Подпишись и читай
самые интересные
статьи первым!

Введение в емкостные датчики прикосновения. Датчик прикосновения на транзисторе

ДАТЧИКИ СИЛЫ, МЕХАНИЧЕСКОГО НАПРЯЖЕНИЯ И ПРИКОСНОВЕНИЯ

В системе СИ основными единицами счи­таются масса, длина и время, в то время как сила и ускорение – производными единицами. В Британской и американской системах единиц основными единицами счи­таются сила, длина и время. Единица измерения силы является одной из фундаменталь­ных физических величин. Измерение сил проводится и при проведении меха­нических исследований, и в гражданском строительстве, и при взвешивании объектов, и при изготовлении протезов и т.д. При определении давления также требуется измерение силы. Считается, что при работе с твердыми объектами измеряется сила, а при работе с жидкостями и газами определяется давление. Это значит, что сила рассматривается тогда, когда действие приложено к конк­ретной точке, а давление определяется тогда, когда сила распределена по срав­нительно большой площади.

Датчики силы можно разделить на два класса: количественные и качествен­ные. Количественные датчики измеряют силу и представляют ее значение в элек­трических единицах. Примерами таких датчиков являются динамометрические элементы и тензодатчики. Качественные датчики - это пороговые устройства, чья функция заключается не в количественном определении значения силы, а в де­тектировании превышения заданного уровня приложенной силы. Примером та­ких устройств является клавиатура компьютера, каждая клавиша которой замыкает соответствующий контакт только при нажатии на нее с определенной силой. Качественные датчики часто используются для детектирования движения и по­ложения объектов. Коврик у двери, реагирующий на давление, при­ложенное к нему, и пьезоэлектрический кабель также являются примерами каче­ственных датчиков давления.

Методы измерения силы можно разделить на следующие группы:

1. Уравновешивание неизвестной силы силой тяжести тела известной массы

2. Измерение ускорения тела известной массы, к которому приложена неизвес­тная сила

3. Уравновешивание неизвестной силы электромагнитной силой

4. Преобразование силы в давление жидкости и измерение этого давления

5. Измерение деформации упругого элемента системы, вызванной неизвестной силой

В современных датчиках наиболее часто применяется 5 метод, а методы 3 и 4 используются сравнительно редко.

В большинстве датчиков не происходит прямого преобразования силы в элек­трический сигнал. Для этого обычно требуется несколько промежуточных эта­пов. Поэтому, как правило, датчики силы являются составными устройствами. Например, датчик силы часто представляет собой комбинацию преобразователя сила-перемещение и детектора положения (перемещения). Это может быть про­стая спиральная пружина, уменьшение длины которой, вызванное приложен­ной силой сжатия, будет пропорционально ее коэффициенту упругости.


На рис.1А показан датчик, состоящий из пружины и детектора перемещений, реализованного на основе линейно регулируемого дифференциального трансфор­матора (ЛРДТ). В линейном диапазоне изменения длины пру­жины напряжение на выходе ЛРДТ пропорционально приложенной силе. На рис. 1Б представлен еще один вариант датчика силы, состоящий из гофрированной мембраны, заполненной жидкостью, непосредственно на которую и действует сила, и датчика давления. Гофрированная мембрана, распределяя силу на входе по поверхности чувствительного элемента датчика давления, играет роль преоб­разователя сила-давление.

Тензодатчик - это гибкий резистивный чувствительный элемент, сопротивление которого пропорционально приложенному механическому напряжению (вели­чине деформации). Все тензодатчики построены на основе ранее упоминавшегося пьезорезистивного эффекта. Проволочный тензодатчик представляет собой резистор, наклеенный на гиб­кую подложку, которая в свою очередь прикрепляется на объект, где измеряется сила или напряжение. При этом должна обеспечиваться надежная механическая связь между объектом и тензочувствительным элементом, в то время как провод резистора должен быть электрически изолирован от объекта. Коэффициенты теп­лового расширения подложки и провода должны быть согласованы. Для получения хорошей чувствительности датчик должен иметь длинные продольные участки и короткие поперечные (рис. 2). Это делается для того, чтобы чувстви­тельность в поперечном направлении не превышала 2% от продольной чувствительности. Для измерения напря­жeний в разных направлениях меняется конфигурация датчиков. Следует отме­тить, что полупроводниковые тензочувствительные эле­менты обладают довольно сильной чувствительностью к изменениям температу­ры, поэтому в интерфейсных схемах или в самих датчиках необходимо предус­матривать цепи температурной компенсации.

Тактильные датчики - это специальный класс преобразователей силы или давле­ния, кото­рые характеризуются небольшой толщиной. Эти датчики полезны в слу­чаях, когда сила или давление измеряются между двумя поверхностями, располо­женными близко друг к другу. Такие датчики часто используются в робототехнике, например, их устанавливают на «пальцы» механических приводов для обеспе­чения обратной связи при контакте с объектом - это напо­минает то, как работа­ют тактильные сенсоры кожи человека. Датчики касания используются в сенсор­ных дисплеях, клавиатурах и других устройствах, где необходимо реагировать на физи­ческое прикосновение. Тактильные датчики широко применяются в биоме­дицине, для опреде­ления прикуса зубов и правильности установки коронок в сто­матологической практике, а также при исследовании давления на ноги человека при ходьбе. Иногда при проведении операций протезирования их устанавливают в искусственные суставы для корректировки положения и т.д. В строительстве и на механических производствах тактильные датчики используются для определе­ния сил, действующих на закрепленные устройства.

Для изготовления тактильных чувствительных элементов используются не­сколько мето­дов. В некоторых из них на поверхности объекта формируется специ­альный тонкий слой из ма­териала, чувствительного к механическим напряжениям. На рис. 3 показан простой тактильный датчик, обеспечиваю­щий функции вклю­че­ния-выключения, со­стоящий из двух листов фольги и прокладки. Внутри про­кладки сде­ланы круглые (или лю­бой другой необходимой формы) отверстия. Один из листов фольги зазем­лен, а второй подсоеди­нен к нагрузочному ре­зистору. Если требуется контро­лировать не­сколько чув­ствительных зон, исполь­зуется мультиплексор. Когда к верхнему про­воднику приклады­вается внешняя сила над отвер­стием в прокладке, он прогибается и соприкаса­ется с ниж­ним проводни­ком, тем самым устанав­ливая с ним электриче­ский контакт, заземляю­щий нагрузочный резистор. При этом выходной сигнал становится равным нулю, что свиде­тельствует о прило­женной силе. Верхний и нижний проводники могут изготавливаться мето­дом тра­фаретной печати проводя­щими чернилами на подложке. Чувствительные зоны таких датчиков определяются ря­дами и колонками проводников, нанесенных чер­нилами. Прикосно­вение в опре­деленному участку чувствительной поверхности приводит к замыканию соответ­ст­вующих ряда и колонки, что по­казывает локализацию приложен­ной силы. Хорошие тактиль­ные датчики получаются на основе пьезоэлектрических пленок, которые используются как в пассивном, так и в активном режимах. Многие тактильные датчики выполняют функции сен­сорных переключателей. В отличие от традиционных переключателей, надежность контактов которых сильно снижается при попадании на них влаги и пыли, пьезоэлектрические ключи, благодаря своему монолитному исполнению, могут работать в неблагоприятных условиях окружающей среды.



Другой разновидностью тактильных датчиков является пьезорезистивный чув­ствительный элемент. Он изготавливается из материалов, чье электрическое сопро­тивление зависит от приложенного механического напряжения или давления. К таким материалам относятся проводящие эластомеры или пасты, чувствительные изменению давления. Проводящие эластомеры изготавливаются из силиконовой резины, полиуретана и других материалов, в состав которых входят проводящие час­тицы или волокна. Например, проводящая резина получается при введении в обыч­ную резину угольного порошка. Принцип действия эластомерных датчиков основан либо на изменении площади контактов при сдавливании эластомера между двумя проводящими пластинами, либо на изменении толщины эластомерного слоя. В зависимости от величины внешней силы, действующей на датчик, меняется площадь контактной зоны между прижимным устройством и эластомером, в резуль­тате чего изменяется электрическое сопротивление.

Более тонкие пьезорезистивные тактильные датчики получаются из полупро­водниковых полимеров, сопротивление которых также зависит от давления. Конст­рукция таких датчиков напоминает мембранный переключатель. По срав­нению с тензодатчиками пьезорезистивные чувствительные элементы обладают бо­лее широким динамическим диапазоном.

Пьезоэлектрические датчики силы

Рассмотренные пьезоэлектрические тактильные датчики не предназначены для проведения точных измерений силы. Однако на основе того же пьезоэлектрического эффекта можно реализовать и прецизионные датчики силы, как активные, так и пассивные. При разработке таких датчиков всегда следует помнить, что пьезоэлектрические устройства не могут измерять стационарные процессы. Это означает, что пьезоэлектрические датчики силы преобразуют изменения силы в пе­ременный электрический сигнал, но при этом они никак не реагируют на постоян­ное значение внешней силы. Поскольку приложенные силы могут изменять некото­рые свойства материалов, при разработке активных датчиков необходимо учитывать всестороннее влияние сигналов возбуждения. На рис. 4 показан вариант активного датчика силы. При проведении количественных измерений при помощи таких дат­чиков следует помнить, что его диапазон измерения зависит от частоты механическо­го резонанса применяемого пьезоэлектрического кристалла. Принцип действия та­ких датчиков основан на том, что при механической нагрузке кварцевых кристаллов определенных срезов, используемых в качестве резонаторов в электронных генера­торах, происходит сдвиг их резонансной частоты.

Тач-сенсоры (датчики касания) бывают разных принципов действия, например резистивный (проводящие пленки), оптический (инфракрасный), акустический (SAW), емкостной и т.д. Данный проект является экспериментом с емкостным датчиком касания. Этот вид датчика хорошо известен как указывающее устройство, используемое в планшетных ПК и смартфонах.

Принцип емкостного датчика касания

Емкостный датчик касания обнаруживает изменение емкости, происходящее на электроде от закрытия проводящим предметом, например пальцем. Есть несколько методов измерения емкости. В этом проекте используется метод интеграции, который используется в измерителе емкости. Изменение емкости Cx довольно небольшое, около 1пФ до 10пФ, но оно будет легко обнаружено, потому что у измерителя емкости разрешение измерения составляет 20пФ. Также, объекты, которые будут обнаруживаться должны быть заземлены, чтобы создать Cx схему согласно с принципом действия. Однако она хорошо работает, даже если человеческое тело изолировано от земли. Это может быть по нижеследующей причине.

Аппаратная часть

Программное обеспечение

Во-первых, откалибруйте каждую точку (получите эталонное время связи с Cs), а затем запустите сканирование в постоянном периоде. Когда время интеграции увеличился и превысит порог, он решит “обнаружено”. Гистерезису требуется порог, или выход не будет стабильным при полу прикосновении. Время измерения для каждой точки равно времени интегрирования, так что это может быть сделано очень быстро.

Измеритель емкости измеряет время интеграции с разрешением один такт (100 нс) с аналоговым компаратором и функцией входной фиксации. Однако эта функция не доступна на всех портах ввода/вывода. Для реализации датчика касания на любом порту ввода/вывода, время интеграции измеряется опросом программным обеспечением, и разрешение становится 3 такта (375ns). В нормальном состоянии число отчета времени около 80, и это достаточно для сенсорных кнопок.

Заключение

В результате, я могу подтвердить, что емкостный сенсор может быть с легкостью реализован на обычном микроконтроллере. Пластиковая накладка может быть до 1 мм в толщину (в зависимости от диэлектрической проницаемости) для хорошей работы. Когда ATtiny2313 используется для модуля датчиков касания, она может иметь 15 точек прикосновения. Программа управления, используемая в этом проекте экспериментальна, и не проверялась в грязных условиях, таких как шумы и помехи, так что для реального использования может потребоваться любой анти-шумовой алгоритм.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U? МК AVR 8-бит

ATtiny2313-20PU

1 В блокнот
R1-R8 Резистор

1 МОм

8 В блокнот
R9-R16 Резистор R9-R16 8 В блокнот
C1 Электролитический конденсатор 100 мкФ 1 В блокнот
C2 Конденсатор 100 нФ 1 В блокнот
D1-D8 Светодиод 8

Емкостной датчик – это один из типов бесконтактных датчиков, принцип работы которого основан на изменении диэлектрической проницаемости среды между двух обкладок конденсатора. Одной обкладкой служит сенсорный датчик схемы в виде металлической пластины или провода, а второй – электропроводящее вещество, например, металл, вода или тело человека.

При разработке системы автоматического включения подачи воды в унитаз для биде возникла необходимость применения емкостного датчика присутствия и выключателя, обладающих высокой надежностью, устойчивостью к изменению внешней температуры, влажности, пыли и питающему напряжению. Хотелось также исключить необходимость прикосновения человека с органами управления системы. Предъявляемые требования могли обеспечить только схемы сенсорных датчиков, работающих на принципе изменения емкости. Готовой схемы удовлетворяющей необходимым требованиям не нашел, пришлось разработать самостоятельно.

Получился универсальный емкостной сенсорный датчик, который не требует настройки и реагирует на приближающиеся электропроводящие предметы, в том числе и человека, на расстояние до 5 см. Область применения предлагаемого сенсорного датчика не ограничена. Его можно применять, например, для включения освещения, систем охранной сигнализации, определения уровня воды и в многих других случаях.

Электрические принципиальные схемы

Для управления подачей воды в биде унитаза понадобилось два емкостных сенсорных датчика. Один датчик нужно было установить непосредственно на унитазе, он должен был выдавать сигнал логического нуля при присутствии человека, а при отсутствии сигнал логической единицы. Второй емкостной датчик должен был служить включателем воды и находиться в одном из двух логических состояний.

При поднесении к сенсору руки датчик должен был менять логическое состояние на выходе – из исходного единичного состояния переходить в состояние логического нуля, при повторном прикосновении руки из нулевого состояния переходить в состояние логической единицы. И так до бесконечности, пока на сенсорный включатель поступает разрешающий сигнал логического нуля с сенсорного датчика присутствия.

Схема емкостного сенсорного датчика

Основой схемы емкостного сенсорного датчика присутствия является задающий генератор прямоугольных импульсов, выполненный по классической схеме на двух логических элементах микросхемы D1.1 и D1.2. Частота генератора определяется номиналами элементов R1 и C1 и выбрана около 50 кГц. Значение частоты на работу емкостного датчика практически не влияет. Я менял частоту от 20 до 200 кГц и влияния на работу устройства визуально не заметил.

С 4 вывода микросхемы D1.2 сигнал прямоугольной формы через резистор R2 поступает на входы 8, 9 микросхемы D1.3 и через переменный резистор R3 на входы 12,13 D1.4. На вход микросхемы D1.3 сигнал поступает с небольшим изменением наклона фронта импульсов из-за установленного датчика, представляющего собой кусок провода или металлическую пластину. На входе D1.4, из за конденсатора С2, фронт изменяется на время, необходимое для его перезаряда. Благодаря наличию подстроечного резистора R3, есть возможность фронты импульса на входе D1.4, выставить равным фронту импульса на входе D1.3.

Если приблизить к антенне (сенсорному датчику) руку или металлический предмет, то емкость на входе микросхемы DD1.3 увеличится и фронт поступающего импульса задержатся во времени, относительно фронта импульса, поступающего на вход DD1.4. чтобы «уловить» эту задержку про инвертированные импульсы подаются на микросхему DD2.1, представляющую собой D триггер, работающий следующим образом. По положительному фронту импульса, поступающего на вход микросхемы C, на выход триггера передается сигнал, который в тот момент был на входе D. Следовательно, если сигнал на входе D не изменяется, поступающие импульсы на счетный вход C не оказывают влияния на уровень выходного сигнала. Это свойство D триггера и позволило сделать простой емкостной сенсорный датчик.

Когда емкость антенны, из за приближения к ней тела человека, на входе DD1.3 увеличивается, импульс задерживается и это фиксирует D триггер, изменяя свое выходное состояние. Светодиод HL1 служит для индикации наличия питающего напряжения, а HL2 для индикации приближения к сенсорному датчику.

Схема сенсорного включателя

Схему емкостного сенсорного датчика можно использовать и для работы сенсорного включателя, но с небольшой доработкой, так как ему необходимо не только реагировать на приближение тела человека, но и оставаться в установившемся состоянии после удаления руки. Для решения этой задачи пришлось к выходу сенсорного датчика добавить еще один D триггер, DD2.2, включенный по схеме делителя на два.

Схема емкостного датчика была немного доработана. Для исключения ложных срабатываний, так как человек может подносить и удалять руку медленно, из-за наличия помех датчик может выдавать на счетный вход D триггера несколько импульсов, нарушая необходимый алгоритм работы включателя. Поэтому была добавлена RC цепочка из элементов R4 и C5, которая на небольшое время блокировала возможность переключение D триггера.


Триггер DD2.2 работает так же, как и DD2.1, но сигнал на вход D подается не с других элементов, а с инверсного выхода DD2.2. В результате по положительному фронту импульса, приходящего на вход С сигнал на входе D изменяется на противоположный. Например, если в исходном состоянии на выводе 13 был логический ноль, то поднеся руку к сенсору один раз, триггер переключится и на выводе 13 установится логическая единица. При следующем воздействии на сенсор, на выводе 13 опять установится логический ноль.

Для блокировки включателя при отсутствии человека на унитазе, с сенсора на вход R (установка нуля на выходе триггера вне зависимости от сигналов на всех остальных его входах) микросхемы DD2.2 подается логическая единица. На выходе емкостного выключателя устанавливается логический ноль, который по жгуту подается на базу ключевого транзистора включения электромагнитного клапана в Блоке питания и коммутации.

Резистор R6, при отсутствии блокирующего сигнала с емкостного датчика в случае его отказа или обрыва управляющего провода, блокирует триггер по входу R, тем самым исключает возможность самопроизвольной подачи воды в биде. Конденсатор С6 защищает вход R от помех. Светодиод HL3 служит для индикации подачи воды в биде.

Конструкция и детали емкостных сенсорных датчиков

Когда я начал разрабатывать сенсорную систему подачи воды в биде, то наиболее трудной задачей мне казалась разработка емкостного датчика присутствия. Обусловлено это было рядом ограничений по установке и эксплуатации. Не хотелось, чтобы датчик был механически связан с крышкой унитаза, так как ее периодически надо снимать для мойки, и не мешал при санитарной обработке самого унитаза. Поэтому и выбрал в качестве реагирующего элемента емкость.

Сенсорного датчика присутствия

По выше опубликованной схеме сделал опытный образец. Детали емкостного датчика собраны на печатной плате, плата размещена в пластмассовой коробке и закрывается крышкой. Для подключения антенны в корпусе установлен одноштырьковый разъем, для подачи питающего напряжения и сигнала установлен четырех контактный разъем РШ2Н. Соединена печатная плата с разъемами пайкой медными проводниками в фторопластовой изоляции.

Сенсорный емкостной датчик собран на двух микросхемах КР561 серии, ЛЕ5 и ТМ2. Вместо микросхемы КР561ЛЕ5 можно применить КР561ЛА7. Подойдут и микросхемы 176 серии, импортные аналоги. Резисторы, конденсаторы и светодиоды подойдут любого типа. Конденсатор С2, для стабильной работы емкостного датчика при эксплуатации в условиях больших колебаниях температуры окружающей среды нужно брать с малым ТКЕ.

Установлен датчик под площадкой унитаза, на которой установлен сливной бачек в месте, куда в случае протечки из бачка вода попасть не сможет. К унитазу корпус датчика приклеен с помощью двустороннего скотча.


Антенный датчик емкостного сенсора представляет собой отрезок медного многожильного провода длинной 35 см в изоляции из фторопласта, приклеенного с помощью прозрачного скотча к внешней стенке чаши унитаза на сантиметр ниже плоскости очка. На фотографии сенсор хорошо виден.

Для настойки чувствительности сенсорного датчика необходимо после его установки на унитаз, изменяя сопротивление подстроечного резистора R3 добиться, чтобы светодиод HL2 погас. Далее положить руку на крышку унитаза над местом нахождения сенсора, светодиод HL2 должен загораться, если руку убрать, потухнуть. Так как бедро человека по массе больше руки, то при эксплуатации сенсорный датчик, после такой настройки, будет работать гарантировано.

Конструкция и детали емкостного сенсорного включателя

Схема емкостного сенсорного включателя имеет больше деталей и для их размещения понадобился корпус большего размера, да и по эстетическим соображениям, внешний вид корпуса, в котором был размещен сенсорный датчик присутствия не очень подходил для установки на видном месте. Внимание на себя обратила настенная розетка rj-11 для подключения телефона. По размерам она подходила и имела хороший внешний вид. Удалив из розетки все лишнее, разместил в ней печатную плату емкостного сенсорного выключателя.


Для закрепления печатной платы в основании корпуса была установлена короткая стойка и к ней с помощью винта прикручена печатная плата с деталями сенсорного выключателя.


Датчик емкостного сенсора сделал, приклеив ко дну крышки розетки клеем «Момент» лист латуни, предварительно вырезав в них окошко для светодиодов. При закрывании крышки, пружина (взята от кремневой зажигалки) соприкасается с латунным листом и таким образом обеспечивается электрический контакт между схемой и сенсором.


Крепится емкостной сенсорный включатель на стену с помощью одного самореза. Для этого в корпусе предусмотрено отверстие. Далее устанавливается плата, разъем и закрепляется защелками крышка.


Настройка емкостного выключателя практически не отличается от настройки сенсорного датчика присутствия, описанного выше. Для настойки нужно подать питающее напряжение и резистором отрегулировать, чтобы светодиод HL2 загорался, когда к датчику подносится рука, и гас, при ее удалении. Далее нужно активировать сенсорный датчик и поднести и удалить руку к сенсору выключателя. Должен мигнуть светодиод HL2 и загореться красный светодиод HL3. При удалении руки красный светодиод должен продолжать светиться. При повторном поднесении руки или удалении тела от датчика, светодиод HL3 должен погаснуть, то есть выключить подачу воды в биде.

Универсальная печатная плата

Представленные выше емкостные датчики собраны на печатных платах, несколько отличающихся от печатной платы приведенной ниже на фотографии. Это связано с объединением обеих печатных плат в одну универсальную. Если собирать сенсорный включатель, то необходимо только перерезать дорожку под номером 2. Если собирать сенсорный датчик присутствия, то удаляется дорожка номер 1 и не все элементы устанавливаются.


Не устанавливаются элементы, необходимые для работы сенсорного включателя, но мешающие работе датчика присутствия, R4, С5, R6, С6, HL2 и R4. Вместо R4 и С6 запаиваются проволочные перемычки. Цепочку R4, С5 можно оставить. Она не будет влиять на работу.

Ниже приведен рисунок печатной платы для накатки при использовании термического метода нанесения на фольгу дорожек.

Достаточно распечатать рисунок на глянцевой бумаге или кальке и шаблон готов для изготовления печатной платы.

Безотказная работа емкостных датчиков для сенсорной системы управления подачи воды в биде подтверждена на практике в течении трех лет постоянной эксплуатации. Сбоев в работе не зафиксировано.

Однако хочу заметить, что схема чувствительна к мощным импульсным помехам. Мне приходило письмо о помощи в настройке. Оказалось, что во время отладки схемы рядом находился паяльник с тиристорным регулятором температуры. После выключения паяльника схема заработала.

Еще был такой случай. Емкостной датчик был установлен в светильник, который подключался в одну розетку с холодильником. При его включении свет включался и при повторном выключался. Вопрос был решен подключением светильника в другую розетку.

Приходило письмо об успешном применении описанной схемы емкостного датчика для регулировки уровня воды в накопительном баке из пластика. В нижней и верхней части было приклеено силиконом по датчику, которые управляли включением и выключением электрического насоса.

Cтраница 1


Датчики касания используются просто для обнаружения факта контакта с объектом. Датчиком касания может служить простейший микровыключатель. Датчики механических напряжений используются для измерения величины силы, возникающей в месте контакта. Обычно в качестве сенсоров, измеряющих усилия, применяют тензодатчики.  

В токарных станках датчики касания применяются для контроля размеров заготовки, обработанной детали и режущей кромки инструмента. Вопросы диагностирования роботов (применяются антропоморфные и портальные роботы, встроенные в токарный станок, и внешние, работающие в цилиндрической системе координат) рассмотрены в гл.  


Для измерения износа прямыми методами применяют датчики касания, которые регистрируют либо размерный износ, либо, при их перемещении, износ по задней поверхности. Конструкция датчика приведена на рис. 4.8, а. Корпус 4 закрепляется на подвижном узле / станка. В обмотке электромагнита создается переменное магнитное поле, вызывающее колебания наконечника. При касании наконечником блока его колебания нарушаются, что регистрируется электронной системой 8 с усилителем 7, а координаты соответствуют измеряемому размеру. Датчик защищают от стружки. Его применяют на станках с ЧПУ и в ГПС не только для измерения износа, но и для определения фактических координат вершины лезвия инструмента с целью автоматической корректировки управляющих программ.  


Принцип работы проволочного тактильного датчика (датчика касания) показан на рис. 5.26. Робот автоматически по координатам двух базовых точек А и В, определяемых тактильным датчиком на угловом соединении, по скорректированной программе отыскивает требуемое место начала сварки (точку С), если отклонение стыкового соединения от исходного положения вызвано его параллельным смещением. В случае, если смещение стыкового соединения от исходного положения вызвано его параллельным смещением с разворотом относительно точки сварки, то для корректировки программы позиционирования роботом горелки в начальную точку сварки необходимо определить датчиком координаты как минимум трех базовых точек на элементах соединения.  


Нулевые головки обычно конструируются на базе датчиков касания, в качестве которых широко используются электро -, радио - и виброконтактные датчики. Эти головки, называемые еще головками касания, делятся на два класса: с изменяющимся и фиксированным нулевым положением измерительного наконечника.  

Рассмотрим особенности укзззнных выше устройств при использовании их в качестве датчика касания в специфических условиях цеха ртутного электролиза.  


Очувствление схватов и других исполнительных органов манипулятора выполняют датчики захватного усилия 6 и датчики касания 7 при взаимодействии ПР с внешней средой.  

Сварочная часть ПР включает: сварочный выпрямитель; сварочную горелку; кронштейны крепления; механизм подачи сварочной проволоки; датчик касания заготовки для сварки; устройство управлением датчика касания; необходимое количество кабелей; баллон с инертным газом, редуктор с расходомером и подогревателем газа; шланги и рукава.  

Датчики определения расстояния и касания

Ультразвуковой датчик

Ультразвуковой сенсор - один из двух сенсоров, заменяющих роботу зрение. Ультразвуковой сенсор позволяет роботу видеть и обнаруживать объекты. Его также можно использовать для того, чтобы робот мог обойти препятствия, оценить и измерить расстояние, а также зафиксировать движение объекта.

Показания ультразвукового датчика измеряется в сантиметрах и дюймах. Он может измерять расстояние от 0 до 255 сантиметров с точностью +/-3 см. Ультразвуковой сенсор работает по тому же принципу, что и локатор летучей мыши: он измеряет расстояние путем расчета времени, которое потребовалось звуковой волне для возвращения после отражения от объекта, подобно эху.

Крупные объекты с твердыми поверхностями определяются лучше всего. Объекты из мягких материалов (тканей) или округлые (мяч), а также слишком тонкие, маленькие и т.п., могут создавать для сенсора определенные затруднения при работе.

Следует помнить, что два и более ультразвуковых датчика, работающих в одном помещении, могут интерферировать и снижать точность результатов

К примерам применения ультразвуковых датчиков расстояния можно отнести использования в машинах для предупреждающих сигналов водителю или автоматический контроль по сигналам от датчиков, идентифицирующих опасные ситуации, объединяемых в сетевые связи, с человеко-машинным интерфейсом human - machine interface (HMI).

Рис.1

В основе ультразвукового принципа обнаружения препятствий лежит принцип эха. В состав датчика входят два преобразователя: один преобразователь излучает ультразвуковые волны, а отраженные волны обнаруживаются другим, одним или более, преобразователем. Тот же самый преобразователь, который передает ультразвуковые волны, может быть использован и для обнаружения отраженной волны. Основное назначение датчиков -- обнаруживать присутствие или отсутствие препятствия, но данный принцип (time of flight) позволяет также по времени возвращения эха при известной скорости распространения звука рассчитывать расстояние до объекта.

Ультразвук представляет собой не что иное, как вибрацию на частоте > 20 кГц. Большинство коммерчески доступных преобразователей работает на частотах в диапазоне 40-250 кГц.

Вариации акустических параметров датчиков, окружающая среда и различные цели значительно влияют на работу устройств .

В ультразвуковом датчике преобразователь генерирует короткий импульс, направляемый на цель и возвращающийся обратно

Важно, что скорость звука является функцией состава и температуры среды (воздуха) и влияет на точность и разрешение датчика. Точность измерений расстояния прямо пропорциональна точности значения скорости звука, используемого в вычислениях, и варьируется в реальных условиях от 345 м/c при комнатной температуре до более чем 380 м/c при температуре порядка 70 °C. Длина звуковой волны

является функцией скорости ультразвука c и взаимосвязана с его частотой ѓ, поэтому эти параметры (длина волны и частота) также влияют на разрешение и точность, а также минимальный размер целей и диапазон расстояний, измеряемых датчиком.

Затухание звука является функцией частоты и влажности, что влияет на максимальное расстояние, детектируемое датчиком. Длинные волны (с меньшей частотой) характеризуются меньшим затуханием. На частотах свыше 125 кГц максимальное затухание случается при относительной влажности 100%, на частотах 40 кГц -- уже при влажности в 50%. Так как датчик должен работать при любых значениях влажности, в расчетах используется максимальное затухание для каждой частоты.

Фоновые шумы являются функцией частоты и уменьшаются с ее увеличением, также оказывая влияние на максимально детектируемое расстояние и минимальный размер цели. Разрешение и точность на высоких частотах выше, тогда как диапазон выше с более длинными волнами.

Датчик касания

Датчик касания это кнопка, у которой возможно два состояния - нажато и отжато. Программно датчик распознает еще одно состояние Касание.

Увидеть на экране дисплея реакцию датчика касания можно в режиме Просмотра. При не нажатой кнопке датчика на дисплее появляется 0, а при нажатой - 1.

Добавив в конструкцию робота датчик касания (например в виде бампера) вы можете сделать так, чтобы робот изменил поведение при активации датчика.

Датчик касания является одним из органов осязания для роботов, что делает его необходимым там где требуется реакция робота на объекты.

Датчик касания позволяет роботу осуществлять прикосновения.

Сенсор нажатия может определить момент нажатия на него чего-либо, а так же момент освобождения.

Датчик касания представлен на рис.2.

Рис.2 Датчик касания

Используемые образцовые приборы и дополнительное оборудование

Микрометр

Для замера холостого хода у датчика касания необходим микрометр (или Индикатор часового типа) ИЧ-25 который будет измерять расстояние прошедшее датчиком до момента срабатывания.

ИЧ-25 предназначен для измерения линейных размеров абсолютным и относительным методами, определения величины отклонений от заданной геометрической формы и взаимного расположения поверхностей.

На рис.3 представлены несколько видов индикаторов.


Рис.3.

Параметры микрометра ИЧ 25:

Диапазон измерений 0-25 мм.

Цена деления 0.01 мм.

Габариты 159х85х51 мм.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари