинградской, Новгородской, Тверской областей и Москвы. Проблем с собственниками земли для прокладки трассы возникнуть не должно. По словам Зайцева, для возведения эстакады требуются лишь небольшие участки под опоры. В любом случае трасса легко может сделать крюк, чтобы обойти препятствия или подняться над ними.

В мае проект был представлен в Министерстве транспорта РФ. Ученые не просят ни копейки денег из бюджета, но им нужна поддержка - моральная.

Такие масштабные инфраструктурные проекты всегда должны быть под приглядом государственного ока, - говорит экс-министр путей сообщения, инициатор проекта RusMaglev профессор Анатолий Зайцев.

По его словам, правительство должно дать разрешение на создание маглева, а также рекомендовать региональным чиновникам оказывать поддержку проекту. Иначе в российских реалиях он может столкнуться с непредсказуемыми трудностями.

Петербургский маглев должен стать первым звеном в магнитолевитационной транспортной системе страны. Ученые из Уральского отделения РАН сделали анализ обоснования строительства маглева для севера России. Они предлагают открыть контейнерное магнитное сообщение по маршруту Ивдель (Свердловская область) - Индига (Ненецкий АО) протяженностью 1100 км. От Ивдели магнитная контейнерная магистраль может быть проложена на юг до границы с Китаем. По словам Анатолия Зайцева, перевозка одного миллиона контейнеров из Китая в Европу сегодня может принести прибыль, сравнимую с прибылью от продажи всех углеводородов России за год.

После обкатки на грузовых перевозках RusMaglev можно сделать и пассажирским, но при этом грузовые и пассажирские потоки нужно разделять. По расчетам уральских ученых, для перевозки людей по магнитолевитационной дороге выгоднее строить небольшие четырех-пятиместные пассажирские модули.

Русская петля

Министр транспорта Максим Соколов в рамках саммита Россия - АСЕАН заявил, что Россия готова к реализации собственных технологий сверхбыстрых пассажирских перевозок по аналогии с технологией Hyperloop. Так министр ответил на вызов Запада, где проект Hyperloop («Гиперпетля») стремительно набирает популярность.

Суть западного проекта в том, что поезда, или транспортные капсулы, движутся с помощью магнитной левитации в вакуумной трубе, развивая скорость до 1200 км/час. Идею предложил американец Элон Маск (основатель компаний SpaceX и Tesla Motors), после чего сразу несколько компаний взялись за ее воплощение, самая активная из которых - Hyperloop One.

В мае этого года в Неваде прошли первые тестовые испытания капсулы Hyperloop. Секрет популярности проекта - в его заявленной дешевизне и обещанной низкой стоимости билетов на проезд.

В России для изучения американской технологии Hyperloop создана совместная рабочая группа из специалистов РЖД и компании Hyperloop One. Однако пока, по словам российских экспертов, американцы представили лишь тележку, которая ездит по трубе с помощью обычного линейного двигателя.

Над проектом отечественного сверхбыстрого поезда сегодня трудятся специалисты из разных регионов страны. Ученые из Сибирского отделения РАН сделали предварительные расчеты для вакуумного поезда на основе магнитолевитационной, вакуумной и сверхпроводниковой технологий. По их оценке, диапазон скоростей локомотива в вакуумной трубе может составлять от 500 до 6500 км/час. Но пока нерешенными остаются проблемы волнового сопротивления, аэротермодинамики и другие.

Несложно заключить левитирующий вагон в трубу и откачать оттуда воздух - если уж говорить примитивно. Но кто-то должен вложить средства в такой проект, - объясняет он.

По мнению петербургских ученых, строительство вакуумной трубы может оказаться самым дорогим из всех рассматриваемых вариантов сверхбыстрых поездов. В настоящее время в ПГУПС ведутся работы по экономическому моделированию, чтобы понять, какой из проектов магнитолевитационного поезда выгоднее: вакуумный или эстакадный (проект Петербург - Москва эстакадный).

По словам президента Международного совета по транспортным системам Маглев (The International Maglevboard) профессора Йоханнеса Клюшписа, к проекту Hyperloop многие специалисты относятся с недоверием. Во-первых, сомнительна его экономическая перспектива, так как строительство обойдется намного дороже, чем заявлялось в начале. Во-вторых, велики риски для жизни и здоровья людей в случае разгерметизации трубы. В-третьих, пассажиры просто не захотят путешествовать таким странным способом.

Людям не понравится сидеть в капсуле в замкнутом пространстве, не имея возможности встать и выйти. Я бы не стал инвестировать в такой проект для пассажиров. Но он может быть успешен для грузовых перевозок, - полагает профессор Клюшпис.

Городской маглев

Сегодня лидерами по внедрению маглева являются Корея, Япония и Китай. По всему миру было запущено порядка десятка магнитолевитационных транспортных проектов, но успешны лишь три из них.

В Китае действует линия протяженностью 30 км, связывающая Шанхай и аэропорт. В Японии, в Нагое, была построена трасса длиной в 9 км к выставке Expo-2005. В Южной Корее в феврале 2016-го открылась магнитолевитационная дорога протяженностью 6 км - от аэропорта до базы отдыха Yongyoo-Mui. В Германии, США, Испании, Канаде, ОАЭ, России проекты строительства магнитолевитационных линий находятся на разных стадиях реализации.

По словам профессора Клюшписа, во многих странах маглев сталкивается с противодействием со стороны бизнеса, правительства и общества. Например, в Германии проект маглева провалился из-за давления со стороны железнодорожников, которые не хотели терять монополию на рынке.

В Японии расширение маглева тормозится из-за протестов граждан. Они боятся, что новая магистраль испортит экологию: создаст шум, вибрацию, электромагнитное и даже радиационное излучение (это устойчивый, ничем, как уверяют эксперты, не обоснованный страх японцев).

Корейцы протестуют против строительства трассы, так как опасаются, что это приведет к подорожанию земли и повышению арендных ставок вблизи новой дороги.

В России, по словам профессора Клюшписа, есть поддержка маглева со стороны руководства страны, и даже железнодорожники положительно относятся к проекту. Однако неофициально эксперты говорят, что РЖД готово поддерживать только грузовой маглев. А будущее пассажирского сообщения в РЖД однозначно связывают с высокоскоростными магистралями (ВСМ). При этом некоторые ученые называют технологию ВСМ догоняющей, морально устаревшей и более затратной, чем магнитолевитационная.

Чтобы не дразнить монополиста РЖД, сторонники магнитолевитационных систем предлагают развивать маглевы в качестве городского транспорта. По словам Анатолия Зайцева, сейчас ведутся переговоры с властями Петербурга, Москвы и Волгограда, проявившими заинтересованность в появлении нового вида пассажирского сообщения. Маглев выигрывает по многим параметрам, если сравнивать его с традиционным городским транспортом. Строительство маглева обходится в 3-4 раза дешевле, чем метро. Расход электроэнергии у него ниже, а провозная способность выше, чем у подземки. Маглев экологичен. Из-за отсутствия контакта с поверхностью (колеса не стучат по рельсам) от него почти нет шума, вибрации и пыли. Нет выхлопных газов. Поэтому маглев идеален для мегаполисов с плотной застройкой.

Сегодня в Смольном на рассмотрении находятся несколько проектов городского маглева. Линия от Дворца конгрессов (Стрельна) до метро «Обухово», с ответвлением в жилой комплекс «Балтийская жемчужина». Линия от метро «Рыбацкое» до Колпина и другие.

У нас в России достаточно мозгов, чтобы все это построить. Мы не просим бюджетного финансирования, потому что когда привлекается бюджет, обязательно кто-нибудь что-нибудь отпилит, - говорит экс-министр Зайцев, готовый найти инвесторов на предложенные проекты.

Основная проблема, почему маглев массово не строится по всему свету, - это очень дорого. Если удастся удешевить технологию, тогда он завоюет мир, - уверен профессор Клюшпис.

Hyperloop изобрели в России 100 лет назад

Первый проект движения поездов в вакууме был предложен в России еще в 1911 году российским ученым Борисом Вейнбергом. По его замыслу, внутри трубы, из которой откачан воздух, должна была перемещаться капсула. Она приводилась в движение с помощью «электромагнитной пушки» и теоретически могла развивать скорость 800-1000 км/ч. Ученый даже провел опыты в Томском технологическом институте по перемещению капсулы в трубе, но воплощению идеи помешала Первая мировая война.

Советский поезд на магнитной подушке February 21st, 2017

Сколько же всего в СССР было изобретено и спроектировано, что мы до сих пор используем эти наработки, а про некоторые только узнаем (как я вот например об этой). То ли времена были такие во всем Мире, то ли страна была такая.

Так же многие привыкли критиковать то, что в СССР планировалось все и вся, Но было и что-то в этом хорошее. В Союзе прекрасно просчитали грядущие транспортные проблемы городов-мегаполисов. И не только городов с большим населением, но и городов, которые географически сильно вытянуты, чья длина составляет сотню и более километров. Это такие города как Волгоград и Кривой Рог. По оценкам 70х годов население в 29 городах Советского Союза должно было превысить миллион, то есть стать городами-миллионерами. И для решения транспортных проблем крупных городов создавались различные институты и бюро. Уже тогда было понятно, что автомобили не очень способны решить транспортную проблему крупного города, а классическое метро дорого и медленно. Считалось, что наряду с совершенствованием традиционных видов передвижения возникла необходимость в создании качественно новых транспортных систем, которые должны быть малошумными, не загрязняющими воздух, экономичными и не создающими дополнительной нагрузки на уличную сеть.

Вот этим требованиям соответствовал последний инновационный проект, доведенный до испытаний, проект транспорта на магнитной подвеске.

Вагон TA-05 - советский поезд на магнитной подушке. Проект транспортного средства, которое должно было работать на электромагнитной системе левитации, разрабатывался в период 1985 - 1986 годов. 25 февраля 1986 года в Подмосковье был проведён первый успешный запуск необычного вагона.

«Наша лаборатория работает над созданием экспериментального пассажирского вагона, который будет двигаться, не касаясь рельсов. Для горизонтального перемещения используется принцип работы линейного трехфазного асинхронного двигателя. Двигаясь с крейсерской скоростью до 250 километров в час, это транспортное средство будет практически бесшумным. Путь его можно поднять на эстакаду над основными магистралями города. Один километр пути будет обходиться в 3—5 раз дешевле, чем метро», говорил в одном из интервью заведующий лабораторией ВНИИПИтранспрогресс А.Чемодуров.

На тот момент был построен 600 метровый скоростной участок в подмосковном Раменском и запланированы участки в Ереване и Алма-Ате.

Планировалось пускать по трассам вагоны по 65 человек, 19 метров длиной каждый и весом в 40 тонн. Крейсерская скорость же вагона равнялась 250км/ч, с перспективой 400 км/ч и выше. Также были планы пускать не отдельные вагоны, а сцепки из нескольких вагонов, то есть полноценных поездов.

Сегодня у нового вида транспорта нет падежного, заинтересованного хозяина. Пока что ни одно транспортное министерство, ни Министарство Гражданской Авиации, ни Министерство Путей Сообщения (ныне РЖД) (магнитоплан — не поезд и не самолет—вот их аргумент), не проявляет интереса к нему. Они даже не являются заказчиками. Между тем для того, чтобы эффективно использовать выделенные правительством немалые средства для перехода от экспериментов к внедрению на новом этапе развития, нужно было объединение сил, скажем, в рамках межотраслевого научно-технического комплекса.

Что особенно удивительно, но проект финансировался исключительно за счет НефтеГазСтроя. К сожалению, планам так и не удалось сбыться, землетрясение в Армении в 1988 году не позволило построить все запланированные участки. Финансирование было сокращено, а после распада СССР и вовсе прекращено. Быстрое, скоростное и свое оказалось никому не нужным.

Кто еще знает какие нибудь подробности про этот проект?

Кстати, ТП-05 успел сняться в кино — в научно-фантастической короткометражке 1987 года «С роботами не шутят», фрагмент которой вам и предлагаю к просмотру.
Смотрите на 01:03:00

источники

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари