Подпишись и читай
самые интересные
статьи первым!

Отопительный график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха. Температура обратной сетевой воды- показатель здоровья теплоэнергетики города

Температурный график работы тепловых сетей - это основа основ всей технической и экономической политики крупной теплоэнергетической системы города. При организации теплоснабжения десятков тысяч потребителей от тепловых сетей, объединяющих различные виды источников тепла (ТЭЦ, котельные) необходим единый технологический документ, который увязывает интересы всех сторон теплоэнергетического процесса: покупателей, производителей тепловой энергии, наладчиков гидравлических и температурных режимов тепловых сетей, инспекторов Госэнергонадзора, проектировщиков систем отопления. Температурный график - это «становой хребет», определяющий всю экономику теплоэнергетики крупного города. Как дирижер управляет оркестром, так и температурный график тепловых сетей управляет всеми элементами теплоэнергетической системы: производством, распределением и потреблением тепла, определяет возможные диапазоны комбинированного производства тепловой и электрической энергии. Само по себе применение того или иного температурного графика работы тепловых сетей непосредственной экономии или перерасхода для потребителя не несет. Однако затраты в обеспечение того или иного температурного графика тепловых сетей значительно отличаются как при строительстве тепловых сетей и при эксплуатации тепловых сетей. Сравнительную характеристику температурных графиков смотри табл.3

Таблица 3 Сравнительные характеристики температурных графиков тепловых сетей

Теплотрасса, работающая по проектному температурному графику

Необходимый напор сетевой воды на ТЭЦ (м.в.с)

при переходе от проектного графика на фактический (скорректированный) график.

Проектный

Металло емкость %

Нормативные потери тепла %

со срезкой

от 120>

до>30.0

до 480

Результаты технико-экономического анализа показывают, что температурные графики 150 -70 и 170-70є С являются самыми экономичными графиками, как по первоначальным капитальным затратам, а) по металлоемкости в строительные конструкции, так и эксплуатационным затратам: б) по снижению удельных потерь тепла через тепловую изоляцию, с) по сокращению издержек на перекачку сетевой воды. При этом:

  • - переход с графика 150-70°С на график 110-70є С, вызывает рост первоначальных капиталовложений с строительство тепловых сетей на 200%;
  • - переход от графика 150-70єС на график 110-70єС вызывает рост удельных нормативных потерь с 8.4% до 15.0% (При условии равной циркуляции и 100% загрузки трубопроводов в обоих случаях);
  • - переход на фактический режим работы тепловых сетей по графику 110є С против проектного графика 150-70є С требует одновременного роста циркуляции в 2 раза больше сетевой воды. Для обеспечения передачи равного количества тепла требуется рост перепада давления сетевой воды на ТЭЦ от 120 м.в.с до 480 м.в.с. Так как это практически невозможно, то потребители будут, безусловно, ограничены по теплу в 2 раза;
  • - если же тепловые сети были запроектированы на график 110-70єС, то переход на температурный график 150-70°С позволит снизить располагаемый напор на ТЭЦ от 120м.в.с. до 30.0 м.в.с.

Однако, необходимо отметить, что вышеприведенные выводы полностью справедливы только при дешевом топливе, как у нас в России. При очень дорогой стоимости топлива, как например в Дании, для максимальной выработки электроэнергии на тепловом потреблении на ТЭЦ, стремятся снижать температуру прямой сетевой воды от ТЭЦ как можно ниже, вплоть до минимально возможного - 80°С. Эффективная ценовая политика на тепловую и электрическую энергию, массовое применение количественного регулирования отпуска тепла, путем изменения расхода сетевой воды позволяют Дании проектировать магистральные тепловые сети с сечением труб в 2-3 раза больше, чем в России. Внутридомовые системы отопления также требуют применения радиаторов с большими в 2-3 раза поверхностями нагрева. Для нового перспективного проектирования систем отопления от ТЭЦ, при значительном росте стоимости топлива и в России также необходимо переходить на энергоэффективный график 80-35°С. Но пока мы не поймем, что в системах отопления России вместо «модных» теплосчетчиков необходимо в первую очередь устанавливать, действительно, энергосберегающие приборы такие как: батарейные регуляторы температуры типа «Данфосс» регуляторы расхода, давления, пока мы не построим достаточное количество теплотрасс от ТЭЦ об энергосберегающем температурном графике 80-35°С для ТЭЦ, остается только мечтать. Востребованность этих решений будет тогда, когда цена газа для внутри Российского потребителя от 40$ за тысячу м3 поднимется до уровня мировой цены газа до 160$ и более за тысячу м3 газа.

Соответствие фактической температуры сетевой воды нормативному значению по температурному графику является одним из главных показателей, характеризующих качество работы всей теплоэнергетической системы. По правилам технической эксплуатации (ПТЭ), недогрев «прямой» сетевой воды не должен быть больше ±(2.1ч4.5°С). Однако фактический недогрев прямой сетевой воды составляет 30-60°С, что в 10 раз больше допустимого по ПТЭ . В свою очередь потребитель также должен обеспечить полное использование тепла и температура «обратки» к ТЭЦ не должна быть выше +(1.2ч2.1єС) от норматива. Фактическое недоиспользование тепла у потребителя составляет до 12-30°С, что так- же в 10 раз больше допустимого по ПТЭ . Ужас! О каких снижениях тарифов можно говорить!! Какая - же энергосберегающая технология может быть в таких варварских условиях эксплуатации теплоэнергетических систем города?

В современных экономических условиях выполнение температурного графика является не столько технической задачей, сколько экономической, связанной с неплатежами муниципалитета за тепловую энергию. Из-за отсутствия необходимых средств у муниципалитета для оплаты тепла в соответствии с проектным графиком 150-70°С и перевода тепловых сетей на фактическую температуру прямой сетевой воды не выше 95ч100°С, приводит к невосполнимому технологическому ущербу в виде полной разрегулировки гидравлического режима тепловых сетей, и, в конечном итоге, к экономическому ущербу как для потребителей, так и для производителей тепла.

Из-за завышенного роста циркуляции сетевой воды, массового снижения перепадов давления у концевых потребителей тепла, при температурах наружного ниже -20-25°С создается неуправляемая аварийная ситуации. Тонкой наладкой гидравлических режимов с установкой нужных диаметров регулирующих шайб и сопел специалисты тепловых сетей занимаются месяцами, но достаточно один раз не обеспечить необходимую температуру в течение 2-4 дней как вся тонкая наладочная работа разваливается. Но самое главное, что никакой реальной экономии топлива на теплоснабжении города при этом нет. Наоборот имеется постоянный перерасход топлива из-за «перегрева» выше +22°С, близлежащих потребителей тепла ~ 60%, и массового «недогрева» ниже +18°С, удаленных потребителей тепла~30%. При снижении температуры наружного воздуха ниже минус 28°С может произойти массовый неуправляемый «недогрев» населения с температурой ниже +18°С уже для ~60% потребителей, и городских системах отопления может возникнуть неуправляемая аварийная ситуация, требующая вмешательства министерства чрезвычайных ситуаций.

Цена ущерба из-за отступления фактического температурного графика от нормативного температурного графика 150-70°С для Омска только по затратам на сверхнормативную перекачку сетевой воды составляет порядка 40 млн.рублей в год. В последнее время в системах теплоснабжения установилась «модная» и эффективно лоббируемая тенденция по установке теплосчетчиков, якобы позволяющих экономить средства на теплоснабжении потребителей. Да, приборы учета тепла позволяют юридически показать фактически потребленное тепло. Но никакой реальной экономии топливо энергетических ресурсов они не приносят. Вместо того, чтобы в условиях ограниченного финансирования, тратить огромные средства на доказательную сторону недостатков теплоснабжения в виде установки очень дорогих теплосчетчиков, (30ч80тысяч рублей) необходимо в системах отопления домов устанавливать «настоящих работяг» - регуляторы расхода, регуляторы температуры, регуляторы давления. Вот они, действительно, снижают энергетические затраты и позволяют работать строго по температурному графику тепловых сетей. А для проведения эффективной претензионной работы с любым поставщиком и потребителем тепловой энергии достаточно трех обыкновенных термометров стоимостью 100 рублей каждый, и температурного графика на одной странице.

Но главный энергосберегающий эффект кроется не сколько в сокращении затрат на перекачку сетевой воды, а прежде всего в возможности обеспечения совместной работы ТЭЦ в базовом режиме с максимальной выработкой электроэнергии на тепловом потреблении и котельных в пиковом режиме. Для города Омска, цена энергосберегающего эффекта составляет не менее 800млн. рублей в год! Именно температура обратной сетевой воды от потребителя тепла к ТЭЦ является ключевым показателем «здоровья» энергосберегающей теплоэнергетики региона, города, предприятия. Пока, вместо форточки, на каждой квартирной батарее, получающей тепло от ТЭЦ, не появится индивидуальный регулятор температуры в помещении, мы не сможем реально экономить до 50% топлива на электроэнергию.

Просматривая статистику посещения нашего блога я заметил, что очень часто фигурируют такие поисковые фразы как, например, «какая должна быть температура теплоносителя при минус 5 на улице?» . Решил выложить старый график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха . Хочу предупредить тех, кто на основании этих цифр попытается выяснить отношения с ЖЭУ или тепловыми сетями: отопительные графики для каждого отдельного населенного пункта разные (я писал об этом в статье ). По данному графику работают тепловые сети в Уфе (Башкирия).

Так же хочу обратить внимание на то, что регулирование происходит по среднесуточной температуре наружного воздуха, так что, если, например, на улице ночью минус 15 градусов, а днем минус 5 , то температура теплоносителя будет поддерживаться в соответствии с графиком по минус 10 о С .

Как правило, используются следующие температурные графики: 150/70 , 130/70 , 115/70 , 105/70 , 95/70 . Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70. По графикам 150, 130 и 115/70 работают магистральные тепловые сети.

Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов». Тепловые сети работают по температурному графику 130/70 , значит при -10 о С температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 о С при графике 105/70 или 65,3 о С при графике 95/70. Температура воды после системы отопления должны быть 51,7 о С.

Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются. Например, по графику должно быть 85,6 о С, а на ТЭЦ или котельной задается 87 градусов.


Температура
наружного
воздуха
Тнв, о С
Температура сетевой воды в подающем трубопроводе
Т1, о С
Температура воды в подающем трубопроводе системы отопления
Т3, о С
Температура воды после системы отопления
Т2, о С
150 130 115 105 95
8 53,2 50,2 46,4 43,4 41,2 35,8
7 55,7 52,3 48,2 45,0 42,7 36,8
6 58,1 54,4 50,0 46,6 44,1 37,7
5 60,5 56,5 51,8 48,2 45,5 38,7
4 62,9 58,5 53,5 49,8 46,9 39,6
3 65,3 60,5 55,3 51,4 48,3 40,6
2 67,7 62,6 57,0 52,9 49,7 41,5
1 70,0 64,5 58,8 54,5 51,0 42,4
0 72,4 66,5 60,5 56,0 52,4 43,3
-1 74,7 68,5 62,2 57,5 53,7 44,2
-2 77,0 70,4 63,8 59,0 55,0 45,0
-3 79,3 72,4 65,5 60,5 56,3 45,9
-4 81,6 74,3 67,2 62,0 57,6 46,7
-5 83,9 76,2 68,8 63,5 58,9 47,6
-6 86,2 78,1 70,4 65,0 60,2 48,4
-7 88,5 80,0 72,1 66,4 61,5 49,2
-8 90,8 81,9 73,7 67,9 62,8 50,1
-9 93,0 83,8 75,3 69,3 64,0 50,9
-10 95,3 85,6 76,9 70,8 65,3 51,7
-11 97,6 87,5 78,5 72,2 66,6 52,5
-12 99,8 89,3 80,1 73,6 67,8 53,3
-13 102,0 91,2 81,7 75,0 69,0 54,0
-14 104,3 93,0 83,3 76,4 70,3 54,8
-15 106,5 94,8 84,8 77,9 71,5 55,6
-16 108,7 96,6 86,4 79,3 72,7 56,3
-17 110,9 98,4 87,9 80,7 73,9 57,1
-18 113,1 100,2 89,5 82,0 75,1 57,9
-19 115,3 102,0 91,0 83,4 76,3 58,6
-20 117,5 103,8 92,6 84,8 77,5 59,4
-21 119,7 105,6 94,1 86,2 78,7 60,1
-22 121,9 107,4 95,6 87,6 79,9 60,8
-23 124,1 109,2 97,1 88,9 81,1 61,6
-24 126,3 110,9 98,6 90,3 82,3 62,3
-25 128,5 112,7 100,2 91,6 83,5 63,0
-26 130,6 114,4 101,7 93,0 84,6 63,7
-27 132,8 116,2 103,2 94,3 85,8 64,4
-28 135,0 117,9 104,7 95,7 87,0 65,1
-29 137,1 119,7 106,1 97,0 88,1 65,8
-30 139,3 121,4 107,6 98,4 89,3 66,5
-31 141,4 123,1 109,1 99,7 90,4 67,2
-32 143,6 124,9 110,6 101,0 94,6 67,9
-33 145,7 126,6 112,1 102,4 92,7 68,6
-34 147,9 128,3 113,5 103,7 93,9 69,3
-35 150,0 130,0 115,0 105,0 95,0 70,0

Прошу не ориентироваться на диаграмму в начале поста — она не соответствует данным из таблицы.

Расчет температурного графика

Методика расчета температурного графика описана в справочнике (Глава 4, п. 4.4, с. 153,).

Это довольно трудоемкий и долгий процесс, так как для каждой температуры наружного воздуха нужно считать несколько значений: Т 1 , Т 3 , Т 2 и т. д.

К нашей радости у нас есть компьютер и табличный процессор MS Excel. Коллега по работе поделился со мной готовой таблицей для расчета температурного графика. Её в свое время сделала его жена, которая трудилась инженером группы режимов в тепловых сетях.

Для того, чтобы Excel расчитал и построил график достаточно ввести несколько исходных значений:

  • расчетная температура в подающем трубопроводе тепловой сети Т 1
  • расчетная температура в обратном трубопроводе тепловой сети Т 2
  • расчетная температура в подающем трубопроводе системы отопления Т 3
  • Температура наружного воздуха Т н.в.
  • Температура внутри помещения Т в.п.
  • коэффициент «n » (он, как правило, не изменен и равен 0,25)
  • Минимальный и максимальный срез температурного графика Срез min, Срез max .

Все. больше ничего от вас не требуется. Результаты вычислений будут в первой таблице листа. Она выделена жирной рамкой.

Диаграммы также перестроятся под новые значения.

Также таблица считает температуру прямой сетевой воды с учетом скорости ветра.

Экономичный расход энергоресурсов в отопительной системе, может быть достигнут, если выполнять некоторые требования. Одним из вариантов, является наличие температурной диаграммы, где отражается отношение температуры, исходящей от источника отопления к внешней среде. Значение величин дают возможность оптимально распределять тепло и горячую воду потребителю.

Высотные дома подключены в основном к центральному отоплению. Источники, которые передают тепловую энергию, являются котельные или ТЭЦ. В качестве теплоносителя используется вода. Её нагревают до заданной температуры.

Пройдя полный цикл по системе, теплоноситель, уже охлаждённый, возвращается к источнику и наступает повторный нагрев. Соединяются источники с потребителем тепловыми сетями. Так как окружающая среда меняет температурный режим, следует регулировать тепловую энергию, чтобы потребитель получал необходимый объём.

Регулирование тепла от центральной системы можно производить двумя вариантами:

  1. Количественный. В этом виде изменяется расход воды, но температуру она имеет постоянную.
  2. Качественный. Меняется температура жидкости, а расход её не изменяется.

В наших системах применяется второй вариант регулирования, то есть качественный. Здесь есть прямая зависимость двух температур: теплоносителя и окружающей среды. И расчёт ведётся таким образом, чтобы обеспечить тепло в помещении 18 градусов и выше.

Отсюда, можно сказать, что температурный график источника представляет собой ломанную кривую. Изменение её направлений зависит от разниц температур (теплоносителя и наружного воздуха).

График зависимости может быть различный.

Конкретная диаграмма имеет зависимость от:

  1. Технико-экономических показателей.
  2. Оборудования ТЭЦ или котельной.
  3. Климата.

Высокие показатели теплоносителя обеспечивают потребителя большой тепловой энергией.

Ниже показан пример схемы, где Т1 – температура теплоносителя, Тнв – наружного воздуха:

Применяется также, диаграмма возвращённого теплоносителя. Котельная или ТЭЦ по такой схеме может оценить КПД источника. Он считается высоким, когда возвращённая жидкость поступает охлаждённая.

Стабильность схемы зависит от проектных значений расхода жидкости высотными домами. Если увеличивается расход через отопительный контур, вода будет возвращаться не охлаждённой, так как возрастёт скорость поступления. И наоборот, при минимальном расходе, обратная вода будет достаточно охлаждена.

Заинтересованность поставщика, конечно, в поступлении обратной воды в охлаждённом состоянии. Но для уменьшения расхода существуют определённые пределы, так как уменьшение ведёт к потерям количества тепла. У потребителя начнётся опускаться внутренний градус в квартире, который приведёт к нарушению строительных норм и дискомфорту обывателей.

От чего зависит?

Температурная кривая зависит от двух величин: наружного воздуха и теплоносителя. Морозная погода ведёт за собой увеличение градуса теплоносителя. При проектировании центрального источника учитывается размер оборудования, здания и сечение труб.

Величина температуры, выходящей из котельной, составляет 90 градусов, для того, чтобы при минусе 23°C, в квартирах было тепло и имело величину в 22°C. Тогда обратная вода возвращается на 70 градусов. Такие нормы соответствуют нормальному и комфортному проживанию в доме.

Анализ и наладка режимов работы производится при помощи температурной схемы. Например, возвращение жидкости с завышенной температурой, будет говорить о высоких расходах теплоносителя. Дефицитом расхода будут считаться заниженные данные.

Раньше, на 10 ти этажные постройки, вводилась схема с расчётными данными 95-70°C. Здания выше имели свою диаграмму 105-70°C. Современные новостройки могут иметь другую схему, на усмотрение проектировщика. Чаще, встречаются диаграммы 90-70°C, а могут быть и 80-60°C.

График температуры 95-70:

Температурный график 95-70

Как рассчитывается?

Выбирается метод регулирования, затем делается расчёт. Во внимание берётся расчётно-зимний и обратный порядок поступления воды, величина наружного воздуха, порядок в точке излома диаграммы. Существуют две диаграммы, когда в одной из них рассматривается только отопление, во второй отопление с потреблением горячей воды.

Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго».

Исходными данными на теплогенерирующую станцию будут:

  1. Тнв – величина наружного воздуха.
  2. Твн – воздух в помещении.
  3. Т1 – теплоноситель от источника.
  4. Т2 – обратное поступление воды.
  5. Т3 – вход в здание.

Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов.

При этом, на выходе они будут иметь 70°C.

Полученные результаты сносятся в единую таблицу, для последующего построения кривой:

Итак, мы получили три различные схемы, которые можно взять за основу. Диаграмму правильней будет рассчитывать индивидуально на каждую систему. Здесь мы рассмотрели рекомендованные значения, без учёта климатических особенностей региона и характеристик здания.

Чтобы уменьшить расход электроэнергии, достаточно выбрать низкотемпературный порядок в 70 градусов и будет обеспечиваться равномерное распределение тепла по отопительному контуру. Котёл следует брать с запасом мощности, чтобы нагрузка системы не влияла на качественную работу агрегата.

Регулировка


Регулятор отопления

Автоматический контроль обеспечивается регулятором отопления.

В него входят следующие детали:

  1. Вычислительная и согласующая панель.
  2. Исполнительное устройство на отрезке подачи воды.
  3. Исполнительное устройство , выполняющее функцию подмеса жидкости из возвращённой жидкости (обратки).
  4. Повышающий насос и датчик на линии подачи воды.
  5. Три датчика (на обратке, на улице, внутри здания). В помещении их может быть несколько.

Регулятором прикрывается подача жидкости, тем самым, увеличивается значение между обраткой и подачей до величины, предусмотренной датчиками.

Для увеличения подачи присутствует повышающий насос, и соответствующая команда от регулятора. Входящий поток регулируется «холодным перепуском». То есть происходит понижение температуры. На подачу отправляется некоторая часть жидкости, поциркулировавшая по контуру.

Датчиками снимается информация и передаётся на управляющие блоки, в результате чего, происходит перераспределение потоков, которые обеспечивают жёсткую температурную схему системы отопления.

Иногда, применяют вычислительное устройство, где совмещены регуляторы ГВС и отопления.

Регулятор на горячую воду имеет более простую схему управления. Датчик на горячем водоснабжении производит регулировку прохождения воды со стабильной величиной 50°C.

Плюсы регулятора:

  1. Жёстко выдерживается температурная схема.
  2. Исключение перегрева жидкости.
  3. Экономичность топлива и энергии.
  4. Потребитель, независимо от расстояния, равноценно получает тепло.

Таблица с температурным графиком

Режим работы котлов зависит от погоды окружающей среды.

Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.

В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха:

Температура наружного воздуха Температура сетевой воды в подающем трубопроводе Температура сетевой воды в обратном трубопроводе
+10 70 55
+9 70 54
+8 70 53
+7 70 52
+6 70 51
+5 70 50
+4 70 49
+3 70 48
+2 70 47
+1 70 46
0 70 45
-1 72 46
-2 74 47
-3 76 48
-4 79 49
-5 81 50
-6 84 51
-7 86 52
-8 89 53
-9 91 54
-10 93 55
-11 96 56
-12 98 57
-13 100 58
-14 103 59
-15 105 60
-16 107 61
-17 110 62
-18 112 63
-19 114 64
-20 116 65
-21 119 66
-22 121 66
-23 123 67
-24 126 68
-25 128 69
-26 130 70

СНиП

Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.

Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.

Cтраница 1


Снижение температуры обратной воды против графика не лимитируется.  

Таким образом, первой задачей является снижение температуры обратной воды из систем отопления в расчетной точке до 60 С.  

Очень большую экономию тепловой энергии и снижение температуры обратной воды дает эта схема при работе тепловой сети со срезкой графика для горячего водоснабжения, так как позволяет при постоянной температуре сетевой воды в подающей магистрали получать переменную температуру приточного воздуха в соответствии с температурой наружного воздуха.  

Многие тепловые сети успешно выдерживают этот предел и даже добиваются снижения температуры обратной воды ниже установленного графика, повышая - тем самым технико-экономические показателя работы всей системы в целом.  

Экономия электроэнергии на перекачку теплоносителя, экономия топлива на ТЭЦ и снижение температуры обратной воды при трехимпульсном изодромном регулировании окупает все затраты на автоматизацию вводов.  

Применение поверхностных конденсационных котлов и экономайзеров для отопления целесообразно, таким образом, при условии снижения температуры обратной воды отопительной системы. Соответственно снижаются и средняя температура воды и, как было показано выше, температура прямой воды, поступающей в систему. Поэтому применение поверхностных конденсационных котлов и экономайзеров для нагрева воды систем отопления неизбежно связано с определенным перерасходом металла на сооружение систем отопления. Тем не менее за рубежом конденсационные котлы и экономайзеры используют в основном именно для систем отопления.  

Среднесуточная температура обратной воды из тепловой сети ие должна превышать заданную более чем на 2 С Снижение температуры обратной воды против графика не лимитируется.  


При снижении температуры обратной воды до расчетной величины следует ожидать некоторого снижения температуры уходящих газов.  

Определим оптимальную температуру обратной воды, поступающей из системы отопления здания в контактно-поверхностный водонагреватель ФНКВ-1. По мере снижения температуры обратной воды tz экономичность использования газа в аппарате повышается за счет использования тепла, выделящегося при конденсации водяных паров, находящихся в продуктах сгорания газа. Поэтому определение величины пт практически необходимо.  

Сырую воду на химводоочистку берут из сбросного циркуляционного водовода при температуре 20 - 35 С, что дает утилизацию сбросного тепла. Существенное повышение удельной выработки на тепловом потреблении дает снижение температуры обратной воды, которое получается в результате смешения обратной и более холодной подпиточной воды.  

Сильфон является регулирующим органом. При повышении температуры воды, выходящей из калорифера, жидкость в сильфоне нагревается и расширяется, что приводит к уменьшению проходного сечения клапана и сокращению расхода сетевой воды, а следовательно, к снижению температуры обратной воды.  

Таким образом, для рассмотренной схемы пропорционального регулирования температуры в помещении следует всегда предусматривать автоматически действующую защиту от замораживания калориферов. По этой схеме манометрический датчик температуры устанавливается в трубопроводе обратной воды после калорифера и настраивается на температуру 25 - 30 С. При снижении температуры обратной воды до установленного значения датчик дает сигнал, и Двухпозиционный регулятор срабатывает, открывая с помощью соленоидного вентиля проход для воды через обводную ветку.  

Для получения равномерного температурного поля после калорифера, что особенно важно иметь в кондиционерах, в которых сразу же за первым подогревом ставится оросительная камера, желательно значительное снижение температуры подаваемой в калорифер воды с одновременным уменьшением перепада температур прямой и обратной воды. Некоторое увеличение требуемой поверхности нагрева калориферов компенсируется снижением температуры обратной воды.  

Для снижения температуры воды, выходящей из ЦТП, и уменьшения теплопотерь ночью целесообразно переключать на это время циркуляционную линию системы горячего водоснабжения в трубопровод холодной воды перед I ступенью водонагревателя. Одновременно следует снизить уставку регулятора температуры горячей воды с 60 на 50 С. Днем циркуляционная линия должна быть включена в трубопровод нагреваемой воды перед II ступенью или, что более рационально, в трубопровод между секциями II ступени водонагревателя, температура воды в котором равна принятой температуре воды в циркуляционном трубопроводе (примерно перед тремя последними секциями по ходу движения нагреваемой воды), как показано на рис. 3.19. Переключение выполняется автоматически: реле времени, например в 0 ч, закрывает клапан 5, направляя циркуляционный поток в I ступень, и через электрогидравлическое реле переключается импульс на регулятор температуры с датчика, настроенного на поддержание температуры горячей воды 60 С, на другой датчик с уставкой на 45 - 50 С. В 6 ч реле времени делает обратное переключение, при открытом клапане 5 через него будет поступать циркуляционная вода, так как давление воды перед I ступенью значительно выше, чем в месте включения трубопровода, на котором установлен клапан. При автоматическом регулировании подачи тепла на отопление, когда температура воды из системы отопления будет ниже 40 - 45 С, переключение циркуляционного трубопровода перед I ступенью водонагревателя при таких температурах делать нецелесообразно. В связи с этим на обратном трубопроводе системы отопления установлен датчик температуры, по сигналу которого при снижении температуры обратной воды менее 40 - - 45 С клапан 5 остается открытым и в ночное время.  

Страницы:      1

Когда осень уверенно шагает по стране, за Полярным кругом летит снег, а на Урале ночные температуры держатся ниже 8 градусов, то уместно звучит словоформа «отопительный сезон». Народ вспоминает минувшие зимы и пытается разобраться в норме температуры теплоносителя в системе отопления.

Предусмотрительные владельцы индивидуальных строений заботливо ревизуют клапаны и форсунки котлов. Жильцы многоквартирного дома к 1 октября ждут, как Деда Мороза, слесаря-водопроводчика из управляющей компании. Повелитель вентилей и задвижек приносит тепло, а с ним - радость, веселье и уверенность в завтрашнем дне.

Путь гигакалории

Мегаполисы сверкают высотными домами. Над столицей висит туча реновации. Глубинка молится на пятиэтажки. Пока не снесли, в доме работает система подачи калорий.

Отопление многоквартирного дома экономкласса производится через централизованную систему подачи тепла. Трубы входят в подвальное помещение строения. Подача носителя тепла регулируется вводными задвижками, после которых вода попадает в грязевики, а оттуда раздается по стоякам, а с них подаётся в батареи и радиаторы, обогревающие жильё.

Количество задвижек коррелирует с количеством стояков. При выполнении ремонтных работ в отдельно взятой квартире существует возможность отключения одной вертикали, а не всего дома.

Отработавшая жидкость частично уходит по обратной трубе, а частично подаётся в сеть горячего водоснабжения.

Градусы здесь и там

Воду для обогревательной конфигурации готовят на ТЭЦ или в котельной. Нормы температуры воды в системе отопления прописаны в строительных правилах: компонент должен быть разогрет до 130-150 °С.

Подачи рассчитывается с учетом параметров наружного воздуха. Так, для региона Южный Урал принимается к расчету минус 32 градуса.

Чтобы жидкость не закипела, её надо в сеть подавать под давлением 6-10 кгс. Но это теория. Фактически большинство сетей работает на 95-110 °С, так как сетевые трубы большинства населённых пунктов изношены и высокое давление порвёт их как тузик грелку.

Растяжимое понятие - норма. Температура в квартире никогда не равна первичному показателю носителя тепла. Здесь выполняет энергосберегающую функцию элеваторный узел - перемычка между прямой и обратной трубой. Нормы температуры теплоносителя в системе отопления по обратке зимой допускают сохранение тепла на уровне 60 °С.

Жидкость из прямой трубы попадает в сопло элеватора, перемешивается с обратной водой и опять уходит в домовую сеть на обогрев. Температура носителя за счет подмешивания обратки понижается. Что влияет на вычисление количества тепла, потреблённого жилыми и подсобными помещениями.

Горяченькая пошла

Температура горячей воды по санитарным правилам в точках разбора должна лежать в диапазоне 60-75 °С.

В сети теплоноситель подаётся с трубы:

  • зимой - с обратной, чтобы не шпарить пользователей кипятком;
  • летом - с прямой, так как в летнее время носитель нагревают не выше 75 °С.

На составляется температурный график. Средняя суточная температура обратной воды не должна превышать график более чем на 5 % ночью и 3 % днём.

Параметры раздающих элементов

Одной из деталей согревания жилища является стояк, через который теплоноситель приходит в батарею или радиатор из Нормы температуры теплоносителя в системе отопления требуют нагрева в стояке в зимнее время в диапазоне 70-90 °С. Фактически градусы зависят от выходных параметров ТЭЦ или котельной. В летнее время, когда горячая вода нужна только для стирки и душа, диапазон перемещается в интервал 40-60 °С.

Наблюдательные люди могут заметить, что в соседней квартире элементы обогрева горячее или холоднее, чем в его собственной.

Причина разницы температур стояка отопления заключается в способе раздачи ГВС.

В однотрубной конструкции носитель тепла может раздаваться:

  • сверху; тогда температура на верхних этажах выше, чем на нижних;
  • снизу, тогда картина меняется на противоположную - снизу горячее.

В двухтрубной системе градус одинаковый на всём протяжении, теоретически 90 °С на прямом и 70 °С на обратном направлении.

Теплая, как батарея

Предположим, что конструкции центральной сети надёжно заизолированы по всей трассе, ветер не гуляет по чердакам, лестничным клеткам и подвалам, двери и окна в квартирах добросовестные хозяева утеплили.

Предположим, что теплоноситель в стояке соответствует нормативам строительных правил. Остаётся узнать, какая норма температуры батарей отопления в квартире. Показатель учитывает:

  • параметры наружного воздуха и время суток;
  • расположение квартиры в плане дома;
  • жилое или подсобное помещение в квартире.

Поэтому внимание: важно, не каков градус обогревателя, а каков градус воздуха в помещении.

Днём в угловых комнатах градусник должен показывать не менее 20 °С, а в центрально расположенных комнатах допускается 18 °С.

Ночью в жилище допустим воздух 17 °С и 15 °С соответственно.

Теория языкознания

Название «батарея» - бытовое, обозначающее ряд одинаковых предметов. Применительно к согреванию жилья это ряд обогревающих секций.

Нормы температуры батарей отопления допускают нагрев не выше 90 °С. По правилам детали, нагретые выше 75 °С, ограждают. Это не значит, что их надо обшивать фанерой или закладывать кирпичом. Обычно ставят решетчатое ограждение, не препятствующее циркуляции воздуха.

Распространены чугунные, алюминиевые и биметаллические устройства.

Выбор потребителя: чугун или алюминий

Эстетика чугунных радиаторов - притча во языцех. Они требуют периодической покраски, так как правила предусматривают, чтобы рабочая поверхность имела гладкую поверхность и позволяла легко удалить пыль и грязь.

На шершавой внутренней поверхности секций образуется грязный налет, уменьшающий теплоотдачу прибора. Но технические параметры чугунных изделий на высоте:

  • мало подвержены водной коррозии, могут эксплуатироваться более 45 лет;
  • обладают высокой тепловой мощностью на 1 секцию, поэтому компактны;
  • инертны в передаче тепла, поэтому хорошо сглаживают температурные перепады в комнате.

Другой тип радиаторов изготовлен из алюминия. Легкая конструкция, окрашенная в заводских условиях, не требует покраски, удобна в уходе.

Но есть недостаток, затмевающий достоинства, - коррозия в водной среде. Конечно, внутреннюю поверхность обогревателя изолируют пластиком для избегания контакта алюминия с водой. Но плёнка может повредиться, тогда начнётся химическая реакция с выделением водорода, при создании избыточного давления газа алюминиевый прибор может лопнуть.

Нормы температуры радиаторов отопления подчиняются тем же правилам, что и батареи: важен не столько нагрев металлического предмета, сколько нагрев воздуха в помещении.

Чтобы воздух хорошо прогревался, должен быть достаточный съём тепла с рабочей поверхности обогревающего конструктива. Поэтому категорически не рекомендуется повышать эстетику комнаты щитами перед нагревательным прибором.

Обогрев лестничной клетки

Раз уж речь зашла о многоквартирном доме, то следует упомянуть лестничные клетки. Нормы температуры теплоносителя в системе отопления гласят: градусная мера на площадках не должна опускаться ниже 12 °С.

Конечно, дисциплина жильцов требует закрывать плотно двери входной группы, не оставлять раскрытыми фрамуги лестничных окон, сохранять стёкла в целостности и оперативно сообщать в управляющую компанию о неполадках. Если УК не примет вовремя меры по утеплению точек вероятных потерь тепла и соблюдению температурного режима в доме, поможет заявление на перерасчёт стоимости услуг.

Изменения в конструкции обогрева

Замену существующих отопительных приборов в квартире производят с обязательным согласованием с управляющей компанией. Самовольное изменение элементов согревающего излучения может нарушить тепловой и гидравлический баланс строения.

Начнётся отопительный сезон, будет зафиксировано изменение температурного режима в других квартирах и площадках. Технический осмотр помещений выявит самовольное изменение типов отопительных приборов, их количества и величины. Неизбежна цепочка: конфликт - суд - штраф.

Поэтому ситуация разрешается так:

  • если заменяются не старые на новые радиаторы того же типоразмера, то это делается без дополнительных согласований; единственное, за чем обратиться в УК, - за отключением стояка на время ремонта;
  • если новые изделия существенно отличаются от установленных при строительстве, то полезно взаимодействовать с управляющей компанией.

Приборы учета тепла

Вспомним ещё раз о том, что сеть подачи тепла многоквартирного дома обустроена узлами учёта тепловой энергии, которые фиксируют и потребленные гигакалории, и кубатуру воды, пропущенную через внутридомовую линию.

Чтобы не удивляться счетам, содержащим нереальные суммы за тепло при градусах в квартире ниже нормы, до начала отопительного сезона уточните в управляющей компании, в рабочем ли состоянии прибор учета, не нарушен ли график поверки.

Включайся в дискуссию
Читайте также
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари
Рулет с брусникой из дрожжевого теста