Подпишись и читай
самые интересные
статьи первым!

После чего равномерно распределяют и. Равномерный и показательный законы распределения непрерывной случайной величины

Рассмотрим равномерное непрерывное распределение. Вычислим математическое ожидание и дисперсию. Сгенерируем случайные значения с помощью функции MS EXCEL СЛЧИС() и надстройки Пакет Анализа, произведем оценку среднего значения и стандартного отклонения.

Равномерно распределенная на отрезке случайная величина имеет :

Сгенерируем массив из 50 чисел из диапазона , если плотность ее вероятности постоянна на этом отрезке, а вне его равна 0 (т.е. случайная величина Х сосредоточена на отрезке [a , b ], на котором имеет постоянную плотность). По данному определению плотность равномерно распределенной на отрезке [a , b ] случайной величины Х имеет вид:

где с есть некоторое число. Впрочем, его легко найти, используя свойство плотности вероятности для с.в., сосредоточенных на отрезке [a , b ]:
. Отсюда следует, что
, откуда
. Поэтомуплотность равномерно распределенной на отрезке [a , b ] случайной величины Х имеет вид:

.

Судить о равномерности распределения н.с.в. Х можно из следующего соображения. Непрерывная случайная величина имеет равномерное распределение на отрезке [a , b ], если она принимает значения только из этого отрезка, и любое число из этого отрезка не имеет преимущества перед другими числами этого отрезка в смысле возможности быть значением этой случайной величины.

К случайным величинам, имеющим равномерное распределение относятся такие величины, как время ожидания транспорта на остановке (при постоянном интервале движения длительность ожидания равномерно распределена на этом интервале), ошибка округления числа до целого (равномерно распределена на [−0.5, 0.5 ]) и другие.

Вид функции распределения F (x ) a , b ] случайной величины Х ищется по известной плотности вероятности f (x ) c помощью формулы их связи
. В результате соответствующих вычислений получаем следующую формулу для функции распределенияF (x ) равномерно распределенной отрезке [a , b ] случайной величины Х :

.

На рисунках приведены графики плотности вероятности f (x ) и функции распределения f (x ) равномерно распределенной отрезке [a , b ] случайной величины Х :


Математическое ожидание, дисперсия, среднее квадратическое отклонение, мода и медиана равномерно распределенной отрезке [a , b ] случайной величины Х вычисляются по плотности вероятности f (x ) обычным образом (и достаточно просто из-за простого вида f (x ) ). В результате получаются следующие формулы:

а модой d (X ) является любое число отрезка [a , b ].

Найдем вероятность попадания равномерно распределенной отрезке [a , b ] случайной величины Х в интервал
, полностью лежащий внутри [a , b ]. Учитывая известный вид функции распределения, получаем:

Таким образом, вероятность попадания равномерно распределенной отрезке [a , b ] случайной величины Х в интервал
, полностью лежащий внутри [a , b ], не зависит от положения этого интервала, а зависит только от его длины и прямо пропорциональна этой длине.

Пример . Интервал движения автобуса составляет 10 минут. Какова вероятность того, что пассажир, подошедший к остановке, прождет автобус менее 3 минут? Каково среднее время ожидания автобуса?

Нормальное распределение

Это распределение наиболее часто встречается на практике и играет исключительную роль в теории вероятностей и математической статистике и их приложениях, поскольку такое распределение имеют очень многие случайные величины в естествознании, экономике, психологии, социологии, военных науках и так далее. Данное распределение является предельным законом, к которому приближаются (при определенных естественных условиях) многие другие законы распределения. С помощью нормального закона распределения описываются также явления, подверженные действию многих независимых случайных факторов любой природы и любого закона их распределения. Перейдем к определениям.

Непрерывная случайная величина называется распределенной по нормальному закону (или закону Гаусса) , если ее плотность вероятности имеет вид:

,

где числа а и σ (σ>0 ) являются параметрами этого распределения.

Как уже было сказано, закон Гаусса распределения случайных величин имеет многочисленные приложения. По этому закону распределены ошибки измерений приборами, отклонение от центра мишени при стрельбе, размеры изготовленных деталей, вес и рост людей, годовое количество осадков, количество новорожденных и многое другое.

Приведенная формула плотности вероятности нормально распределенной случайной величины содержит, как было сказано, два параметра а и σ , а потому задает семейство функций, меняющихся в зависимости от значений этих параметров. Если применить обычные методы математического анализа исследования функций и построения графиков к плотности вероятности нормального распределения, то можно сделать следующие выводы.


являются точками его перегиба.

Исходя из полученной информации, строим график плотности вероятности f (x ) нормального распределения (он называется кривой Гаусса − рисунок).

Выясним, как влияет изменение параметров а и σ на форму кривой Гаусса. Очевидно (это видно из формулы для плотности нормального распределения), что изменение параметра а не меняет форму кривой, а приводит лишь к ее сдвигу вправо или влево вдоль оси х . Зависимость от σ сложнее. Из проведенного выше исследования видно, как зависит величина максимуму и координаты точек перегиба от параметра σ . К тому же надо учесть, что при любых параметрах а и σ площадь под кривой Гаусса остается равной 1 (это общее свойство плотности вероятности). Из сказанного следует, что с ростом параметра σ кривая становится более пологой и вытягивается вдоль оси х . На рисунке изображены кривые Гаусса при различных значениях параметра σ (σ 1 < σ< σ 2 ) и одном и том же значении параметра а .

Выясним вероятностный смысл параметров а и σ нормального распределения. Уже из симметричности кривой Гаусса относительно вертикальной прямой, проходящей через число а на оси х понятно, что среднее значение (т.е. математическое ожидание М(Х) ) нормально распределенной случайной величины равно а . Из этих же соображений мода и медиана тоже должны быть равны числу а. Точные расчеты по соответствующим формулам это подтверждают. Если же мы выписанное выше выражение для f (x ) подставим в формулу для дисперсии
, то после (достаточно непростого) вычисления интеграла получим в ответе числоσ 2 . Таким образом, для случайной величины Х , распределенной по нормальному закону, получились следующие основные ее числовые характеристики:

Поэтому вероятностный смысл параметров нормального распределения а и σ следующий. Если с.в. Х а и σ а σ.

Найдем теперь функцию распределения F (x ) для случайной величины Х , распределенной по нормальному закону, используя выписанное выше выражение для плотности вероятности f (x ) и формулу
. При подстановкеf (x ) получается «неберущийся» интеграл. Все, что удается сделать для упрощения выражения для F (x ), это представление этой функции в виде:

,

где Ф(х) − так называемая функция Лапласа , которая имеет вид

.

Интеграл, через который выражается функция Лапласа, тоже является неберущимися (но при каждом х этот интеграл может быть вычислен приближенно с любой наперед заданной точностью). Однако вычислять его и не потребуется, так как в конце любого учебника по теории вероятностей есть таблица для определения значений функции Ф(х) при заданном значении х . В дальнейшем нам понадобится свойство нечетности функции Лапласа: Ф(−х)= Ф(х) для всех чисел х .

Найдем теперь вероятность того, что нормально распределенная с.в. Х примет значение из заданного числового интервала (α, β) . Из общих свойств функции распределения Р(α< X < β)= F (β) F (α) . Подставляя α и β в выписанное выше выражение для F (x ) , получим

.

Как сказано выше, если с.в. Х распределена нормально с параметрами а и σ , то ее среднее значение равно а , а среднее квадратическое отклонение равно σ. Поэтому среднее отклонение значений этой с.в. при испытании от числа а равно σ. Но это среднее отклонение. Поэтому возможны и бо´льшие отклонения. Узнаем, насколько возможны те или иные отклонения от среднего значения. Найдем вероятность того, что значение распределенной по нормальному закону случайной величины Х отклониться от ее среднего значения М(Х)=а менее, чем на некоторое число δ, т.е. Р (| X a |<δ ) : . Таким образом,

.

Подставляя в это равенство δ=3σ , получим вероятность того, что значение с.в. Х (при одном испытании) отклонится от среднего значения менее чем на утроенное значение σ (при среднем отклонении, как мы помним, равном σ ): (значениеФ(3) взято из таблицы значений функции Лапласа). Это почти 1 ! Тогда вероятность противоположного события (что значение отклонится не менее, чем на ) равна 1 0.997=0.003 , что очень близко к 0 . Поэтому это событие «почти невозможно» случается крайне редко (в среднем 3 раза из 1000 ). Это рассуждение является обоснованием широко известного «правила трех сигм».

Правило трех сигм . Нормально распределенная случайная величина при единичном испытании практически не отклоняется от своего среднего далее, чем на .

Еще раз подчеркнем, что речь идет об одном испытании. Если испытаний случайной величины много, то вполне возможно, что какое-либо ее значение и удалится от среднего далее, чем . Это подтверждает следующий

Пример . Какова вероятность, что при 100 испытаниях нормально распределенной случайной величины Х хотя бы одно ее значение отклонится от среднего более, чем на утроенное среднее квадратическое отклонение? А при 1000 испытаниях?

Решение. Пусть событие А означает, что при испытании случайной величины Х ее значение отклонилось от среднего более, чем на 3σ. Как только что было выяснено, вероятность этого события р=Р(А)=0.003 . Проведено 100 таких испытаний. Надо узнать вероятность того, что событие А произошло хотя бы раз, т.е. произошло от 1 до 100 раз. Это типичная задача схемы Бернулли с параметрами n =100 (число независимых испытаний), р=0.003 (вероятность события А в одном испытании), q =1− p =0.997 . Требуется найти Р 100 (1≤ k ≤100) . В данном случае, конечно, проще найти сначала вероятность противоположного события Р 100 (0) − вероятность того, что событие А не произошло ни разу (т.е. произошло 0 раз) . Учитывая связь вероятностей самого события и ему противоположного, получим:

Не так уж мало. Вполне может произойти (происходит в среднем в каждой четвертой такой серии испытаний). При 1000 испытаний по такой же схеме можно получить, что вероятность хотя бы одного отклонения далее, чем на , равно: . Так что можно с большой уверенностью дождаться хотя бы одного такого отклонения.

Пример . Рост мужчин определенной возрастной группы распределен нормально с математическим ожиданием a , и среднеквадратическим отклонением σ . Какую долю костюмов k -го роста следует предусмотреть в общем объеме производства для данной возрастной группы, если k -ый рост определяется следующими пределами:

1 рост: 158 164см 2 рост: 164 − 170см 3 рост: 170 − 176см 4 рост: 176 − 182см

Решение. Решим задачу при следующих значениях параметров: а=178, σ=6, k =3 . Пусть с.в. Х рост случайно выбранного мужчины (она распределена по условию нормально с заданными параметрами). Найдем вероятность того, что наугад выбранному мужчине понадобится 3 -й рост. Пользуясь нечетностью функции Лапласа Ф(х) и таблицей ее значений: P(170 Поэтому в общем объеме производства надо предусмотреть 0.2789*100%=27.89% костюмов 3 -го роста.

Равномерное распределение. Случайная величина X имеет смысл координаты точки, выбранной наудачу на отрезке

[а, Ь. Равномерную плотность распределения случайной величины X (рис. 10.5, а) можно определить как:

Рис. 10.5. Равномерное распределение случайной величины: а - плотность распределения; б - функция распределения

Функция распределения случайной величины X имеет вид:

График функции равномерного распределения показан на рис. 10.5, б.

Преобразование Лапласа равномерного распределения вычислим по (10.3):

Математическое ожидание и дисперсия легко вычисляются непосредственно из соответствующих определений:

Аналогичные формулы для математического ожидания и дисперсии можно также получить с использованием преобразования Лапласа по формулам (10.8), (10.9).

Рассмотрим пример системы сервиса, которую можно описать равномерным распределением.

Движение транспорта на перекрестке регулируется автоматическим светофором, в котором 1 мин горит зеленый свет и 0,5 мин - красный. Водители подъезжают к перекрестку в случайные моменты времени с равномерным распределением, не связанным с работой светофора. Найдем вероятность того, что автомобиль проедет перекресток, не останавливаясь.

Момент проезда автомобиля через перекресток распределен равномерно в интервале 1 + 0,5 = 1,5 мин. Автомобиль проедет через перекресток, не останавливаясь, если момент проезда перекрестка попадает в интервал времени . Для равномерно распределенной случайной величины в интервале вероятность попадания в интервал равна 1/1,5=2/3. Время ожидания Г ож есть смешанная случайная величина. С вероятностью 2/3 она равна нулю, а с вероятностью 0,5/1,5 принимает любое значение между 0 и 0,5 мин. Следовательно, среднее время и дисперсия ожидания у перекрестка

Экспоненциальное (показательное) распределение. Для экспоненциального распределения плотность распределения случайной величины можно записать как:

где А называют параметром распределения.

График плотности вероятности экспоненциального распределения дан на рис. 10.6, а.

Функция распределения случайной величины с экспоненциальным распределением имеет вид


Рис. 10.6. Экспоненциальное распределение случайной величины: а - плотность распределения; б - функция распределения

График функции экспоненциального распределения показан на рис. 10.6, 6.

Преобразование Лапласа экспоненциального распределения вычислим по (10.3):

Покажем, что для случайной величины X, имеющей экспоненциальное распределение, математическое ожидание равно среднеквадратическому отклонению а и обратно параметру А,:

Таким образом, для экспоненциального распределения имеем: Можно также показать, что

т.е. экспоненциальное распределение полностью характеризуется средним значением или параметром X .

Экспоненциальное распределение обладает рядом полезных свойств, которые используются при моделировании систем сервиса. Например, оно не имеет памяти. Когда , то

Другими словами, если случайная величина соответствует времени, то распределение оставшейся длительности не зависит от времени, которое уже прошло. Данное свойство иллюстрирует рис. 10.7.


Рис. 10.7.

Рассмотрим пример системы, параметры функционирования которой можно описать экспоненциальным распределением.

При работе некоторого прибора в случайные моменты времени возникают неисправности. Время работы прибора Т от его включения до возникновения неисправности распределено по экспоненциальному закону с параметром X. При обнаружении неисправности прибор сразу поступает в ремонт, который продолжается время / 0 . Найдем плотность и функцию распределения промежутка времени Г, между двумя соседними неисправностями, математическое ожидание и дисперсию, а также вероятность того, что время Т х будет больше 2t 0 .

Так как ,то


Нормальное распределение. Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается плотностью

Из (10.48) следует, что нормальное распределение определяется двумя параметрами - математическим ожиданием т и дисперсией а 2 . График плотности вероятности случайной величины с нормальным распределением при т= 0, а 2 =1 показан на рис. 10.8, а.


Рис. 10.8. Нормальный закон распределения случайной величины при т = 0, ст 2 = 1: а - плотность вероятности; 6 - функция распределения

Функция распределения описывается формулой

График функции распределения вероятности нормально распределенной случайной величины при т = 0, а 2 = 1 показан на рис. 10.8, б.

Определим вероятность того, что X примет значение, принадлежащее интервалу (а, р):

где - функция Лапласа, и вероятность того,

что абсолютное значение отклонения меньше положительного числа 6:

В частности, при т = 0 справедливо равенство:

Как видно, случайная величина с нормальным распределением может принимать как положительные значения, так и отрицательные. Поэтому для вычисления моментов необходимо использовать двустороннее преобразование Лапласа

Однако этот интеграл не обязательно существует. Если он существует, вместо (10.50) обычно используют выражение

которое называют характеристической функцией или производящей функцией моментов.

Вычислим по формуле (10.51) производящую функцию моментов нормального распределения:

После преобразования числителя подэкспоненциального выражения к виду получим

Интеграл

так как является интегралом нормальной плотности вероятности с параметрами т + so 2 и а 2 . Следовательно,

Дифференцируя (10.52), получим

Из данных выражений можно найти моменты:

Нормальное распределение широко распространено на практике, так как, согласно центральной предельной теореме, если случайная величина представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то имеет распределение, близкое к нормальному.

Рассмотрим пример системы, параметры которой можно описать нормальным распределением.

Предприятие изготовляет деталь заданного размера. Качество детали оценивается путем измерения ее размера. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением а - Юмкм. Найдем вероятность того, что ошибка измерения не будет превышать 15 мкм.

По (10.49) находим

Для удобства использования рассмотренных распределений сведем полученные формулы в табл. 10.1 и 10.2.

Таблица 10.1. Основные характеристики непрерывных распределений

Таблица 10.2. Производящие функции непрерывных распределений

КОНТРОЛЬНЫЕ ВОПРОСЫ

  • 1. Какие распределения вероятностей относят к непрерывным?
  • 2. Что такое преобразование Лапласа-Стилтьеса? Для чего оно используется?
  • 3. Как вычислить моменты случайных величин с использованием преобразования Лапласа-Стилтьеса?
  • 4. Чему равно преобразование Лапласа суммы независимых случайных величин?
  • 5. Как вычислить среднее время и дисперсию времени перехода системы из одного состояния в другое с использованием сигнальных графов?
  • 6. Дайте основные характеристики равномерного распределения. Приведите примеры его использования в задачах сервиса.
  • 7. Дайте основные характеристики экспоненциального распределения. Приведите примеры его использования в задачах сервиса.
  • 8. Дайте основные характеристики нормального распределения. Приведите примеры его использования в задачах сервиса.

Этот вопрос уже давно подробно изучен, и наиболее широкое распространение получил метод полярных координат, предложенный Джорджем Боксом, Мервином Мюллером и Джорджем Марсальей в 1958 году. Данный метод позволяет получить пару независимых нормально распределенных случайных величин с математическим ожиданием 0 и дисперсией 1 следующим образом:

Где Z 0 и Z 1 - искомые значения, s = u 2 + v 2 , а u и v - равномерно распределенные на отрезке (-1, 1) случайные величины, подобранные таким образом, чтобы выполнялось условие 0 < s < 1.
Многие используют эти формулы, даже не задумываясь, а многие даже и не подозревают об их существовании, так как пользуются готовыми реализациями. Но есть люди, у которых возникают вопросы: «Откуда взялась эта формула? И почему получается сразу пара величин?». Далее я постараюсь дать наглядный ответ на эти вопросы.


Для начала напомню, что такое плотность вероятности, функция распределения случайной величины и обратная функция. Допустим, есть некая случайная величина, распределение которой задано функцией плотности f(x), имеющей следующий вид:

Это означает, что вероятность того, что значение данной случайной величины окажется в интервале (A, B), равняется площади затененной области. И как следствие, площадь всей закрашенной области должна равняться единице, так как в любом случае значение случайной величины попадет в область определения функции f.
Функция распределения случайной величины является интегралом от функции плотности. И в данном случае ее примерный вид будет такой:

Тут смысл в том, что значение случайной величины будет меньше чем A с вероятностью B. И как следствие, функция никогда не убывает, а ее значения лежат в отрезке .

Обратная функция - это функция, которая возвращает аргумент исходной функции, если в нее передать значение исходной функции. Например, для функции x 2 обратной будет функция извлечения корня, для sin(x) это arcsin(x) и т.д.

Так как большинство генераторов псевдослучайных чисел на выходе дают только равномерное распределение, то часто возникает необходимость его преобразования в какое-либо другое. В данном случае в нормальное Гауссовское:

Основу всех методов преобразования равномерного распределения в любое другое составляет метод обратного преобразования. Работает он следующим образом. Находится функция, обратная функции необходимого распределения, и в качестве аргумента передается в нее равномерно распределенная на отрезке (0, 1) случайная величина. На выходе получаем величину с требуемым распределением. Для наглядности привожу следующую картинку.

Таким образом, равномерный отрезок как бы размазывается в соответствии с новым распределением, проецируясь на другую ось через обратную функцию. Но проблема в том, что интеграл от плотности Гауссовского распределения вычисляется непросто, поэтому вышеперечисленным ученым пришлось схитрить.

Существует распределение хи-квадрат (распределение Пирсона), которое представляет собой распределение суммы квадратов k независимых нормальных случайных величин. И в случае, когда k = 2, это распределение является экспоненциальным.

Это означает, что если у точки в прямоугольной системе координат будут случайные координаты X и Y, распределенные нормально, то после перевода этих координат в полярную систему (r, θ) квадрат радиуса (расстояния от начала координат до точки) будет распределен по экспоненциальному закону, так как квадрат радиуса - это сумма квадратов координат (по закону Пифагора). Плотность распределения таких точек на плоскости будет выглядеть следующим образом:


Так как она равноценна во всех направлениях, угол θ будет иметь равномерное распределение в диапазоне от 0 до 2π. Справедливо и обратное: если задать точку в полярной системе координат с помощью двух независимых случайных величин (угла, распределенного равномерно, и радиуса, распределенного экспоненциально), то прямоугольные координаты этой точки будут являться независимыми нормальными случайными величинами. А экспоненциальное распределение из равномерного получить уже гораздо проще, с помощью того же метода обратного преобразования. В этом и заключается суть полярного метода Бокса-Мюллера.
Теперь выведем формулы.

(1)

Для получения r и θ нужно сгенерировать две равномерно распределенные на отрезке (0, 1) случайные величины (назовем их u и v), распределение одной из которых (допустим v) необходимо преобразовать в экспоненциальное для получения радиуса. Функция экспоненциального распределения выглядит следующим образом:

Обратная к ней функция:

Так как равномерное распределение симметрично, то аналогично преобразование будет работать и с функцией

Из формулы распределения хи-квадрат следует, что λ = 0,5. Подставим в эту функцию λ, v и получим квадрат радиуса, а затем и сам радиус:

Угол получим, растянув единичный отрезок до 2π:

Теперь подставим r и θ в формулы (1) и получим:

(2)

Эти формулы уже готовы к использованию. X и Y будут независимы и распределены нормально с дисперсией 1 и математическим ожиданием 0. Чтобы получить распределение с другими характеристиками достаточно умножить результат функции на среднеквадратическое отклонение и прибавить математическое ожидание.
Но есть возможность избавиться от тригонометрических функций, задав угол не прямо, а косвенно через прямоугольные координаты случайной точки в круге. Тогда через эти координаты можно будет вычислить длину радиус-вектора, а потом найти косинус и синус, поделив на нее x и y соответственно. Как и почему это работает?
Выберем случайную точку из равномерно распределенных в круге единичного радиуса и обозначим квадрат длины радиус-вектора этой точки буквой s:

Выбор осуществляется заданием случайных прямоугольных координат x и y, равномерно распределенных в интервале (-1, 1), и отбрасыванием точек, которые не принадлежат кругу, а также центральной точки, в которой угол радиус-вектора не определен. То есть должно выполниться условие 0 < s < 1. Тогда, как и в случае с Гауссовским распределением на плоскости, угол θ будет распределен равномерно. Это очевидно - количество точек в каждом направлении одинаково, значит каждый угол равновероятен. Но есть и менее очевидный факт - s тоже будет иметь равномерное распределение. Полученные s и θ будут независимы друг от друга. Поэтому мы можем воспользоваться значением s для получения экспоненциального распределения, не генерируя третью случайную величину. Подставим теперь s в формулы (2) вместо v, а вместо тригонометрических функций - их расчет делением координаты на длину радиус-вектора, которая в данном случае является корнем из s:

Получаем формулы, как в начале статьи. Недостаток этого метода - отбрасывание точек, не вошедших в круг. То есть использование только 78,5% сгенерированных случайных величин. На старых компьютерах отсутствие тригонометрических функций всё равно давало большое преимущество. Сейчас, когда одна команда процессора за мгновение вычисляет одновременно синус и косинус, думаю, эти методы могут еще посоревноваться.

Лично у меня остается еще два вопроса:

  • Почему значение s распределено равномерно?
  • Почему сумма квадратов двух нормальных случайных величин распределена экспоненциально?
Так как s - это квадрат радиуса (для простоты радиусом я называю длину радиус-вектора, задающего положение случайной точки), то сначала выясним, как распределены радиусы. Так как круг заполнен равномерно, очевидно, что количество точек с радиусом r пропорционально длине окружности радиуса r. А длина окружности пропорциональна радиусу. Значит плотность распределения радиусов возрастает равномерно от центра окружности к её краям. А функция плотности имеет вид f(x) = 2x на интервале (0, 1). Коэффициент 2 для того, чтобы площадь фигуры под графиком равнялась единице. При возведении такой плотности в квадрат, она превращается в равномерную. Так как теоретически в данном случае для этого необходимо функцию плотности разделить на производную от функции преобразования (то есть от x 2). А наглядно это происходит так:

Если аналогичное преобразование сделать для нормальной случайной величины, то функция плотности ее квадрата окажется похожей на гиперболу. А сложение двух квадратов нормальных случайных величин уже гораздо более сложный процесс, связанный с двойным интегрированием. И то, что в результате получится экспоненциальное распределение, лично мне тут остаётся проверить практическим методом или принять как аксиому. А кому интересно, предлагаю ознакомиться с темой поближе, почерпнув знаний из этих книжек:

  • Вентцель Е.С. Теория вероятностей
  • Кнут Д.Э. Искусство Программирования, том 2

В заключение приведу пример реализации генератора нормально распределенных случайных чисел на языке JavaScript:

Function Gauss() { var ready = false; var second = 0.0; this.next = function(mean, dev) { mean = mean == undefined ? 0.0: mean; dev = dev == undefined ? 1.0: dev; if (this.ready) { this.ready = false; return this.second * dev + mean; } else { var u, v, s; do { u = 2.0 * Math.random() - 1.0; v = 2.0 * Math.random() - 1.0; s = u * u + v * v; } while (s > 1.0 || s == 0.0); var r = Math.sqrt(-2.0 * Math.log(s) / s); this.second = r * u; this.ready = true; return r * v * dev + mean; } }; } g = new Gauss(); // создаём объект a = g.next(); // генерируем пару значений и получаем первое из них b = g.next(); // получаем второе c = g.next(); // снова генерируем пару значений и получаем первое из них
Параметры mean (математическое ожидание) и dev (среднеквадратическое отклонение) не обязательны. Обращаю ваше внимание на то, что логарифм натуральный.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари