Подпишись и читай
самые интересные
статьи первым!

Регуляторы температуры для батарей отопления: выбор и установка терморегуляторов. Системы автоматического регулирования температуры

Для сохранения требующегося уровня температуры в нагревательных системах применяются электрические устройства, называемые терморегуляторы. Все приборы, имеющие в составе электронагревательные элементы, оборудованы электрическими терморегуляторами.

Необходимость и особенности терморегуляторов

Терморегулятор представляет собой электрическое устройство необходимое для автоматического регулирования температуры в охлаждающем и отопительном оборудовании. Они монтируются в системах обогрева, искусственного климата, охлаждающих либо морозильных системах. Широко используются в домашнем хозяйстве в обустройстве теплиц.

Цель работы терморегулятора определяется включением либо выключением нагревательных элементов какого-либо прибора при показателях температуры ниже или выше указанных соответственно. Благодаря работе терморегулирующих устройств, воздух в помещении, вода, поверхности приборов и т.п. имею стабильную температуру.

Работают все терморегуляторы, в каком бы приборе они не находились, по единому принципу. Автоматический регулятор получает данные о температуре из окружающей его среды, благодаря тому, что оснащается встроенным или выносным термодатчиком. Опираясь на полученную информацию, терморегулятор определяет, когда нужно включаться и отключаться. Чтобы исключить сбои в работе устройства, термодатчик надлежит устанавливать в помещении подальше от прямого влияния различного нагревательного оборудования, в противном случае, может возникнуть искажение показателей и, естественно, регулятор будет работать ошибочно.

Классификация терморегуляторов

Принцип работы всех устройств, регулирующих температуру одинаковый, но видов терморегуляторов очень много, и они отличаются по:

  • Назначению:
    комнатные;
    погодные.
  • Способу монтажа:
    стенные;
    настенные;
    крепящиеся на DIN рейку.
  • Функциональным возможностям:
    центральное регулирование;
    беспроводное регулирование.
  • Способу управления:
    механические;
    электромеханические;
    цифровые (электронные).

Также терморегуляторы отличаются техническими свойствами:

  • Диапазон измерений температуры. Разные модели терморегуляторов в зависимости от модификации поддерживают температуру от -60 до 1200 °С.
  • Количество каналов:
    одноканальные. Применяются для автоматической регулировки и сохранения температуры объекта на указанном уровне. Отличаются меньшими размерами и весом от многоканальных приборов;
    многоканальные. Выпускаются для фиксирования температуры серии стандартных термодатчиков. Их используют на производствах, лабораториях, а также в народном хозяйстве.
  • Габаритные размеры:
    компактные;
    большие;
    крупные.

Применение регуляторов и датчиков температуры

Терморегуляторы могут устанавливаться в жилых и промышленных помещениях. В целом можно выделить учитывающие:

  • И контролирующие температуру воздуха в конкретной зоне помещения. Эти приборы относятся к категории комнатных регуляторов. Бывают аналоговые и цифровые.
  • И поддерживающие температуру определённых предметов – это регуляторы для полового отопления.
  • Температуру воздуха снаружи – погодные термостаты.

Регуляторы, которые эксплуатируются в промышленных помещениях, бывают двух видов:

  • Индустриальные пространственные . К этим приборам относятся аналоговые стенные регуляторы, имеющие повышенную защиту.
  • Индустриальные с отдельными датчиками . Это аналоговые приборы с внешними датчиками, которые могут быть настенными или устанавливаться на специальную рейку.
    Датчики могут устанавливаться на стены или в полу дома, в зависимости от их типа и назначения. Встроенные приборы монтируются в монтажную коробку прямо в стену, а приборы накладного типа просто прикрепляют на стену.

Выделяют также несколько видов датчиков по назначению:

  • Датчик температуры пола.
  • Датчик температуры воздуха.
  • Инфракрасный датчик для пола и воздуха.

Датчик, измеряющий температуру воздуха, часто размещают на корпусе терморегулятора. Терморегуляторы с инфракрасными датчиками можно применять для контроля всей системы отопления. Эти датчики отлично подходят для установки в ванные комнаты, душевые, сауны и прочие помещения с повышенной влажностью. Сам регулятор температуры надлежит размещать обязательно в сухом месте, от переизбытка влаги он может повредиться. Правда есть модели, с повышенной герметичностью, и их монтаж в ванную ничем не опасен для них.

Регуляторы для тёплых полов отличаются своим внутренним устройством, это:

  • Цифровые.
  • Аналоговые.

Цифровые устройства имеют хорошую стойкость к разным типам помех, поэтому исключают искажение данных и гарантируют большую точность, чем аналоговые.

Особенности функциональных возможностей электрических регуляторов температуры:

  • Беспроводное регулирование (дистанционное) . Рекомендовано применять при дополнительной инсталляции греющих элементов и проведении реконструкций, когда выполнять классическую регулировку невозможно или довольно трудно. Дистанционное управление исключает дополнительные строительно-ремонтные работы при электроинсталляции (к примеру, монтаже кабельной проводки).
  • Устройства программирования . Центральное (классическое) устройство позволяет производить регулирование температуры целого крупного объекта с одной точки. Для программирования регулятора используют компьютер или устройства управления. Также контроль осуществляется с помощью телефонного модема.

Принцип действия, плюсы и минусы

Механический регулятор температур считается простым и практичным устройством. Применяется в нагревательных и охладительных целях. Чаще всего представляет внешнее электроустановочное изделие, предназначенное для внутренней установки в жилые помещения в системы отопления. Внешний вид подобен стандартному запорному крану.

Специфичностью механических терморегуляторов является отсутствие электрической составляющей. Работает аппарат по особому принципу, заключающемуся в свойствах некоторых веществ и материалов менять свои механические качества от изменения температуры.

При изменении температуры до конкретно указанной, происходит разрыв или замыкание электрической цепи, что обуславливает выключение либо включение приборов для нагрева. Требуемый показатель температуры выбирается на шкале прибора путём вращения специального колесика.

Положительные моменты механических термостатов:

  • Надёжность.
  • Устойчивость к перепадам напряжения.
  • Не подвластны сбоям электроники.
  • Работают при отрицательных температурах.
  • Можно эксплуатировать в условиях резких изменений температуры.
  • Простое управление.
  • Длительный срок службы.

Недостатки:

  • Наличие погрешности.
  • Вероятность появления небольших щелчков при подаче напряжения на инфракрасные нагреватели.
  • Низкая функциональность.

Независимо от недостатков, они являются самыми распространёнными и встречаются в организации обогревательных систем чаще других термостатов, благодаря простому управлению и невысокой стоимости.

Эксплуатация электромеханических термостатов

Электромеханические регуляторы температуры используется в различных бытовых электроприборах. Эти изделия бывают двух модификаций:

  • С биметаллической пластиной и группой контактов . Пластина, нагреваясь до определённой температуры, изгибается и размыкает контакты, из-за чего прекращается подача электротока на нагревательную спираль или ТЭН прибора. После остывания пластина прогибается обратно в своё исходное положение, контакты при этом замыкаются, возвращается подача электричества и прибор нагревается. Приборами с этими регуляторами пользуется в повседневной жизни практически каждый человек – это утюги, электроплиты, электрочайники и т.п.
  • С капиллярной трубкой . Изделие состоит из трубки, наполненной газом и помещённой в ёмкость с водой, а также контактов. Принцип действия базируется на особенностях материалов расширяться при определённых температурах. Вещество, находящееся в полой трубке, начинает расширяться при разогреве воды, из-за чего возникает замыкание контакта. После охлаждения воды, контакты размыкаются, а электроприбор начинает разогреваться. Подобными регуляторами чаще всего оснащаются водонагреватели, масляные обогреватели, бойлеры.
  • Автоматическое включение обогрева.
  • Герметичность.
  • Невысокая цена.

Минусы этих приборов:

  • Низкая функциональность.
  • Сложность добиться высокой точности регулирования.

Специфика электронных терморегуляторов

Электронные устройства очень распространены, они эксплуатируются с многими электрообогревателями. Обычно ими оборудуют общие отопительные системы и кондиционирования, а также тёплые полы.

Главные составляющие части:

  • Выносной термодатчик.
  • Контроллер — устройство, устанавливающее конкретный уровень температуры в доме, а также создающее команды включения и отключения нагревателя.
  • Электронный ключ – контактная группа.

Датчик прибора отправляет данные о температуре контроллеру, который обрабатывает полученный сигнал и решает, требуется снижать или повышать температуру.

Виды электронных термостатов:

  • Обычные терморегуляторы . В этих приборах можно выставлять желаемые пределы температуры либо точную температуру, которая будет сохраняться. Устройства оборудованы электронным дисплеем.
  • Цифровые терморегуляторы :
    С закрытой логикой. Устройства имеют неизменный алгоритм работы. Регулирование выполняется при помощи передачи команд по указанным параметрам конкретным приборам, которые были установлены заранее. Параметры задаются заранее в зависимости от нужд используемых приборов для определённой температуры. Корректировка программы этих регуляторов практически неосуществима, можно только менять основные параметры. Но именно эти термостаты наиболее часто применяют в быту.
    С открытой логикой. Эти аппараты контролируют точный процесс обогрева помещений. Имеют расширенные настройки, благодаря чему можно поменять их алгоритм работы. Управляются кнопками или сенсорной панелью. Путём этих устройств можно включать либо отключать обогревательные системы в строго заданное время. Но их перепрограммированием должны заниматься специалисты. Эти регуляторы применяют чаще на производстве и в промышленности, чем в быту.

Программируемые термостаты удобно эксплуатировать, они открывают широкие возможности для тонкой настройки приборов на нужные температурные показатели, зависящие от требований отдельных зон помещений.

Достоинства:

  • Широкий диапазон регулировок.
  • Разнообразие дизайнерских решений.
  • Экономия электроэнергии.
  • Высокая точность.
  • Эффективность.
  • Безопасность при эксплуатации.

Также терморегуляторы просты в управлении и имеют не высокую стоимость, только эти два плюса не касаются регуляторов с открытой логикой. Электронные регуляторы нередко являются составной частью системы умного дома.

Хочу рассказать о создании несложного устройства, которое сильно облегчило жизнь домашним обитателям - автоматический регулятор температуры газовой колонки. Подобные устройства уже создавались и описывались здесь на хабре, хотелось сделать чуть более продвинутый девайс и подробно описать весь процесс создания от задумки и измерения до реализации, без использования готовых модулей типа Arduino. Устройство будет собрано на макетной плате, язык программирования - C. Это моя первая разработка законченного (и работающего!) устройства.

1. Исходные данные

Мы живем на съёмной квартире, которая обладает одним очень неприятным свойством: в доме нет горячей воды, холодная вода нагревается на месте при помощи нагревателя (Водонагреватель Проточный Газовый - ВПГ ), который расположен на кухне. Во время принятия душа если происходит очередной скачок давления - приходится голышом шлепать до колонки или звать кого-нибудь. Интегрировать полноценный «умный дом» возможности нет, поэтому решено было внедрить автоматическое регулирование нагревателя. К слову, довольно быстро нашел несколько похожих решений, например , а значит проблема моя известна и решена в своем виде.

Модель ВПГ: Vector lux eco 20-3 (китай)
Давление воды: около 1.5 кгс/см² (давление низкое, нагреватель работает чуть выше допустимого предела)

Требования к решению

  • Простота
  • ПИД-регулятор или его подобие
  • Возможность выбора поддерживаемой температуры
  • Отображение текущих параметров
  • Решение вопросов безопасности устройства

Архитектура системы

После некоторых размышлений архитектура устройства была набросана следующим образом:
  • Сервопривод (непосредственно в теле ВПГ)
  • Термодатчик штатный ВПГ
  • Блок усиления сигнала термодатчика и стабилизатор питания сервопривода (непосредственно в теле ВПГ)
  • Блок управления (внешний)
Далее опишу процесс разработки в хронологическом порядке.

2. Сервопривод

Так как профессия у меня программная и механика всегда оставалась самой сложной частью - начать решил с неё. Надо сказать что к первому этапу долго не мог собраться, ВПГ очень боязно было трогать, но очередной перепадок давления вынудил меня начать.

Разобрав колонку и осмотревшись - нашёл места для установки сервомашинки TowerPro MG995, как-то давно заказанной «на сдачу» на aliexpress.

Для устранения люфта привода тяг сделал одну тягу подпружиненной. Люфт был полностью устранен, но выяснилась другая проблема - сервомашинка с моментом > 10 кг*см оказалась слишком дерзкой для ВПГ. При включении переходные процессы в электронике машинки вызывают рывок в рандомное положение и через пару холостых включений тяга оказалась погнутой! Силумин колонки точно не выдержит такого обращения. Так же вызывала нарекания геометрия качалки, которая была не на оси регулятора - что приводило к нелинейности регулировки. Финальный вид узла привода дросселя:

Узел переделан - использованы пружины от ВАЗ (от карбюратора - куплены в магазине автозапчастей) и качалка теперь на геометрической оси вала. Такая конструкция имеет небольшой люфт, но зато линейна в регулировке и может демпфировать бешенство рулевой машинки. Углы выставлены на оптимальные значения для регулировки в наиболее востребованных положениях регулятора.

3. Блок датчиков ВПГ

Терморезистор ВПГ меняет своё сопротивление в пределах 20..50 КОм, использовать напрямую в качестве делителя проблематично - получим низкую точность измерения. Но как оказалась на практике - при повышении питающего напряжения до 12В можно без проблем получить приемлемый диапазон выходного сигнала - только использовать ОУ в режиме повторителя (при необходимости можно поменять коэффициент усиления) для изоляции делителя от нагрузки. Схема блока внутри ВПГ:

Делитель R2 и термодатчик колонки формирует сигнал с напряжением 1.4..4.96 В в полном диапазоне измерений (на практике - 20..60 градусов цельсия). Изначально разработал мостовую схему - которая может компенсировать уход источника питания, но была отброшена из-за того что источник питания влиял слабо, а первый пункт «ТЗ» был - «простота». Операционный усилитель обеспечивает развязку делителя и нагрузки. Стабилитрон D1 ограничивает выходное напряжение на уровне 5.1 В для случаев отсоединения датчика (в противном случае на выходе было бы 12В - что смертельно опасно для контроллера) - что схемой контроллера будет считаться безусловной ошибкой. Интегральный стабилизатор 7805 питает сервомашинку - решение неудачное, при стопоре машинки он ужасно нагревается и думаю может выйти из строя при клине привода (если не сработает встроенная защита). Более на этом блоке не буду заострять внимание.

4. Контроллер

Контроллер собран на базе ИМС Atmega8 в dip-корпусе.

Тактирование - внутренний осцилятор на 8 МГц. Питание - ещё один 7805 на плате. Индикация через стандартный LCD1602 дисплей. Схема блока:

Управление питанием блока осуществляется от колонки через транзистор - используя малогабаритное реле. Сигнал термодатчика (Контакт №4 разьема) имеет подтяжку на землю и при отсоединении датчика во время работы покажет очень высокую температуру - что приведет к уменьшению регулятора и не вызовет опасных ситуаций. Собранный блок:

4. Испытания и регулировка

Для отработки ПИД-регулятора была написана модель ВПГ на Qt. На ней были отработаны основные моменты и ситуации работы нагревателя - старт холодный/горячий, перепады давления. Для снятия характеристик был добавлен UART-разьем на плату контроллера, куда раз в секунду отправлялись данные о показателях - текущая температура, положение дросселя и т.д.

При испытаниях выявилось следующее:

  • Очень большая инерция ВПГ от начала воздействия до реакции на термодатчике - порядка 30 секунд
  • Округление до градуса в микропрограмме контроллера - плохая идея, алгоритм может работать более точно

Результаты измерения и калибровки термодатчика, Зависимость можно считать условно-линейной:

Первые прогоны в программе отрисовки телеметрии от колонки:

(забыл на графики добавить легенду. Здесь и далее - красный - температура датчика, зеленый пунктирный - положение дросселя, синий - желаемая юзером температура)


Почти удачная регулировка


Удачные варианты коэффициентов


Неплохой вариант старта

Первые прогоны показали основные параметры системы, дальше уже не составило труда замерить их и настроить по ускоренной формуле , параметры подбирал долго и мучительно. Полностью от колебаний избавится не удалось, но колебания в пределах 1 градуса считаются приемлемыми. Принятый вариант:

В процессе подбора интегральый коэффициент пришлось полностью отключить, думаю что это из-за большой инерции системы. Итоговые коэффициенты:

Float Pk = 0.2; float Ik = 0.0; float Dk = 0.2;

5. Корпусирование

Устройство собрано в пластмассовом корпусе распределительной коробки.

И в таком виде работает.

6. Безопасность использования

Важный вопрос, которым задавался с самого начала.Пройдемся по основным пунктам.

Гальваническая развязка цепей колонки и регулятора

Что будет если блок питания 12В закоротит и на цепи датчика окажется 220 вольт? Не вызовет это подачу газа в колонку. Как оказалось - не вызовет - в колонке имеется два уровня подачи газа - электромагнитный клапан контроллера и механический клапан воды. Открыть только соленоид мало - газ не поступит без тока воды.

Отключение или отрыв датчика внутри ВПГ

При отключении терморезистора от блока внутри ВПГ на выходе будет генерироваться сигнал 0xFF (5.1В) что проверяется программой как ошибка, контроллер останавлиает выполнение программы, сервопривод выставляется на минимум.

Отключение или отрыв датчика от контроллера

В этом случае генерируется большая температура (подтяжка линии датчика к земле) что приведет к выводу привода в минимальное значение, что так же безопасно для юзера.

Электронно-механическая защита ВПГ

Цени защиты ВПГ остаются функционировать в штатном режиме, в случае кипения/перегрева/датчика тяги колонки штатные системы должны отключить её.

1.
2.
3.
4.

Как известно, для того, чтобы качественно отопить любое помещение, требуется правильно отрегулировать температурные показатели, чтобы нагрев соответствовал оптимально комфортным условиям и обеспечивал благоприятный микроклимат в жилище. Поэтому следует более подробно рассмотреть особенности такого прибора, как регулятор температуры для радиатора отопления, который призван выполнять все эти функции. Кроме того, следует разобраться с тем, как регулировать температуру батареи отопления в различных постройках, включая частные и многоквартирные дома.

Необходимость установки терморегуляторов

Подобные механизмы применяются для следующих целей:
  • экономия производимого отоплением тепла;
  • поддержание комфортного показателя температуры в жилище.
Многие хозяева для решения второй задачи до сих пор пользуются традиционными способами, например, накрывают радиаторы покрывалом или открывают окна для проветривания. Однако гораздо более современным решением будет установка такого прибора, как регулятор температуры отопления, влияющий на расход теплоносителя в отопительной системе и способный функционировать как в ручном, так и в автоматическом режиме.

Очень важно помнить, что при монтаже крайне необходимо наличие специальной перемычки, расположенной непосредственно перед прибором отопления. Если ее не будет, то расход теплоносителя не получится регулировать через радиатор, так как делать это придется через общий стояк.

Говоря об экономии, этот фактор является актуальным для тех хозяев, жилое помещение которых оборудовано автономной отопительной системой, а также для служб жилищно-коммунального хозяйства, использующих приборы учета для оплаты тепла, поступающего от его производителей.

Установка температурных регуляторов в домах многоквартирного типа

Чтобы установить регулятор температуры радиатора батарей отопления в многоквартирном доме, необходимо разобраться с тем, что представляет собой учет тепла в такой конструкции.

Трубопроводы подачи и отдачи оснащены специальными подпорными шайбами, перед и после каждой из которых располагаются регулирующие давление датчики. Благодаря тому, что диаметр этих датчиков известен, появляется возможность рассчитать расход теплоносителя, циркулирующего через датчики. Как результат, разница, полученная между расходом воды в трубопроводах подачи и отдачи, будет отображать объем израсходованной жильцами воды.

Контроль на обоих участках призваны осуществлять температурные датчики. Поэтому, зная то, в каком объеме расходуется тепло и чему равна его температура, можно легко рассчитать то количество тепла, которое осталось в помещении.

Для того чтобы регулировать работу отопления было проще, требуется постоянно следить за состоянием температуры.

Сделать это поможет один из двух способов:
  1. Монтаж запорного клапана . Такое устройство призвано частично перекрывать систему трубопровода в том случае, если температура обратки является выше заданной. Представляет собой обычный электромагнитный клапан. Подобный вариант станет подходящим тех домов, где система отопления является относительно простой и не отличается большим объемом теплоносителя.
  2. Устройство клапана трехходового типа . Этот прибор также позволяет регулировать текущий расход теплоносителя, однако функционирует он несколько иначе: в том случае, если температура воды превышает норму, то она направляется сквозь открытый клапан в трубопровод подачи в большем количестве. Путем смешения с остывшей водой общая температура снизится, а необходимая скорость циркуляции сохранится.
Подобная конструкция может несколько отличаться в разных системах. Схема устройства может быть оснащена несколькими температурными датчиками, а также одним или двумя насосами циркуляции. Кроме того, могут присутствовать клапаны механического типа, с помощью которых можно осуществлять контроль над работой отопления без подачи какого-либо питания.

Монтаж механических регуляторов не несет в себе особой сложности. Чтобы установить такой прибор, требуется лишь соединить его с фланцем в узле элеватора. Немаловажным является и тот факт, что цена таких устройств является значительно более низкой по сравнению с электронными механизмами.

Монтаж регуляторов температуры в частных домах

Как правило, автоматический регулятор температуры отопления является неотъемлемой частью нагревательного котла в автономной системе отопления. Такой датчик может быть мобильным, то есть его можно переносить, а также способен измерять температуру в комнате.
В котлах электрического типа используются электронные датчики, которые непосредственно связаны с установленными ТЭНами (тепловыми электронагревательными элементами) либо с напряжением, возникающим на электродах или на обмотке котла.

Системы котлов, работающие как с помощью газа, так и с применением технологии пиролиза, зачастую оснащены механическими регуляторами, главное из преимуществ которых – независимость в плане энергии. Но такой вариант, безусловно, не подразумевает использования выносных температурных датчиков. Читайте также: " ".

Температурные датчики для радиаторов

Иногда один датчик температуры имеет при себе несколько отопительных радиаторов. Влияет на это, в первую очередь, схема установки. Но гораздо чаще принято монтировать регулятор на каждый прибор отопления по отдельности.

Многие хозяева устанавливают привычную многим систему, именуемую «ленинградкой», принцип работы которой заключается в применении одной опоясывающей дом или один этаж трубы, имеющей довольно внушительный диаметр, а параллельно ей встраиваются батареи отопления или конвекторы.

Стоит отметить, что для того, чтобы отрегулировать температуру отопления, можно использовать не только стандартные устройства.

К распространенным механизмам этого типа относятся:

  • головка на термостатической основе. Представляет собой автоматический датчик, контролирующий температуру теплоносителя в батарее. Принцип ее функционирования заключается в следующем: в процессе нагрева жидкие и газообразные вещества расширяются (детальнее: " "). Это, как следствие, ведет к тому, что нагретый продукт выдавливает специальный шток, перекрывая, тем самым, доступ теплоносителя;
  • не менее часто применяются и приборы, именуемые дросселями. Они представляют собой специальные краны винтового типа, с помощью которых можно регулировать проходимость теплоносителя ручным образом. Стоимость их является более доступной, а кроме того, с их помощью можно контролировать двухтрубные отопительные системы;
  • наименее дорогостоящий и самый простой механизм, помогающий отрегулировать температуру – это традиционный вентиль. Безусловно, эксплуатировать в данном случае следует лишь современные модели, а не устаревшие винтовые приборы, так как в старых механизмах очень часто отрываются клапаны, а также существует риск протечки сальников. Совершенно иная ситуация обстоит с шаровыми вентилями: даже в полуоткрытой позиции они надежно и качественно функционируют на протяжении долгого периода времени.
Для того чтобы устройство регуляторов температуры прошло максимально удобно, многие специалисты рекомендуют предварительно изучить различные фото этих устройств и детальные видео по их правильному подключению.

Пример регуляторов температуры отопления на видео:

Автоматическое регулирование - это очень удобно. При помощи терморегулятора для теплиц вы можете поддерживать в сооружении требуемую температуру воздуха.

Виды терморегуляторов и их характеристика

Выделяется множество типов термостатов. Чтобы сделать правильный выбор, необходимо знать их особенности. Существует 3 основных типа.


  1. Электронный термостат. Имеет жидкокристаллический дисплей, что дает возможность получать точную информацию о состоянии .
  2. Сенсорные устройства. Хороши тем, что в них можно задать программу работы, что дает возможность создавать различную температуру в разное время суток.
  3. Механическое изделие. Наиболее простая установка, позволяющая контролировать температуру почвы. При этом температура задается один раз, а потом вы просто корректируете ее. Идеальный вариант для небольших парников.

Как выбрать терморегулятор

Выбирая термостат, следует руководствоваться тем, что вы желаете получить в конечном счете. Прежде всего следует обратить внимание на такие характеристики:

  • особенности установки;
  • способ управления;
  • внешний вид;
  • мощность;
  • наличие или отсутствие дополнительных функций.

При выборе терморегуляторов для теплиц особое внимание стоит уделить мощности. Она должна быть больше, чем требуемая мощность обогрева грунта. Берите с запасом! При этом вся работа контролируется датчиком. Он может быть:

  • внешним;
  • скрытым.

Цепь может состоять из нескольких элементов. Внешний вид терморегуляторов тоже бывает разным. Монтаж может быть или навесным, или скрытым.

Особенности установки

При монтаже системы своими руками стоит знать, что регулятор ведет работу от датчиков - освещенности и температуры. Днем температура в строении будет выше, ночью ниже. В зависимости от этого меняется и отопление. Параметры для терморегулятора такие:

  • предел освещенности - от 500 до 2600 люкс;
  • отклонение в питании прибора - до 20%;
  • диапазон температур - от +15 до 50 градусов;


При установке своими руками системы следует знать, что в терморегулятор входит блок корректировки и блок регулирования температур. Выполнить их можно на транзисторах. Варьировать температуру позволяет переключатель. Реле можно объединить с нагревательным устройством для печки при помощи контактов. На регуляторе может находиться выходное реле, контролирующее обогрев.

В датчики включены фоторезисторы и терморезисторы. Они реагируют на различные изменения в окружающей среде. Установить настройки можно согласно инструкции, представленной изготовителем.

Настроить установку своими руками следует, начав с градуирования шкалы резистора. Сначала датчики опускают в подогретую воду, а затем определяют температуру. Далее ведется градуирование датчика освещения. Собирать регулятор температур разрешается внутри теплиц. Располагают его вблизи нагревательного устройства, в качестве которого может выступать печка.

Обзор терморегулятора (видео)

Как вести работу с терморегулятором

Терморегуляторы, вне зависимости от того, сделаны они своими руками либо приобретены в магазине, очень схожи по принципу действия. Ввиду этого работать с ними легко. Чем характеризуется работа с устройством?

  • Прокручивать меню помогает специальная кнопка.
  • Регулировка температуры происходит вручную.
  • В памяти аппарата можно записывать настройки для быстрого включения.
  • Применение специальных кнопок позволяет вести контроль над работой котла и печки, устанавливать характеристики обогрева.
  • Если есть дисплей с показаниями, можно узнать, каким является обогрев в данныйпериод времени.


Помимо прочего, терморегуляторы дают возможность вести управление котлом для обогрева теплицы.

  1. После того как на контроллер подается питание, датчики опрашиваются на предмет получения информации в реальном времени. Затем контроллер ведет сравнение показаний и уже записанной информации для дня или ночи и подбирает необходимые настройки для терморегулятора.
  2. По прошествии 5 минут происходит активизация терморегулятора, а котел начинает работу.
  3. Если обогрев недостаточный, начинают функционировать нагреватель с насосом. Подается команда об увеличении подачи топлива, что увеличивает обогрев.

Терморегуляторы многофункциональны. С их помощью можно обогреть теплицу и задать требуемую температуру для воздуха в строении, а также обогреть грунт и воду.

Регулятор способен поддерживать оптимальные условия среды в любой . Некоторые устройства включаются и работают самостоятельно, что очень удобно. Подключают их к контроллеру, датчикам тепла, печке и котлу. В итоге вести контроль над температурным режимом можно в полной мере.


Изготовление простого регулятора своими руками

Выполнить регулятор своими руками можно из стандартного бытового термометра. Однако его придется модифицировать.

  • Сначала разберите устройство, но помните, что действовать нужно осторожно.
  • В шкале, в месте расположения области требуемого предела регулирования, выполняется отверстие. Его диаметр должен быть меньше 2,5 миллиметров. Напротив него фиксируется фототранзистор. Берется листовой алюминий, делается уголок, в котором просверливается 2,8-миллиметровое отверстие. Фототранзистор приклеивают на клей «Момент» в гнездо.
  • Ниже отверстия фиксируют уголок, чтобы при превышении температуры (днем) у стрелки не было возможности пройти отверстие. Это предотвратит включение обогрева, когда этого не требуется.
  • С наружной стороны на термометре устанавливают 9-вольтовую лампочку. В корпусе термометра для нее просверливают отверстие. Между шкалой и лампочкой внутри располагают линзу. Она нужна, чтобы устройство срабатывало четко.
  • Провода от лампочки проводятся через отверстие в корпусе, а провода от фототранзистора - через отверстие в шкале. Общий жгут помещают в хлорвиниловую трубку и фиксируют зажимом. Напротив лампочки сверлят 0,4-миллиметровое отверстие.


  • Кроме датчика в терморегуляторе должен быть стабилизатор напряжения. Также требуется фотореле. Питание стабилизатора ведется от трансформатора. В роли фотоэлемента для фотореле служит модифицированный транзистор вида ГТ109. Все, что нужно сделать, это удалить у его корпуса шляпку и обломать базовый вывод.
  • В качестве нагрузки используется механизм, выполненный из реле заводского исполнения. Работа в данном случае идет по принципу электромагнита, где стальной якорь идет внутрь катушки и оказывает влияние на микровыключатель, который зафиксирован при помощи 2 кронштейнов. А микровыключатель приводит в действие электромагнитный пускатель, сквозь контакты которого напряжение питания идет на нагревательный прибор.
  • Фотореле вместе с субблоками питания помещают в корпус, изготовленный из изоляционного материала. К нему крепят термометр на специальной штанге. На лицевой стороне находятся неоновая лампочка (она будет подавать сигнал о начале работы нагревательных элементов) и тумблер.
  • Чтобы регулятор работал точно, следует добиться четкой фокусировки света, исходящего от лампочки на фотоэлемент.

Как сделать термостат своими руками (видео)

Таким образом, несмотря на сложность работ, установка терморегулятора существенно упрощает уход за . Культуры, получающие оптимальный микроклимат, лучше развиваются, а значит, урожай будет значительно больше.

Средства регулировки температуры в отдельных комнатах

Благодаря радиаторному терморегулятору Данфосс используется только необходимое количество энергии, и температура в помещении постоянно поддерживается на необходимом уровне. Терморегулятор измеряет температуру помещения и автоматически регулирует теплоподачу.

Он позволяет избежать перегрева помещений в переходной и другие периоды года и обеспечить минимально необходимый уровень отопления в помещениях с периодическим проживанием людей (защита от замораживания системы).

Короткое название радиаторного термостата RTD (Радиаторный Термостат Данфосс). Что такое радиаторный терморегулятор?

1 - комбинация датчика температуры в комнате и водяного клапана,

2 - самостоятельный регулятор давления (работает без дополнительного источника энергии)

3 - прибор, который постоянно поддерживает заданную температуру.



Принцип работы радиаторного терморегулятора:

Принципом работы является равновесие между усилием среды (в данном случае: газ) и силой нажимной пружины, величина которой зависит от настройки головки (на необходимую температуру). Таким образом, величина потока через клапан зависит от настройки головки и температуры внешней среды, которая воспринимается датчиком.

Если температура повышается, то газ расширяется и таким образом немного призакрывает клапан. Если же температура понижается, то газ соответственно сжимается, что и приводит к открытию клапана и доступу теплоносителя в отопительный прибор.

Использование газа предоставляет Данфосс большое преимущество над другими производителями: малая величина константы времени, которая выражается в лучшем использовании свободного тепла через быстрый ответ на изменение температуры в помещении (время реакции).

На сегодня только радиаторные термостаты Данфосс используют принцип расширения и сжатия газа. Причина заключается в том, что использование газа требует очень современную технологию и, соответственно, высокие требования к качеству. Однако компания Данфосс готова идти на дополнительные затраты с целью добиться высококачественной и конкурентной продукции.

Выбор радиаторного термостата зависит от следующих условий:


тип датчика Ю место расположения клапана

тип клапана Ю размер радиатора (потребность в тепле), падение температуры на нагревательном элементе, тип системы отопления (1- или 2-трубная система)

Почему необходимо использовать радиаторный термостат?

1 - потому, что он дает возможность экономить тепловую энергию (15-20%), позволяет использовать свободное, “бесплатное” тепло (солнечное излучение, дополнительное тепло от людей и приборов), срок его окупаемости < 2 лет.

2 - обеспечивает высокий уровень комфорта в помещении.

3 - обеспечивает гидравлическое равновесие - очень важно создать гидравлическое равновесие в отопительной системе, что означает подачу доступной тепловой энергии каждому потребителю соответственно к его потребности.

Термостатические головки RTD (20% сбережения тепла)




Головки для радиаторных термостатов изготовляются в следующих версиях:

RTD 3100 / 3102 - стандартный датчик, встроенный или дистанционный, ряд температур 6-26° С, ограничение и фиксация настройки температуры.

RTD 3120 - датчик с защитой от постороннего вмешательства, встроенный, ряд температур 6 - 26° С, защита от замерзания.

RTD 3150 / 3152 - датчик с ограничением максимума температуры, встроенный или дистанционный, ряд температур 6 - 21° С, защита от замерзания, фиксация настройки температуры.

ряд RTD 3160 - элемент дистанционного управления, капиллярная трубка длина 2 / 5 / 8 м, максимальная температура 28° С с ограничением и фиксацией настройки температуры (для радиаторов и конвекторов, недоступных для пользователя).

Дистанционный датчик необходимо использовать в случае, если на встроенный датчик будет влиять сквозняк или же он спрятан за портьерами или декоративными решетками.

Крепление самой термостатической головки на клапане легко выполняется при помощи накидной гайки. Головка может быть защищена от несанкционированного снятия при помощи винта (заказывается отдельно, как дополнительный аксессуар).


Клапаны RTD-N и RTD-G

Когда Данфосс начал продвижение на рынки за пределами Западной Европы, то специалистами компании были проведены многочисленные анализы качества воды в разных странах. В результате этого опыта стало понятным, что в системах отопления некоторых стран часто встречается низкое качество воды. В связи с этим была разработана новая серия клапанов для рынков Восточной Европы - серия RTD.

Используемые в RTD материалы остаются особенно стойкими при низком качестве используемой воды (по сравнении с клапанами, что выпускаются для рынков Западной Европы, мы заменили все части из оловянистой бронзы на более стойкие, изготовленные из латуни). А это значит, что срок службы клапана значительно увеличивается, даже в сложных условиях Украины. По опыту мы знаем, что средний срок службы клапана достигает 20 лет.

Регулирующие клапаны типа RTD-N (диаметры 10-25 мм) предназначены для применения в двухтрубных насосных системах водяного отопления и оснащены устройством для предварительной (монтажной) настройки их пропускной способности.

В 2-х трубной системе отопления добавление воды сверх расчетного объема приводит к увеличению передачи тепла и дисбалансу в системе. Функция предварительной настройки клапана дает возможность монтажнику, выполняющему его установку, ограничить пропускную способность клапана таким образом, чтобы гидравлическое сопротивление во всех радиаторных контурах было одинаковым и таким образом регулировать величину потока.

Простая и точная настройка пропускной способности легко выполняется без дополнительного инструмента. Число, выбитое на шкале настройки, должно быть совмещено с меткой, расположенной напротив выходного патрубка клапана. Пропускная способность клапана будет изменяться в соответствии с цифрами на шкале настроек. В положении “N” клапан полностью открыт.

Защиту от несанкционированного изменения настройки обеспечивает установленный на клапане термостатический элемент.

Регулирующие клапаны с повышенной пропускной способностью типа RTD-G (диаметры 15-25 мм) предназначены для применения в насосных однотрубных системах водяного отопления. Они могут также использоваться в двухтрубных гравитационных системах. Клапаны имеют фиксированные значения пропускной способности в зависимости от диаметра клапана.

Пример расчета радиаторного термостата:

Потребность в тепле Q = 2 000 kkal/h

разница температур D T = 20 ° C

существующая потеря давления D P = 0.05 bar

Определяем величину потока (расход воды) через прибор:

Расход воды G = 2 000/20 = 100 l/h

Определяем пропускную способность клапана:


Пропускная способность клапана Kv = 0.1/Ц 0.05 = 0.45 m3/bar



Значение Kv = 0.45 m3/h говорит о том, что для клапана RTD-N 15 мм вы можете выбрать предварительную настройку “7” или “N”.

При выборе радиаторного термостата необходимо обеспечить регулировку в пределах от 0.5 ° С до 2 ° С при данных размерах, что позволит обеспечить хорошие условия регулирования. В нашем случае необходимо выбрать предварительную настройку “7” или “N”. Однако, если в системе отопления существует опасность загрязненной воды, то мы не рекомендуем использовать предварительную настройку меньше “3”.

Используя наше техническое описание “Радиаторные терморегуляторы RTD”, вы сможете выбрать размер клапана непосредственно по диаграммам через потери давления на клапане D P, или через величину потока через клапан G. Выбор размера клапанов RTD-G (для 1-трубной системы) проводится идентично.


Новое строительство

В новостроящихся зданиях мы рекомендуем использование 2-трубной системы с RTD-N клапанами с возможностью предварительной настройки для поддержки гидравлического баланса в системе, Ду 10-25 мм, прямые и угловые версии.



Реконструкция

В подавляющем большинстве старых зданий используется 1-трубная система, для которой мы рекомендуем RTD-G клапаны с повышенной пропускной способностью (фиксированные значения пропускной способности в зависимости от диаметра), Ду 15-25 мм, прямые и угловые версии.

Особенно для клапанов RTD-N с предварительной настройкой очень важно использование фильтра для предотвращения препятствий для нормального функционирования клапана.


Уравновешивающие (балансировочные) клапаны серии ASV

Поскольку радиаторные системы отопления являются динамическими системами (разные падения давления через уменьшение тепловой нагрузки), то радиаторные термостаты должны комбинироваться с регуляторами давления (автоматические балансировочные клапаны ASV-P для 2-трубной системы) и запорно-измерительным клапаном MV-FN.

Серия регуляторов ASV включает по два типа автоматических и ручных балансировочных клапанов:

автоматический клапан ASV-PV - регулятор перепаду давления с изменяемой настройкой 5 - 25 кПа

клапан ASV-P - регулятор с фиксированной настройкой на 10 кПа

ASV-М - ручной запорно-измерительный клапан

ASV-І - запорно-измерительный клапан с настройкой пропускной способности

ASV обеспечивает оптимальное распределение теплоносителя по стоякам системы отопления и нормальное функционирования последней независимо от колебаний давления в системе. Они также позволяют перекрыть и опорожнить стояк. Максимальное рабочее давление становит 10 кПа, максимальная рабочая температура 120° С.

Упаковка из стиропора, в которой транспортируется клапан, может использоваться в качестве теплоизоляционной скорлупы при температуре теплоносителя до 80° С. При максимальной рабочей температуре теплоносителя 120° С используется специальная теплоизоляционная скорлупа, которая поставляется по дополнительному заказу.



Автоматический регулятор расхода ASV-Q

Для гидравлического балансирования 1-трубных систем отопления используются автоматические клапаны-ограничители расхода ASV-Q - диаметры 15, 20, 25 и 32 мм (диапазон настроек от 0,1-0,8 м3/час до 0,5-2,5 м3/час). Они используются для автоматического ограничения максимального значения расхода воды через стояк независимо от колебаний давления и расхода теплоносителя в системе и для оптимального распределения теплоносителя по стоякам системы отопления

Эти клапаны особенно полезны для балансировки систем отопления, для которых отсутствуют данные про их гидравлические характеристики. ASV-Q всегда обеспечивает тот расход теплоносителя, на который клапан настроено. При изменении характеристик системы происходит автоматическая подстройка регулятора.

Установка клапанов ASV-Q позволяет отказаться от традиционно сложных наладочных работ в новом строительстве и при реконструкции систем отопления, включая расширение систем без проведения гидравлического расчета трубопроводов.



Применение (примеры 1 - 2 трубных систем)

При реконструкции однотрубной системы без обвода (проточная система) необходимо установить радиаторные терморегуляторы на источники излучения тепла (RTD-G та RTD-головки) и установить обводную линию (байпас), сечение которой должно быть на один размер меньше, чем основной трубы системы (байпас в 1/2” для основной в 3/4").

При помощи байпаса поток теплоносителя через источник излучения тепла уменьшается до 35 - 30 %, что также зависит от диаметра основных труб в системе. Изучая кривую теплоотдачи радиатора однотрубной системы, мы убеждаемся, что уменьшение потока теплоносителя со 100 % даже до 30 % приведет к уменьшению теплоотдачи радиатора лишь на 10 %.

Это значит, что в подавляющем большинстве случаев установка байпаса будет иметь лишь незначительное влияние на теплоотдачу. Во многих случаях размеры теплоизлучателя (радиатора, конвектора) выбраны уже с запасом, и поэтому теплоизлучатели могут продолжать давать необходимое количество тепла. Если же радиатор маломощный, то для решения проблемы необходимо:

- Повысить температуру теплоносителя

- Повысить производительность циркуляционного насоса

- Увеличить поверхности нагрева радиаторов

-Утеплить ограждающие конструкции (стены) здания

Клапаны RTD-G с высокой пропускной способностью используются в однотрубных системах отопления с циркуляционными насосами и в двухтрубных системах гравитационных (самотечных).

Для поддержания гидравлического баланса в системе отопления на каждом стояке необходимо установить автоматический регулятор расхода ASV-Q, который будет ограничивать поток по каждом стояке. Таким образом тепло будет распределяться равномерно по всем стоякам, особенно в случае изменяемой тепловой нагрузки, или если присутствует недостаточное снабжение теплом. Запорно-измерительный клапан ASV-М позволяет перекрыть каждый отдельный стояк и, при необходимости, спустить с него воду, одновременно измеряя поток через стояк.

Теплоизлучатели (радиаторы и конвекторы) могут комплектоваться радиаторными термостатами (RTD-G и RTD-головками) без всяких ограничений. Выбор клапана RTD-G проводится в соответствии с предыдущим примером (смотри также пример выбора RTD-G в техническом описании). В таком случае стояки необходимо оснастить ограничителями потока ASV-Q и ASV-М запорно-измерительным клапаном.

В случае 2-трубной системы теплоизлучатели могут комплектоваться радиаторными термостатами (RTD-N и RTD-датчики) без каких-либо ограничений. Выбор клапана RTD-N проводится в соответствии с приведенными выше примерами для RTD-N. В этом случае каждый стояк должен комплектоваться регулятором давления ASV-P (и запорно-измерительным клапаном ASV-М), который будет обеспечивать постоянный D Р на каждом стояке, чем будут скомпенсированы изменения в тепловой нагрузке и изменении D Р. Более того, уменьшая риск шума в радиаторных терморегуляторах, регулятор перепаду давления тем самым будет обеспечивать их долговечность


Таким образом решается вопрос регулировки температуры в отдельных комнатах.

Включайся в дискуссию
Читайте также
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Причины и симптоматика инсульта у детей
Мыс крестовый лиинахамари