Подпишись и читай
самые интересные
статьи первым!

Расчет мощности котла для отопления и горячего водоснабжения. Термические и гидравлические характеристики пто

Расчет пластинчатого теплообменника – это процесс технических расчетов, предназначенный для поиска желаемого решения в теплоснабжении и его осуществления.

Данные теплообменника, которые нужны для технического расчета:

  • тип среды (пример вода-вода, пар-вода, масло-вода и др.)
  • массовый расход среды (т / ч) - если не известна тепловая нагрузка
  • температура среды на входе в теплообменник °С (по горячей и холодной стороне)
  • температура среды на выходе из теплообменника °С (по горячей и холодной стороне)

Для расчета данных также понадобятся:

Подробнее об исходных данных для расчета

  1. Температура на входе и выходе обоих контуров.
    Для примера рассмотри котел, в котором максимальное значение входной температуры – 55°С, а LMTD равен 10 градусам. Так, чем больше эта разница, тем дешевле и меньше в размерах теплообменник.
  2. Максимально допустимая рабочая температура, давление среды.
    Чем хуже параметры, тем ниже цена . Параметры и стоимость оборудования определяют данные проекта.
  3. Массовый расход (m) рабочей среды в обоих контурах (кг/с, кг/ч).
    Проще говоря – это пропускная способность оборудования. Очень часто может быть указан всего один параметр – объем расходов воды, который предусмотрен отдельной надписью на гидравлическом насосе. Измеряют его в кубических метрах в час, или в литрах в минуту.
    Умножив объем пропускной способности на плотность, можно высчитать общий массовый расход. Обычно плотность рабочей среды изменяется в зависимости от температуры воды. Показатель для холодной воды из центральной системы равен 0.99913.
  4. Тепловая мощность (Р, кВт).
    Тепловая нагрузка – это отданное оборудованием количество тепла. Определить тепловую нагрузку можно при помощи формулы (если нам известны все параметры, что были выше):
    P = m * cp *δt , где m – расход среды, cp – удельная теплоемкость (для воды, нагретой до 20 градусов, равна 4,182 кДж/(кг *°C)), δt – температурная разность на входе и выходе одного контура (t1 - t2) .
  5. Дополнительные характеристики.
    • для выбора материала пластин стоит узнать вязкость и вид рабочей среды;
    • средний температурный напор LMTD (рассчитывается по формуле ΔT1 - ΔT2/(In ΔT1/ ΔT2) , где ΔT1 = T1 (температура на входе горячего контура) - T4(выход горячего контура)
      и ΔT2 = T2 (вход холодного контура) - T3 (выход холодного контура);
    • уровень загрязненности среды (R). Его редко учитывают, так как данный параметр нужен только в определенных случаях. К примеру: система центрального теплоснабжения не требует данный параметр.

Виды технического расчета теплообменного оборудования

Тепловой расчет

Данные теплоносителей при техническом расчете оборудования должны быть обязательно известны. Среди этих данных должны быть: физико-химические свойства, расход и температуры (начальная и конечная). Если данные одного из параметров не известны, то его определяют с помощью теплового расчета.

Тепловой расчет предназначен для определения основных характеристик устройства, среди которых: расход теплоносителя, коэффициент теплоотдачи, тепловая нагрузка, средняя разница температур. Находят все эти параметры с помощью теплового баланса.

Давайте рассмотрим пример общего расчета.

В аппарате теплообменника тепловая энергия циркулирует от одного потока к другому. Это происходит в процессе нагрева или охлаждения.

Q = Q г = Q х

Q – количество теплоты передаваемое или принимаемое теплоносителем [Вт],

Q г = G г c г ·(t гн – t гк) и Q х = G х c х ·(t хк – t хн)

G г,х – расход горячего и холодного теплоносителей [кг/ч];
с г,х – теплоемкости горячего и холодного теплоносителей [Дж/кг·град];
t г,х н
t г,х к – конечная температура горячего и холодного теплоносителей [°C];

При этом, учитывайте, что количество входящей и выходящей теплоты во много зависит от состояния теплоносителя. Если в процессе работы состояние стабильно, то расчет производим по формуле выше. Если хоть один теплоноситель меняет свое агрегатное состояние, то расчет входящего и выходящего тепла стоит производить по формуле ниже:

Q = Gc п ·(t п – t нас)+ Gr + Gc к ·(t нас – t к)

r
с п,к – удельные теплоемкости пара и конденсата [Дж/кг·град];
t к – температура конденсата на выходе из аппарата [°C].

Первый и третий члены стоит исключать из правой части формулы, если конденсат не охлаждается. Исключив эти параметры, формула будет иметь следующее выражение:

Q гор = Q конд = Gr

Благодаря данной формуле определяем расход теплоносителя:

G гор = Q/c гор (t гн – t гк ) или G хол = Q/c хол (t хк – t хн )

Формула для расхода, если нагрев идет паром:

G пара = Q/ Gr

G – расход соответствующего теплоносителя [кг/ч];
Q – количество теплоты [Вт];
с – удельная теплоемкость теплоносителей [Дж/кг·град];
r – теплота конденсации [Дж/кг];
t г,х н – начальная температура горячего и холодного теплоносителей [°C];
t г,х к – конечная температура горячего и холодного теплоносителей [°C].

Основная сила теплообмена – разница между его составляющими. Это связано с тем, что проходя теплоносители, температура потока меняется, в связи с этим меняются и показатели разницы температур, поэтому для подсчетов стоит использовать среднестатистическое значение. Разницу температур в обоих направлениях движения можно высчитать с помощью среднелогарифмического:

∆t ср = (∆t б - ∆t м) / ln (∆t б /∆t м) где ∆t б, ∆t м – большая и меньшая средняя разность температур теплоносителей на входе и выходе из аппарата. Определение при перекрестном и смешанном токе теплоносителей происходит по той же формуле с добавлением поправочного коэффициента
∆t ср = ∆t ср ·f попр . Коэффициент теплопередачи может быть определен следующим образом:

1/k = 1/α 1 + δ ст /λ ст + 1/α 2 + R заг

в уравнении:

δ ст – толщина стенки [мм];
λ ст – коэффициент теплопроводности материала стенки [Вт/м·град];
α 1,2 – коэффициенты теплоотдачи внутренней и внешней стороны стенки [Вт/м 2 ·град];
R заг – коэффициент загрязнения стенки.

Конструктивный расчет

В данном виде расчета, существуют два подвида: расчет подробный и ориентировочный.

Расчет ориентировочный предназначен для определения поверхности теплообменника, размера его проходного сечения, поиска приближенных коэффициентов значения теплообмена. Последняя задача выполняется с помощью справочных материалов.

Ориентировочный расчет поверхности теплообмена производят благодаря следующим формулам:

F = Q/ k·∆t ср [м 2 ]

Размер проходного сечения теплоносителей определяют из формулы:

S = G/(w·ρ) [м 2 ]

G
(w·ρ) – массовая скорость потока теплоносителя [кг/ м 2 ·с]. Для расчета скорость потока принимают исходя из типа теплоносителей:

После проведения конструктивного ориентировочного расчета выбирают определенные теплообменники, которые полностью подходят для требуемых поверхностей. Количество теплообменников может достигать как одной, так и нескольких единиц. После на выбранном оборудовании проводят подробный расчет, с заданными условиями.

После проведения конструктивных расчетов будут определенны дополнительные показатели для каждого вида теплообменников.

Если используется пластинчатый теплообменник, то нужно определить значение греющих ходов и значение среды, которую нагревают. Для этого мы должны применить следующую формулу:

X гр /X нагр = (G гр /G нагр) 0,636 · (∆P гр /∆P нагр) 0,364 · (1000 – t нагр ср / 1000 – t гр ср)

G гр, нагр – расход теплоносителей [кг/ч];
∆P гр, нагр – перепад давления теплоносителей [кПа];
t гр, нагр ср средняя температура теплоносителей [°C];

Если соотношение Хгр/Хнагр будет меньше двух, то выбираем компоновку симметрическую, если больше двух – несимметричную.

Ниже представлена формула, по которой высчитываем количество каналов среды:

m нагр = G нагр / w опт ·f мк ·ρ·3600

G нагр – расход теплоносителя [кг/ч];
w опт оптимальная скорость потока теплоносителя [м/с];
f к – живое сечение одного межпластинчатого канала (известно из характеристик выбранных пластин);

Гидравлический расчет

Технологические потоки, проходя через теплообменное оборудование, теряют напор или давление потоков. Это связано с тем, что каждый аппарат имеет собственное гидравлическое сопротивление.

Формула, используемая для нахождения гидравлического сопротивления, которое создают аппараты теплообмена:

∆Р п = (λ·(l /d ) + ∑ζ) · (ρw 2 /2)

∆p п – потери давления [Па];
λ – коэффициент трения;
l – длина трубы [м];
d – диаметр трубы [м];
∑ζ – сумма коэффициентов местных сопротивлений;
ρ – плотность [кг/м 3 ];
w – скорость потока [м/с].

Как проверить правильность расчета пластинчатого теплообменника?

При расчете данного теплообменника обязательно нужно указать следующие параметры:

  • для каких условий предназначен теплообменник, и какие показатели он будет выдавать.
  • все конструктивные особенности: количество и компоновка пластин, используемые материалы, типоразмер рамы, тип присоединений, расчетное давление и т.д.
  • габариты, вес, внутренний объем.

- Габариты и типы присоединений

- Расчетные данные

Они должны подходить под все условия, в которых будет подключаться, и работать наш теплообменник.

- Материалы пластин и уплотнений

в первую очередь должны соответствовать всем условия эксплуатации. Для примера: к агрессивной среде не допускаются пластины из простой нержавеющей стали, или, если разбирать совсем противоположную среду, то ставить пластины из титана, для простой системы отопления не нужно, это не будет иметь никакого смысла. Более подробное описание материалов и их соответствия определенной среде, вы можете посмотреть здесь.

- Запас площади на загрязнение

Не допускаются слишком большие размеры (не выше 50%). Если параметр больше – теплообменник выбран некорректно.

Пример расчета пластинчатого теплообменника

Исходные данные:

  • Массовый расход 65 т/час
  • Среда: вода
  • Температуры: 95/70 град С
  • Переведем данные в привычные величины:

    Q = 2,5 Гкал/час = 2 500 000 ккал/час

    G = 65 000 кг/час

    Давайте проведем расчет по нагрузке, чтобы узнать массовый расход, так как данные тепловой нагрузки являются самыми точными, ведь покупатель или клиент не способен точно подсчитать массовый расход.

    Выходит, что представленные данные являются неверными.

    Данную форму также можно использовать, когда мы не знаем каких-либо данных. Она подойдет если:

    • отсутствует массовый расход;
    • отсутствуют данные тепловой нагрузки;
    • неизвестна температура внешнего контура.

    К примеру:


    Вот так мы с вами нашли неизвестный нам ранее массовый расход среды холодного контура, имея лишь параметры горячего.

    Как рассчитать пластинчатый теплообменник (видео)

    Прежде чем купить теплообменник заказчики сравнивают предложения разных поставщиков и производителей, рассылая им исходные данные. Компания «Астера», опытный , представляет шесть характеристик, которые влияют на конечную стоимость товара и на которые нужно обратить внимание в первую очередь, чтобы желание сэкономить не обернулось двойными тратами.

    Стоимость теплообменников складывается из инженерных расходов и коммерческой составляющей. Данная статья раскрывает первый аспект.

    • Толщина теплообменных пластин и материал их изготовления

    Толщина пластины – это первое, на что обращаешь внимание при выборе теплообменника. Чем она толще, тем выше стоимость оборудования. Связано это с двумя факторами:

    • Больше масса металла для выпуска пластин;
    • Больше пластин для качественной теплопередачи через толщу стенки и достижения требуемой мощности.

    Средняя толщина пластины – 0,5 мм. Теплообменники большого типоразмера с ДУ от 150 и требующие высокого рабочего давления оснащаются пластинами 0,6 мм. При давлении 10 кгс/см² и ДУ до 150 допустима толщина 0,4 мм. Чем тоньше пластины, тем меньше ресурс теплообменного оборудования.

    В качестве материала для пластины чаще используется нержавеющая сталь марки AISI316. Тем не менее некоторые производители заменяют его сортом AISI304. Он стоит дешевле, в нем меньше никеля и молибдена, значит, материал больше подвержен коррозии. Если теплообменник эксплуатируется в идеальных с точки зрения среды условиях, то это допустимо. Но когда дело касается системы горячего водоснабжения (а там используется хлор), то есть риск, что оборудование прослужит недолго. Чтобы не попасть впросак, рекомендуется внимательно изучить и посмотреть, из какой стали выполнены пластины.

    • Рабочее давление

    От рабочего давления зависят тип, габариты и цена на теплообменник. Чем оно ниже, тем дешевле оборудование. Поэтому нужно заранее определиться, какой параметр требуется. Минимальное рабочее давление составляет 6 кгс/см². Соответственно такой аппарат наиболее доступный по цене, потому что в нем использованы тонкие плиты и пластины.

    • Коэффициент передачи тепловой энергии

    Для расчета коэффициента теплопередачи используется несколько данных:

    • Мощность теплообменника;
    • Температурная дельта;
    • Величины запаса поверхности и расхода энергии;
    • Диаметр присоединения;
    • Скорость перемещения жидкости и т.д.

    Этот показатель рассчитывается по формуле. Чем он выше, тем лучше производительность теплообменника. При увеличении скорости перемещения жидкости в каналах повышается теплообмен. Скорость можно увеличить, сократив количество каналов, то есть пластин.

    Минусом высокой скорости течения жидкости является более быстрое отложение накипи на стенках. Поэтому тепловое оборудование будет стоить дешевле, но возрастет стоимость эксплуатации за счет забивания каналов солями магния и кальция. Время от времени будет требоваться разборная чистка.

    Эффективен, но его коэффициент теплопередачи в реальности не превышает 7000 Вт/м.кв 2 К. Поэтому если производитель предлагает оборудование с коэффициентом 10000 Вт/м.кв 2 К, то это должно насторожить.

    • Запас поверхности для теплообмена

    Хороший теплообменник должен иметь 10-15% запаса теплообменной поверхности. Если производитель поставил себе цель удешевить продукцию, то данный параметр будет приближаться к нулю. По мнению экспертов в области теплообменного оборудования, нулевое значение является обманом покупателя, потому что при погрешности таких показателей, как расчет нагрузки, недогрев до оптимальной температуры теплоносителя, аппарат может просто-напросто не работать. Даже загрязнение поверхности будет отрицательно сказываться на его работоспособности.

    • Потеря давления

    Δ р представляет собой величину потери давления, или напора. Она измеряется в м.в.с. либо в Па. Заказчик указывает необходимый показатель в опросном листе.

    Если процесс эксплуатации требует минимального снижения или потери давления в процессе работы, то теплообменник должен быть оснащен большим количеством пластин. Если изменение напора не имеет большого значения, то можно ограничиться более компактным, значит, более дешевым теплообменным оборудованием.

    Как влияет количество пластин на потерю давления? Этому есть довольно простое объяснение. Чем больше пластин, тем больше каналов между пластинами. Для прохождения определенному объему жидкости оказывается меньше сопротивления, поэтому и потеря давления незначительна.

    При покупке оборудования нужно быть внимательным и сравнивать показатель потери давления с данными, указанными в опросном листе. В противном случае некоторые недобросовестные производители могут указать немного завышенные значения и удешевить для покупателя оборудование. Но обычно высокая потеря давления весьма нежелательна.

    • Условный диаметр

    Этот показатель иногда называют диаметром присоединения. Его нужно определить по формуле. Он зависит от того, какие параметры заданы потенциальным заказчиком. Методом расчета выявляется, требуется ли однозначный показатель ДУ или в качестве варианта есть возможность использовать и второй размер, который отличается условным диаметром. В последнем случае если допустимо меньшее сечение, на нем и останавливаются. Так, теплообменник с ДУ65 дешевле оборудования с ДУ100. Это связано с тем, что чем больше сечение, тем больше и пластина теплового оборудования.

    Нужно учитывать следующий момент: когда сужается сечение в трубах, увеличивается скорость течения жидкости. В результате будет дополнительно падать давление. Если предстоит долгая эксплуатация теплового оборудования, то пластина, примыкающая к проходному сечению, может разрушаться.

    Вывод

    Для грамотного сравнения предлагаемых вариантов от заводов по выпуску теплообменников рекомендуем всегда иметь в виду соответствие оборудования поставленным перед ним целям. А именно:

    • Сталь и толщина пластины: лучше сталь сорта AISI316 с толщиной не меньше полумиллиметра.
    • Давление в пластинах должно отвечать требуемым характеристикам.
    • Чем ближе коэффициент теплопередачи к показателю 7000 Вт/м.кв 2 К, тем лучше.
    • Оптимальный запас поверхности – 10-15%.
    • Параметр потери давления зависит от условий эксплуатации и определяется заказчиком.
    • Диаметр присоединения зависит от поставленных задач, но нужно иметь в виду, что чем меньше ДУ, тем больше будет теряться давление и раньше будут изнашиваться пластины.

    Компания «Астера» надеется, что статья будет вам полезной и на основании указанных шести характеристик вы сделаете верный выбор теплообменного оборудования.

    Теплообменный аппарат - это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

    Расчет может нести в себе проектный (конструкторский) или проверочный характер.

    Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

    Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

    Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации - проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

    Основы теплового расчета теплообменных аппаратов

    Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.

    Имеет следующий вид:

    Q = F‧k‧Δt, где:

    • Q - размер теплового потока, Вт;
    • F - площадь рабочей поверхности, м2;
    • k - коэффициент передачи тепла;
    • Δt - разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором .

    Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:

    Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:

    Q = G 1 c p 1 (t 1 вх -t 1 вых) = G 2 c p 2 (t 2 вых -t 2 вх), где:

    • G 1 и G 2 - расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
    • c p 1 и c p 2 - удельные теплоемкости (принимаются по нормативным данным), кДж/кг‧ ºС.

    В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит - с другой. Эти величины (t 1 вх;t 1 вых и t 2 вх;t 2 вых) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.

    Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи k на рабочей поверхности.

    Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:

    Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).

    Пример расчета

    Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.

    Исходные данные:

    • Температура греющего носителя при входе t 1 вх = 14 ºС;
    • Температура греющего носителя при выходе t 1 вых = 9 ºС;
    • Температура нагреваемого носителя при входе t 2 вх = 8 ºС;
    • Температура нагреваемого носителя при выходе t 2 вых = 12 ºС;
    • Расход массы греющего носителя G 1 = 14000 кг/ч;
    • Расход массы нагреваемого носителя G 2 = 17500 кг/ч;
    • Нормативное значение удельной теплоемкости с р =4,2 кДж/кг‧ ºС;
    • Коэффициент теплопередачи k = 6,3 кВт/м 2 .

    1) Определим производительность теплообменного аппарата с помощью уравнения теплового баланса:

    Q вх = 14000‧4,2‧(14 - 9) = 294000 кДж/ч

    Q вых = 17500‧4,2‧(12 - 8) = 294000 кДж/ч

    Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.

    2) Определим значение напора t. Он определяется по формуле:

    3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:

    F = 81,7/6,3‧1,4 = 9,26 м2.

    Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:

    • особенности конструкции и работы аппарата;
    • потери энергии при работе устройства;
    • коэффициенты теплоотдачи тепловых носителей;
    • различия в работе на разных участках поверхности (дифференциальный характер) и т.д.

    Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.

    Выводы

    Что мы получаем в результате расчета и в чем его конкретное применение?

    Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.

    Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.

    В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата - основные взаимосвязанные показатели качества работы теплообменной машины. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.

    В следующей статье мы рассмотрим назначение и особенности , поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.

    Купленов Н.И. к.т.н., Мотовицкий С.В. аспирант
    Тульский государственный университет

    Благодаря своим достоинствам разборные пластинчатые водонагреватели (ПВН) активно вытесняют из отечественных систем теплоснабжения традиционные трубчатые теплообменники. Обеспечивая в несколько раз более высокий начальный коэффициент теплопередачи по сравнению с трубчатыми, эти теплообменники, однако гораздо «чувствительнее» к влиянию отложений накипи, термическое сопротивление которой более резко уменьшает теплопередачу .

    При высоком содержании накипеобразующих солей и продуктов коррозии в воде, характерном для большинства регионов РФ, расчетный режим работы ПВН быстро нарушается, уменьшение коэффициента теплопередачи компенсируется повышением температуры греющего теплоносителя или его расхода. На практике это не всегда возможно, поэтому в подавляющем большинстве случаев необходима промывка.

    Для компенсации постепенного уменьшения коэффициента теплопередачи необходим запас поверхности теплообмена ∆F.

    Отечественная практика заказов ПВН по опросным листам заимствована из зарубежной без учета собственного опыта т.е. запас теплообменной поверхности или отсутствует или составляет 2-10% от расчетной чистой поверхности F 0 .

    Из опыта эксплуатации скоростных водонагревателей известно, что вследствие низкого качества противонакипной обработки водопроводной воды коэффициент теплопередачи уменьшается достаточно быстро. Так, по данным при среднем качестве воды в ЦТП г. Москвы за 4 месяца эксплуатации он уменьшился на 45-50%. Из этого следует, что при неизменных начальных температурах теплоносителей требуемая температура нагрева воды может быть обеспечена лишь при 100% - ном запасе по сравнению с расчетной величиной теплообменной поверхности.

    Недостаточная величина запаса ∆F обусловит короткий межпромывочный период и необходимость частой промывки водонагревателя; завышенная величина ∆F уменьшит количество промывок, но одновременно возрастут первоначальные затраты на ПВН.

    Известно, что стоимость пластинчатых водонагревателей составляет основную долю затрат на оборудование теплового пункта, в то же время и затраты на химическую промывку, как показывает опыт , тоже значительны. Поэтому экономически оправдано определение поверхности теплообмена с учетом фактической интенсивности накипеобразования и необходимости ее регулярной промывки.

    Основа методики такого определения заключается в обеспечении минимума годовых затрат на амортизацию запаса поверхности теплообмена ∆F и затрат на регулярную промывку водонагревателя; это условие выполняется равенством затрат

    где - коэффициент амортизации ПВН, %/100; , - стоимость 1м 2 теплообменной поверхности и затрат на промывку, руб./м 2 ; - расчетная поверхность теплообмена при отсутствии накипи, м 2 ; , - продолжительность межпромывочного периода и годовой эксплуатации ПВН, сут.

    При заданных начальных температурах и расходах теплоносителей, требуемый коэффициент эффективности нагрева воды при уменьшении коэффициента теплопередачи от образующейся накипи будет обеспечиваться выполнением условия

    (2)

    где , - коэффициенты теплопередачи при отсутствии накипи и при ее появлении.

    Термическое сопротивление теплопередаче

    (3)

    где , - термическое сопротивление теплопередачи при чистой поверхности и термическое сопротивление слоя накипи.

    После подстановки (3) в уравнение (2) получим

    (5)

    Подстановкой (5) в уравнение (1а) получим

    Интенсивность накипеобразования определяется качеством воды, температурным и гидравлическим режимами работы ПВН. В конце межпромывочного периода сопротивление слоя накипи толщиной в соответствии с принятой математической моделью может быть рассчитано по уравнению:

    где , - скорости образования и смыва накипи; - коэффициент теплопроводности накипи.

    По литературным данным и выполненным исследованиям

    где , - экспериментальные константы, - концентрация накипеобразующих солей в воде, кг/м 3 ; - касательное напряжение на поверхности накипи, Па; - температура воды, ˚С.

    Термическое сопротивление удобно выразить в виде

    где - соотношение скоростей нагреваемого «холодного» и греющего теплоносителей; - скорость холодного теплоносителя; - комплекс величин, характеризующих теплофизические характеристики теплоносителя и конструктивные особенности пластины ПВН; - термическое сопротивление стенки пластины.

    Уравнение (6) после подстановки в него (7) и (10) в своей правой и левой части содержит одну неизвестную величину - продолжительность межпромывочного периода - и позволяет при заданных исходных данных определить ее целесообразное значение.

    Основными экономическими факторами, определяющими величину , является стоимость 1м 2 теплообменной поверхности , и затраты на промывку , руб./м 2 .

    На рис.1 приведены результаты расчетов экономически целесообразной продолжительности межпромывочного периода при скорости нагреваемого теплоносителя ω х = 0,4 м/с в зависимости от определяющих величин.

    Рис.1 Зависимость экономически целесообразных относительной величины запаса теплообменной поверхности ∆F/F 0 и продолжительности межпромывочного периода τ мпр пластинчатого водонагревателя для горячего водоснабжения

    Примечание:

    1)Расчет производился при ω х = 0,4 м/с для пластин типа М10-BFG.

    2)Исходные данные:

    С=0,00357 кг/м 3 ; а м =0,19; λ н =1,05 Вт/(м·˚С); =12,7·10 -10 ; А=13374.

    С повышением удельной стоимости промывки теплообменной поверхности экономически целесообразный межпромывочный период увеличивается, и приведенные зависимости позволяют получить количественную оценку продолжительности этого периода.

    С другой стороны, при высокой стоимости теплообменника, что имеет место при уменьшении площади единичной пластины, величина экономически целесообразного запаса теплообменной поверхности уменьшается, конкретные величины определяющих факторов и зависимых от них величин приведены на графиках. Из этих данных следует, в частности, что для обеспечения требуемого температурного режима горячего водоснабжения даже при умеренной жесткости водопроводной воды и ежемесячной промывке запас теплообменной поверхности должен быть не менее 60% по сравнению с ее величиной при безнакипном режиме работы.

    Заметим, что сопутствующее образованию накипи возрастание гидравлического сопротивления ПВН при экономически целесообразных продолжительностях межпромывочного периода несущественно, поскольку в среднем проходное сечение межпластинчатых каналов уменьшается на 4-8%.

    Литература

    1. Жаднов О.В. "Пластинчатые теплообменники - дело тонкое"// "Новости теплоснабжения" -2005.,-N 3.-c.39-53.

    2. Чернышев Д.В. "Прогнозирование накипеобразования в пластинчатых водонагревателях для повышения надежности их работы" Дисс. к.т.н.05.23.03.- Тула, 2002. - 199с.

    3. Бажан П.И., Каневец Г.Е., Селиверстов В.М. Справочник по теплообменным аппаратам. -М.: Машиностроение, 1989.

    4. Чистяков Н.Н. и др. Повышение эффективности работы систем горячего водоснабжения. М., Стройиздат, 1988.

    Cтраница 1


    Запас поверхности теплообмена не должен превышать 20 / всей площади. Чрезмерный запас теплопередающей поверхност приводит к пульсирующей подаче парожидкостной смеси из рибой лера в колонну, что иногда является причиной резкого снижени коэффициента полезного действия колонны.  

    Для создания запаса поверхности теплообмена длина может быть увеличена. Кроме того, должно быть учтено увеличение длины за счет наличия на концах блока распределителей потока.  

    Расчет по этой формуле дает запас поверхности теплообмена. При хорошем газораспределительном устройстве он может быть излишним.  

    Расчет по этой формуле дает запас поверхности теплообмена. При хорошем газораспределительном устройстве ои может быть излишним.  

    Число звеньев принимаем i 7, при этом будет некоторый запас поверхности теплообмена.  

    Принимаем число звеньев г 7; при этом будет некоторый запас поверхности теплообмена.  


    При больших скоростях движения пара (ип10 м [ сек, точнее рд 30 если пар движется сверху вниз - теплоотдача увеличивается и расчет по формулам (VII-116) - (VII-120) дает запас поверхности теплообмена.  

    В кипятильниках с малым запасом поверхности теплообмена могут возникнуть дополнительные циркуляционные потоки, для предотвращения которых следует установить ограничители между колонной и входом кипятильника.  

    Ввиду того что рассчитывается реверсивный теплообменник, проходы высокого и низкого давления должны быть симметричными. Необходимо предусмотреть 20 % запас поверхности теплообмена.  

    Недостаток запаса поверхности теплообмена также приводит к нарушению нормальных условий функционирования объекта. Так, конденсатор с малым запасом поверхности теплообмена характеризуется неравномерным распределением потоков и повышенным давлением инертного газа.  

    Тепловой расчет аппаратов воздушного охлаждения газа выполняют по Методике теплового и аэродинамического расчета аппаратов воздушного охлаждения института ВНИИнефтемаш. В тепловом расчете принимают 10 % - ный запас поверхности теплообмена, учитывающий возможность выхода из строя отдельных вентиляторов и загрязнения поверхностей теплообмена в процессе эксплуатации.  

    Перед расчетом выявляют исходные технологические данные работы колонны синтеза в конце кампании и конструктивные данные теплообменника. Далее из теплового баланса определяют разность температур на концах теплообменника и количество передаваемого тепла. Затем рассчитывают коэффициенты теплопередачи и, наконец, вычисляют необходимую длину трубок (количество их принимают, исходя из конструктивных данных) и определяют запас поверхности теплообмена. Этот запас должен быть не менее 25 % в конце кампании или не ниже 50 % в ее средней стадии.  

    Недостатки проектирования ТА связаны со слишком большим или слишком малым запасом на размер поверхности теплообмена. Избыток поверхности теплообмена может привести к нарушенияем нормального функционирования аппарата. В кипятильниках запас поверхности теплообмена устраняют уменьшением разности температур, составляющей движущую силу процесса.  

    Страницы:      1

    Включайся в дискуссию
    Читайте также
    Салат с кукурузой и мясом: рецепт
    Римские акведуки - водное начало цивилизации С какой целью строили акведуки
    Мыс крестовый лиинахамари