Подпишись и читай
самые интересные
статьи первым!

Физические свойства. Применение тантала

Различие свойств тантала в виде кусков и порош­кообразного так велико, что кажется, будто это два раз­ных металла. Порошок при нагревании довольно энер­гично взаимодействует с кислородом (280°С):

4Та+5О2 = 2Та2О5,

с галогенами (250 - 300°С):

2Ta + 5Cl2 = 2TaCl5,

и даже с азотом (при накаливании до 600о С в токе азота):

Металлический тантал же устойчив в подавляющем большинстве агрессивных сред. На него не действуют ни­какие кислоты и даже «царская водка». Исключение со­ставляет лишь плавиковая кислота H2F2, но это из-за присутствия в ней иона фтора. Очень слабо действуют на него даже расплавы щелочей.

Секрет устойчивости металлического тантала состоит в том, что на его поверхности всегда имеется тонкая, но прочнейшая пленка оксида Ta2O5. Если вещество или соединение может вступать во взаимодействие с этой пленкой или проникать сквозь нее, то оно будет разру­шать металл, а если нет, то тантал будет сохранять свою «неприступность». К реагентам, обладающим разрушительной способностью, относятся: ионы фтора, оксид се­ры (VI) да еще расплавы щелочей. Эта же пленка пре­пятствует протеканию электрического тока от металла в раствор при электролизе (когда танталовый электрод служит анодом). Поэтому тантал используется в элект­ронной технике для изготовления выпрямителей тока.

В отсутствие кислорода и азота тантал устойчив ко многим жидким металлам. Обескислороженный метал­лический натрий не действует на него даже при 1200°С, магний и сплавы - уран-магний и плутоний-магний - при 1150°С. Это позволяет использовать тантал для из­готовления некоторых деталей ядерных реакторов.

Тантал способен поглощать довольно значительные количества (до 1%) водорода, кислорода и азота. Про­исходит процесс, который называется абсорбцией, - яв­ление поглощения какого-либо вещества всем объемом поглотителя без образования прочных соединений. По­добный процесс обратим. Поглощенный водород при нагревании металла в вакууме при 600°С весь выделя­ется. Металл, которому водород придал хрупкость, вос­станавливает свои прежние механические качества. Свойством тантала растворять газы пользуются, когда вводят его в качестве добавки в сталь.

При. повышенной температуре происходит образование соединений. При 500°С могут существовать гид­риды Та2Н или ТаН в зависимости от содержания водо­рода в металле. Выше 600 - 700°С при взаимодействии с кислородом возникает оксид Та2О5, примерно при такой же температуре идет реакция с азотом - появляется нитрид тантала TaN. Углерод при высокой температуре (1200-1400°С) соединяется с танталом, давая ТаС - тугоплавкий и твердый карбид.

В расплавленных щелочах тантал окисляется с обра­зованием солей танталовой кислоты, которые скорее можно считать смешанными оксидами 4Na2O.

3Та2О5.

25Н2О; 4К2О.

3Та2О5.

16Н2О. В плавиковой кислоте тан­тал растворяется с образованием фторидных комплексов типа [ТаF6]-, 2-, 3-. Так как комплексы неустойчивы и гидролизуются, то в растворе находятся комплексы - продукты гидролиза [ТаОF5]2-, 3-.

ТАНТАЛ , Та, химический элемент V группы периодической системы, аналог ванадия и ниобия. Атомный вес 181,4; порядковое число 73. Тантал - металл стально-серого, в отполированном виде белого цвета; удельный вес ~ 16,6, температура плавления 2800°С, температура кипения выше 4400°С, т. о. тантал - третий по плавкости металл [выше плавятся вольфрам (3370 ±50°С) и рений (3167±60°С)]. Сопротивление на разрыв незакаленного тантала около 100 кг/см 2 ; твердость по Бринеллю 45,9. Чистый тантал легко поддается механической обработке: ковке, прокатке, волочению на холоде. Путем термической обработки его твердость м. б. значительно повышена. При нагревании тантал легко поглощает газы и становится хрупким; вследствие этого нагревание предназначенного к механической обработке тантал ведут в вакууме. Поглощенный водород тантал отдает с трудом; при температуре плавления легко поддается сварке. Удельная теплоемкость тантала 0,0365 при 0°С. Термический коэффициент расширения при 20°С - 0,0000065. В химическом отношении тантал чрезвычайно стоек при низких температурах, благодаря чему может заменять во многих случаях платину. При нагревании на воздухе при температуре около 400°С тантал начинает покрываться синей пленкой окислов, а при температуре красного каления сгорает полностью до пятиокиси тантала (см. ниже).

Непосредственно соединяется также при высоких температурах с азотом с образованием нитрида, с водородом с образованием гидрида и с углеродом с образованием карбида тантала; при обычной температуре соединяется с фтором. Минеральные кислоты, концентрированные и разбавленные, на него практически не действуют; исключением является плавиковая кислота, особенно в смеси с азотной, в которой тантал растворяется относительно быстро. Элементарный хлор практически на тантал не действует. Относительно быстро разрушается тантал щелочами, особенно горячими концентрированными растворами.

Соединения тантала . Важнейшие соединения производятся от пятивалентного тантала. Соединения низших степеней валентности менее стабильны и не имеют технического значения.

Пятиокись тантала Та 2 О 5 получается путем сильного прокаливания металлического тантала или его соединений с летучими веществами в кислороде или на воздухе. Практически получают ее путем прокаливания танталовой кислоты (см. ниже). Та 2 О 5 - белый порошок, удельный вес 8,70, нерастворимый в воде и кислотах за исключением плавиковой. При сильном прокаливании в вакууме Та 2 О 5 отщепляет кислород и образует металлический тантал. Путем сплавления Та 2 О 5 с едкими или углекислыми щелочами получают соли танталовой кислоты, танталаты : метатанталаты , например, NaTaО 3 , ортотанталаты , например, Na 3 TaО 4 , пиротанталаты , например, минерал иттротанталит, и политанталаты типа Me 8 Ta 6 O 19 . При воздействии минеральных кислот на растворы танталитов выделяется аморфный осадок гидратированной пятиокиси тантала непостоянного состава, т.н. танталовая кислота . Свежеосажденная танталовая кислота слабо растворяется в щелочах и минеральных кислотах; из последних осаждается при разбавлении. Пятифтористый тантал TaF 5 получается путем воздействия фтористого водорода на TaCl 5 (см. ниже). Кристаллизуется в виде бесцветных призм, температура плавления 96,8°С, температура кипения 229°С. С водой гидролизуется с образованием танталовой кислоты. Та F 5 обнаруживает большую склонность к образованию комплексных солей, которые получаются при добавлении соответствующих фтористых солей к раствору тантала в плавиковой кислоте. Большинство этих солей соответствует типу 2MeF TaF 5 , но известны и другие, как 2TaF 5 3BaF 2 ; TaF 5 3NaF; TaF 5 ·NaF. Флюoтанталат калия TaF 5 2KF, или K 2 TaF 7 , получают из растворов TaF 5 при добавлении солей калия, чем пользуются для отделения тантала от ниобия и титана. В виду большого термического коэффициента растворимости эта соль хорошо перекристаллизовывается из горячей воды. Во избежание гидролиза эту операцию необходимо вести в присутствии небольшого избытка плавиковой кислоты. Пятихлористый тантал ТаС l 5 - желтое кристаллическое вещество, удельный вес 3,68, температура плавления 211°С и температура кипения 242°С, получается при воздействии хлора на металлический тантал. При нагревании на воздухе превращается в Та 2 О 5 . Вода разлагает ТаС l 5 с образованием хлористого водорода и танталовой кислоты. При нагревании ТаС l 5 в вакууме или при осторожном восстановлении его получают кристаллические низшие хлориды тантала зеленого цвета. Треххлористый тантал ТаС l 5 растворяется в воде без разложения; из зеленого раствора щелочи осаждается зеленый аморфный осадок гидроокиси тантала Та(ОН) 3 , обнаруживающей амфотерные свойства и растворимой как в избытке щелочи, так и в кислотах. При кипячении Та(ОН) 3 разлагает воду с образованием танталовой кислоты по реакции

Та(ОН) 3 + 2Н 2 О=Та(ОН) 5 + Н 2 .

При упаривании растворов ТаС l 3 с избытком соляной кислоты образуется своеобразная хлорокись Та 3 С l 7 O·ЗН 2 O. При сильном нагревании ТаС l 3 распадается на ТаС l 5 и ТаС l 2 . Карбид тантала ТаС чрезвычайно твердый, латунно-жёлтого цвета, получается путем нагревания в вакууме смеси порошков металлического тантала или Та 2 О 5 с углем; плавится при температуре около 3900°С.

Распространение тантала в земной коре определяется цифрой 2·10 -7 . В минералах он обычно в виде изоморфной примеси сопровождает ниобий . Важнейшим промышленным минералом является танталит, метатанталат железа Fe(TaО 3) 2 , в котором часть железа м. б. замещена железом , а часть тантала - ниобием (танталитами условно называют минералы изоморфного ряда (Fe, Mn) [(Ta, Nb)О 3 ] 2 , в которых тантал преобладает над ниобием). Важнейшие месторождения танталитов - Финляндия, Скандинавия и США (Коннектикут и Дакота), месторождения мирового значения в западной и северной Австралии. Во многих минералах тантал связан с редкими землями, как в фергусоните , ортотанталате (и ниобате) иттриевых земель Y [(Ta, Nb)О 4 ], иттротанталите , пиротанталате (и ниобате) тех же оснований Y 4 [(Ta, Nb) 2 О7] 3 и самарските , сложном ниоботанталате, найденном на Урале, содержащем также и уран. Редко встречающийся микролит представляет собой пиротанталат кальция Са 2 (Та 2 О 7). Пирохлор , эйксенит и поликраз - сложные титанониобаты, содержащие колеблющиеся количества тантала.

Для извлечения тантала из минералов последние сплавляют обычно с щелочными пиросульфатами в железных сосудах и выщелачивают плав водой. Остающуюся нерастворенной танталовую и ниобиевую кислоты растворяют в плавиковой. Для отделения от ниобиевой кислоты пользуются гл. обр. дробной кристаллизацией солей, чаще всего фторотанталатом калия K 2 TaF 7 . Путем восстановления фторотанталата калия металлическими натрием по реакции K 2 TaF 7 +5Na = 5NaF+2KF+Ta получают элементарный тантал в виде загрязненного окислами черного порошка. Для очистки его прокаливают в вакуумной электропечи до высоких температур, при которых окислы распадаются; образующийся порошок тантала прессуют и в вакууме же плавят.

Применение тантала довольно разнообразно; оно обусловливается его высокой температурой плавления, механическими свойствами и химической стойкостью. Тантал является первым металлом, из которого изготовляли (с 1903 до 1911 г.) нити для электроламп. Позднее он был вытеснен вольфрамом. В настоящее время из него готовят электроды электронных ламп. Тантал пользуются как материалом для изготовления химической аппаратуры (тиглей, чашек), физических приборов и хирургических, главным образом зубоврачебных инструментов, вечных перьев (самопишущих ручек), а также фильер в производстве искусственного шелка. Благодаря химической стойкости он применяется иногда как материал для электродов, особенно в электроанализе. В серной кислоте катод из тантала покрывается синей пленкой окислов, которая пропускает электрический ток только в одном направлении, благодаря чему тантал применяется в мокрых выпрямителях переменного тока. Сплавы тантала с железом , хромом, ванадием, молибденом и вольфрамом обладают большой твердостью, тугоплавкостью и химической стойкостью, в частности сплав с железом химически весьма стоек. До сих пор эти сплавы вследствие высокой цены тантала производились в относительно небольших масштабах. Из соединений тантала практическое значение имеет только карбид - одно из наиболее тугоплавких известных веществ, - обладающий очень большой твердостью. Он начинает находить применение в производстве режущих инструментов и как материал для высокотемпературных печей.

Тантал - металл серебристо-белого цвета, отличающийся высокой температурой плавления. Этот показатель составляет 3017 градусов по Цельсию. Тантал обладает высокой ценностью для современной промышленности, так как ему характерна твердость, но при этом он пластичен подобно золоту. Металл хорошо себя зарекомендовал при выполнении механической обработки, его можно раскатать в тонкую проволоку, он поддается штамповке.

Впервые тантал обнаружил шведский химик А.Г. Экеберг. Это полезное ископаемое входило в состав двух минералов, которые были найдены в Финляндии и Швеции. На тот момент не было найдено способа, который позволил бы получить этот металл в чистом виде. В промышленном масштабе металл начали добывать сравнительно недавно - в 1922 году.

Тантал обладает прекрасными парамагнитными свойствами. Чистый металл не вступает в реакцию с щелочами, органическими и неорганическими кислотами. Окисление тантала на воздухе происходит при температуре, превышающей 250 градусов по Цельсию. Если говорить о его химической устойчивости к реагентам, то в этом плане он подобен стеклу.

Добыча и получение тантала

Тантал относят к числу редких металлов. В природе он существует в виде изотопов - стабильного и радиоактивного. На данный момент выделяют около двадцати минералов тантала и около шестидесяти минералов, в состав которых входит этот металл. Самое крупное месторождение тантала было обнаружено в Австралии. Также это полезное ископаемое добывают в Китае, Франции, странах СНГ, Бразилии, Канаде. В Мурманской области добывают основную часть тантала, который был обнаружен в месторождениях Российской Федерации.

Тантал имеет довольно сложную технологию производства. Для его получения переработке подвергается более трех тысяч тонн руды, за счет этого металл имеет очень высокую стоимость, превышающую 4500 долларов за один килограмм.

Области применения тантала

Металл получил широкую сферу использования. На начальном этапе производства его применяли в основном для получения проволоки для ламп накаливания. Сейчас с использованием металла и его сплавов производят широкий спектр продукции. К наиболее популярной и высоко востребованной следует отнести аппаратуру для химической промышленности, теплообменников для ядерно-энергетических систем. Проволоку из тантала активно применяют в криотронах.

Металл нашел широкое применение и в современной медицине. Здесь его используют для получения проволоки, фольги и листов, предназначенных для скрепления тканей и нервов, производства протезов.

Тантал пользуется довольно большим спросом при изготовлении ювелирных украшений. В этом сфере по достоинству оценили его свойство образовывать прочную пленку оксида, которая имеет радужный внешний вид. Металл применяют в ядерной и военной промышленности, где с его использованием производят оружие. Наряду с гафнием он может служить идеальным источником гамма-излучения. При производстве авиакосмической техники применяют беррилид титана, который славится превосходными показателями твердости и устойчивости в воздействию негативных факторов окружающей среды.

В будущем сфера применения этого металл еще более расширится, так как он обладает прекрасными химическими и физическими свойствами.

Скупка тантала

Одним из направлений деятельности нашей компании является скупка тантала . Мы предлагаем выгодные условия сотрудничества. Изделия можно сдать как в пункте приема, так и отправить по почте.

Тантал - это разумный выбор для всех сфер применения, где требуется высокая коррозионная стойкость. Хотя тантал и не относится к благородным металлам, он сравним с ними по своей химической устойчивости. Кроме того, тантал легко поддается формовке даже при температуре ниже комнатной благодаря своей объемноцентрированной кубической кристаллической структуре. Высокая коррозионная стойкость тантала делает его ценным материалом для использования в самых различных химических средах. Мы используемый наш "неподатливый" материал, например, для теплообменников для сектора приборостроения, загрузочных поддонов для строительства печей, имплантатов для медицинской техники и компонентов конденсаторов для электронной промышленности.

Гарантированная чистота.

Вы можете быть уверенными в качестве нашей продукции. Мы изготавливаем наши продукты из тантала сами - от металлического порошка до готового продукта. В качестве исходного материала мы используем только чистейший танталовый порошок. Так мы гарантируем вам чрезвычайно высокую чистоту материала.

Мы гарантируем качество чистоты спеченного тантала - 99,95 % (чистота металла без ниобия). Согласно химическим анализам, остаточное содержание состоит из следующих элементов:

Элемент Типичная макс. величина [мкг] Гарантированное макс. значение
[мкг]
Fe 17 50
Mo 10 50
Nb 10 100
Ni 5 50
Si 10 50
Ti 1 10
W 20 50
C 11 50
H 2 15
N 5 50
O 81 150
Cd 5 10
Hg* -- 1
Pb 5 10

Мы гарантируем качество чистоты тантала полученного путем плавки - 99,95 % (чистота металла без ниобия) Согласно химическим анализам, остаточное содержание состоит из следующих элементов:

Элемент Типичное значение макс. (µg/g) Гарантированное значение (µg/g)
Fe 5 100
Mo 10 100
Nb 19 400
Ni 5 50
Si 10 50
Ti 1 50
W 20 100
C 10 30
H 4 15
N 5 50
O 13 100
Cd -- 10
Hg* -- 1
Pb -- 10

Присутствие Сr(VI) и органических примесей исключено производственным процессом (многократная термообработка при температуре выше 1000 °C в атмосфере высокого вакуума) * исходная величина

Материал с особыми талантами.

Насколько уникальны свойства нашего тантала, настолько же специфичны и сферы его применения в промышленности. Ниже мы кратко представим вам две из них:

Индивидуально подобранные химические и электрические свойства.

Благодаря чрезвычайно мелкой микроструктуре тантал является идеальным материалом для производства ультратонкой проволоки с безупречной, исключительно чистой поверхностью для использования в танталовых конденсаторах. Мы можем с высокой степенью точности определять химические, электрические и механические свойства такой проволоки. Так, мы обеспечиваем нашим клиентам индивидуально подобранные и стабильные свойства компонентов, которые мы постоянно развиваем и улучшаем.

Превосходная стойкость и высокая пластичность в холодном состоянии.

Превосходная стойкость в сочетании с отличной формуемостью и свариваемостью делают тантал идеальным материалом для теплообменников. Наши танталовые теплообменники исключительно стабильны и устойчивы в целом ряду агрессивных сред. Обладая многолетним опытом обработки тантала, мы также можем изготовлять продукты сложной геометрии, точно отвечающие вашим требованиям.

Чистый тантал или все же сплав?

Мы оптимальным образом подготавливаем наш тантал к любым применениям. При помощи различных легирующих элементов мы можем изменять следующие свойства вольфрама:

  • физические свойства (например, температура плавления, давление пара, плотность, электропроводность, теплопроводность, тепловое расширение, теплоемкость)
  • механические свойства (например, прочность, механизм разрушения, пластичность)
  • химические свойства (например, коррозионная стойкость, травимость)
  • обрабатываемость (например, машинная обработка, формуемость, свариваемость)
  • структура и характеристики рекристаллизации (например, температура рекристаллизации, склонность к появлению хрупкости, эффект старения, размер зерен)

И это еще не все: используя наши специальные технологии производства, мы можем изменять различные другие свойства тантала в широком диапазоне. Результат: две различные технологии производства тантала и сплавы, обладающие различными свойствами, точно отвечающие требованиям конкретного применения.

Тантал, полученный спеканием (TaS).

Чистый тантал, полученный спеканием, и чистый тантал, полученный плавкой, обладают следующими общими характеристиками:

  • высокая температура плавления, составляющая 2 996 °C
  • превосходная пластичность в холодном состоянии
  • рекристаллизация при температуре от 900 °C до 1 450 °C (в зависимости от степени деформации и чистоты)
  • превосходная стойкость в водных растворах и расплавах металлов
  • сверхпроводимость
  • высокий уровень биологической совместимости

Когда предстоит чрезвычайно тяжелая работа, поможет наш тантал, полученный спеканием: благодаря используемому нами методу порошковой металлургии тантал, полученный спеканием , (TaS) обладает чрезвычайно мелкозернистой структурой и высокой чистотой. В связи с этим материал и отличается высочайшим качеством поверхности и хорошими механическими свойствами.

Для использования в конденсаторах мы рекомендуем одну из разновидностей нашего тантала с чрезвычайно высоким качеством поверхности (TaK ). Такой тантал используется в виде проволоки в танталовых конденсаторах. Высокую емкость, низкий ток утечки и низкое сопротивление можно гарантировать только тогда, когда используется проволока, не имеющая дефектов и примесей.

Тантал, полученный плавкой (TaM).

Не всегда требуется лучшее из лучшего. Тантал, полученный плавкой , (TaM), как правило, более экономичен в производстве, чем тантал, полученный спеканием, а его качества достаточно для многих сфер применения. Однако этот материал не такой мелкозернистый и однородный, как тантал, полученный спеканием. Просто свяжитесь с нами. Мы будем рады проконсультировать вас.

Стабилизированный тантал (TaKS).

Мы легируем наш спеченный стабилизированный тантал кремнием , что позволяет предотвратить рост зерен даже при высокой температуре. Это делает наш тантал пригодным для использования даже при крайне высокой температуре. Мелкозернистая микроструктура остается стабильной даже после отжига при температуре до 2 000 °C. Этот процесс позволяет сохранить превосходные механические свойства материала, такие как его пластичность и прочность. Стабилизированный тантал в виде проволоки или листов идеально подходит для производства танталовых анодов методом спекания или для использования в секторе строительства печей.

Тантал-вольфрам (TaW) отличается хорошими механическими свойствами и превосходной коррозионной стойкостью. Мы добавляем в чистый вольфрам от 2,5 до 10 масс. % вольфрама. Хотя получаемый сплав в 1,4 раза прочнее , чем чистый тантал, он так же легко поддается формовке при температуре до 1 600 °C. Наш материал оптимально подходит для теплообменников и нагревательных элементов, используемых в сфере производства химического оборудования.

Хорош во всех отношениях. Характеристики тантала.

Тантал относится к группе тугоплавких металлов . Тугоплавкие металлы имеют температуру плавления выше температуры плавления платины (1 772 °C). Энергия, связывающая отдельные атомы, чрезвычайно высока. Высокая температура плавления тугоплавких металлов сочетается с низким давлением пара. Тугоплавкие металлы также отличаются высокой плотностью и низким коэффициентом теплового расширения.

В периодической системе химических элементов тантал находится в том же периоде, что и вольфрам. Как и вольфрам, тантал имеет чрезвычайно высокую плотность - 16.6 г/см3. Однако, в отличие от вольфрама, тантал становится хрупким при обработке в водородной среде. По этой причине материал изготовляется в высоком вакууме.

Тантал, несомненно, является наиболее устойчивым из тугоплавких металлов . Он устойчив во всех кислотах и основаниях и обладает крайне специфическими свойствами:

Свойства
Атомное число 73
Атомная масса 180.95
Температура плавления 2 996 °C / 3 269 K
Температура кипения 6 100 °C / 6 373 K
Атомный объем 1.80 ·  10-29 [м3]
Давление пара при 1 800 °C при 2 200 °C 5 · 10-8 [Пa] 7 · 10-5 [Пa]
Плотность при 20 °C (293 K) 16.60 [г/см3]
Кристаллическая структура объемноцентрированная кубическая
Постоянная кристаллической решетки 3.303 · 10-10 [м]
Твердость при 20 °C (293 K) деформированный рекристаллизованный 120 - 220 80 - 125
Модуль упругости при 20 °C (293 K) 186 [ГПa]
Коэффициент Пуассона 0.35
Коэффициент линейного теплового расширения при 20 °C (293 K) 6.4 · 10-6 [м/(м·K)]
Теплопроводность при 20 °C (293 K) 54 [Вт/(м K)]
Удельная теплоемкость при 20 °C (293 K) 0.14 [Дж/(г·K)]
Электропроводность при 20 °C (293 K) 8 · 10 6
Удельное электрическое сопротивление при 20 °C (293 K) 0.13 [(Ом·мм2)/м]
Скорость звука при 20 °C (293 K) Продольная волна
Поперечная волна
4 100 [м/с] 2 900 [м/с]
Работа выхода электрона 4.3 [эВ]
Сечение захвата тепловых нейтронов 2.13 · 10-27 [м2]
Температура рекристаллизации (продолжительность отжига: 1 час) 900 - 1 450 °C
Сверхпроводящий (температура перехода) < -268.65 °C / < 4.5 K

Теплофизические свойства.

Тугоплавкие металлы, как правило, имеют низкий коэффициент теплового расширения и относительно высокую плотность .. Это касается и тантала. Хотя теплопроводность тантала ниже, чем у вольфрама и молибдена, материал имеет более высокий коэффициент теплового расширения, чем многие другие металлы.

Теплофизические свойства тантала изменяются при изменении температуры. На графиках ниже показаны кривые изменения наиболее важных переменных:

Механические свойства.

Даже малые количества таких элементов, образующих твердый раствор внедрения, как кислород, азот, водород и углерод, могут изменить механические свойства тантала. Кроме того, для изменения его механических свойств используются такие факторы, как чистота металлического порошка, технология производства (спекание или плавка), степень холодной обработки и тип термической обработки.

Как и вольфрам и молибден, тантал имеет объемноцентрированную кубическую кристаллическую решетку . Температура хрупко-вязкого перехода тантала составляет -200 °C, что значительно ниже комнатной температуры. Благодаря этому металл крайне легко поддается формовке . В процессе холодной обработки повышается предел прочности и твердость металла, но одновременно снижается удлинение при разрыве. Хотя материал теряет пластичность, он не становится хрупким.

Термостойкость материала ниже, чем у вольфрама, но сравнима с термостойкостью чистого молибдена. Для повышения термостойкости мы добавляем в наш тантал тугоплавкие металлы, например, вольфрам.

Модуль упругости тантала ниже, чем у вольфрама и молибдена, и сравним с модулем упругости чистого железа. Модуль упругости снижается при повышении температуры.

Механические свойства.

Благодаря высокой пластичности тантал оптимально подходит для формовочных процессов , таких как гибка, штамповка, прессование или глубокая вытяжка. Тантал с трудом поддается машинной обработке . Стружка плохо отделяется. По этой причине мы рекомендуем использовать стружкоотводные ступеньки. Тантал отличается превосходной свариваемостью в сравнении с вольфрамом и молибденом.

У вас есть вопросы о механической обработке тугоплавких металлов? Мы будем рады помочь вам, используя наш многолетний опыт.

Химические свойства.

Поскольку тантал устойчив в химических веществах любого типа, этот материал часто сравнивают с драгоценными металлами. Однако, с точки зрения термодинамики, тантал представляет собой недрагоценный металл, который, тем не менее, может образовывать устойчивые соединения с различными элементами. На воздухе тантал образует очень плотный слой оксида , (Ta2O5) который защищает основной материал от химического воздействия. Таким образом, слой оксида делает тантал коррозионностойким .

При комнатной температуре тантал не является устойчивым только в следующих неорганических веществах: концентрированная серная кислота, фтор, фтороводород, фтористоводородная кислота и растворы кислот, содержащие ионы фтора. Щелочные растворы, расплавленный гидроксид натрия и гидроксид калия также оказывают химическое воздействие на тантал. В то же время материал устойчив в водном растворе аммиака. Если тантал подвергается химическому воздействию, водород проникает в его кристаллическую решетку, и материал становится хрупким. Коррозионная стойкость тантала постепенно снижается при повышении температуры.

Тантал является инертным по отношению ко многим растворам. Однако, если тантал подвергается воздействию смешанного раствора, то его коррозионная стойкость может снизиться, даже если он устойчив в отдельных компонентах такого раствора. У вас есть сложные вопросы по коррозии? Мы будем рады помочь вам, используя наш опыт и нашу собственную лабораторию по исследованию коррозии.

Коррозионная стойкость в воде, водных растворах и в среде неметаллов
Вода Горячая вода < 150 °C стойкий
Неорганические кислоты Соляная кислота < 30 % до 190 °C Серная кислота < 98 % до 190 °C Азотная кислота < 65 % до 190 °C Фтористо-водородная кислота < 60 % Фосфорная кислота < 85 % до 150 °C стойкий стойкий стойкий нестойкий стойкий
Органические кислоты Уксусная кислота < 100 % до 150 °C Щавелевая кислота < 10 % до 100 °C Молочная кислота < 85 % до 150 °C Винная кислота < 20 % до 150 °C
Щелочные растворы Гидроксид натрия < 5 % до 100 °C Гидроксид калия < 5 % до 100 °C Аммиачные растворы < 17 % до 50 °C Карбонат натрия < 20 % до 100 °C стойкийстойкийстойкийстойкий
Соляные растворы Хлорид аммония < 150 °C Хлорид кальция < 150 °C Хлорид железа < 150 °C Хлорат калия < 150 °C Биологические жидкости < 150 °C Сульфат магния < 150 °C Нитрат натрия < 150 °C Хлорид олова < 150 °C стойкийcтойкийстойкийстойкийстойкийстойкийстойкийстойкий
Неметаллы Фтор Хлор < 150 °C Бром < 150 °C Йод < 150 °C Сера < 150 °C Фосфор < 150 °C Бор < 1 000 °C нестойкийстойкийcтойкийстойкийстойкийстойкийстойкий

Тантал устойчив в некоторых расплавах металлов, таких как Ag, Bi, Cd, Cs, Cu, Ga, Hg, K, Li, Mg, Na и Pb, при условии что эти расплавы содержат малое количество кислорода. Однако этот материал подвержен воздействию Al, Fe, Be, Ni и Co.

Коррозионная стойкость в расплавах металлов
Алюминий нестойкий Литий стойкий при температуре < 1 000 °C
Бериллий нестойкий Магний стойкий при температуре < 1 150 °C
Свинец стойкий при температуре < 1 000 °C Натрий стойкий при температуре < 1 000 °C
Кадмий стойкий при температуре < 500 °C Никель нестойкий
Цезий стойкий при температуре < 980 °C Ртуть стойкий при температуре < 600 °C
Железо нестойкий Серебро стойкий при температуре < 1 200 °C
Галлий стойкий при температуре < 450 °C Висмут стойкий при температуре < 900 °C
Калий стойкий при температуре < 1 000 °C Цинк стойкий при температуре < 500 °C
медь стойкий при температуре < 1 300 °C Олово стойкий при температуре < 260 °C
Кобальт нестойкий

Когда неблагородный металл, например, тантал, вступает в контакт с благородными металлами, например, платиной, очень быстро возникает химическая реакция. В связи с этим необходимо учитывать реакцию тантала с другими материалами, присутствующими в системе, особенно при высокой температуре.

Тантал не вступает в реакцию с инертными газами. По этой причине инертные газы высокой чистоты могут использоваться в качестве защитных газов. Однако при повышении температуры тантал активно вступает в реакцию с кислородом или воздухом и может поглощать большое количество водорода и азота. Это делает материал хрупким. Устранить эти примеси позволяет отжиг тантала в высоком вакууме. Водород исчезает при температуре 800 °C, а азот - при 1 700 °C.

В высокотемпературных печах тантал может вступать в реакцию с деталями конструкции, изготовленными из тугоплавких оксидов или графита. Даже очень устойчивые оксиды, такие как оксид алюминия, магния или циркония, могут подвергаться восстановлению при высокой температуре, если они вступают в контакт с танталом. При контакте с графитом может образовываться карбид тантала, что приводит к повышению хрупкости тантала. Хотя обычно тантал можно легко комбинировать с другими тугоплавкими металлами, например, молибденом или вольфрамом, он может вступать в реакцию с гексагональным нитридом бора и нитридом кремния.

В таблице ниже указана коррозионная стойкость материала по отношению к термостойким материалам, используемым при строительстве промышленных печей. Указанные предельные температуры действительны для вакуума. При использовании защитного газа эти температуры примерно на 100-200 °C ниже.

Коррозионная стойкость по отношению к термостойким материалам, используемым при строительстве промышленных печей
Оксид алюминия стойкий при температуре < 1 900 °C Молибден стойкий
Оксид бериллия стойкий при температуре < 1 600 °C Нитрид кремния стойкий при температуре < 700 °C
Гексагональный. нитрид бора стойкий при температуре < 700 °C Оксид тория стойкий при температуре < 1 900 °C
Графит стойкий при температуре < 1 000 °C вольфрам стойкий
Оксид магния стойкий при температуре < 1 800 °C Оксид циркония стойкий при температуре < 1 600 °C


Ta

Db

История

Тантал открыт в 1802 году шведским химиком А. Г. Экебергом в двух минералах, найденных в Финляндии и Швеции . Однако в чистом виде выделить его не удалось. Из-за трудностей получения этот элемент был назван по имени героя древнегреческой мифологии Тантала .

В последующем тантал и «колумбий» (ниобий) считали тождественными. Лишь в 1844 году немецкий химик Генрих Розе доказал, что минерал колумбит-танталит содержит два различных элемента - ниобий и тантал.

Известно около 20 собственных минералов тантала - серия колумбит-танталит , воджинит, лопарит , манганотанталит и другие, а также более 60 минералов , содержащих тантал. Все они связаны с эндогенным минералообразованием. В минералах тантал всегда находится совместно с ниобием вследствие сходства их физических и химических свойств. Тантал - типично рассеянный элемент, так как изоморфен со многими химическими элементами. Месторождения тантала приурочены к гранитным пегматитам, карбонатитам и щелочным расслоенным интрузиям.

Месторождения

Самые крупные месторождения танталовых руд находятся во Франции , Египте , Таиланде , Китае . Месторождения танталовых руд имеются также в Мозамбике , Австралии , Нигерии , Канаде , Бразилии , СНГ , ДРК , Малайзии .

Крупнейшее мировое месторождение танталовых руд, Гринбушес , расположено в Австралии в штате Западная Австралия в 250 км к югу от Перта .

Физические свойства

При температуре ниже 4,45 К переходит в сверхпроводящее состояние .

Химические свойства

При нормальных условиях тантал малоактивен, на воздухе окисляется лишь при температуре свыше 280 °C , покрываясь оксидной плёнкой Ta 2 O 5 ; с галогенами реагирует при температуре свыше 250 °C . При нагревании реагирует с С, В, Si, P, Se, Те, Н 2 О, СО, СО 2 , NO, HCl, H 2 S.

Химически чистый тантал исключительно устойчив к действию жидких щелочных металлов , большинства неорганических и органических кислот, а также многих других агрессивных сред (за исключением расплавленных щелочей).

В отношении химической устойчивости к реагентам, тантал подобен стеклу. Тантал нерастворим в кислотах и их смесях, кроме смеси плавиковой и азотной кислот; его не растворяет даже царская водка . Реакция с плавиковой кислотой идёт только с пылью металла и сопровождается взрывом . Очень устойчив к воздействию серной кислоты любой концентрации и температуры (при 200 °C металл корродирует в кислоте лишь на 0,006 миллиметра в год) , устойчив в обескислороженных расплавленных щелочных металлах и их перегретых пара́х (литий, натрий, калий, рубидий, цезий).

Токсикология

Распространённость

Получение

Основным сырьём для производства тантала и его сплавов служат танталитовые и лопаритовые концентраты, содержащие около 8 % Та 2 О 5 , а также 60 % и более Nb 2 O 5 . Концентраты разлагают кислотами или щелочами, лопаритовые - хлорируют. Разделение Та и Nb производят с помощью экстракции . Металлический тантал обычно получают восстановлением Ta 2 O 5 углеродом , либо электрохимически из расплавов. Компактный металл производят вакуумно-дуговой, плазменной плавкой или методом порошковой металлургии .

Для получения 1 тонны танталового концентрата необходимо переработать до 3000 тонн руды.

Стоимость

Применение

Первоначально использовался для изготовления проволоки для ламп накаливания. Сегодня из тантала и его сплавов изготовляют:

  • жаропрочные и коррозионностойкие сплавы;
  • коррозионно-устойчивую аппаратуру для химической промышленности, фильерные пластины , лабораторную посуду и тигли для получения, плавки, и литья редкоземельных элементов, а также иттрия и скандия ;
  • теплообменники для ядерно-энергетических систем (тантал наиболее из всех металлов устойчив в перегретых расплавах и парах цезия);
  • в хирургии листы, фольгу и проволоку из тантала используют для скрепления тканей, нервов, наложения швов, изготовления протезов, заменяющих повреждённые части костей (ввиду биологической совместимости);
  • танталовая проволока используется в криотронах - сверхпроводящих элементах, устанавливаемых в вычислительной технике;
  • в производстве боеприпасов тантал применяется для изготовления металлической облицовки перспективных кумулятивных зарядов, улучшающей бронепробиваемость ;
  • тантал и ниобий используют для производства электролитических конденсаторов (более качественных, чем алюминиевые электролитические конденсаторы, но рассчитанных на меньшее напряжение);
  • тантал используется в последние годы в качестве ювелирного металла, в связи с его способностью образовывать на поверхности прочные плёнки оксида красивых радужных цветов;
  • ядерный изомер тантал-180m2, накапливающийся в конструкционных материалах атомных реакторов, может наряду с гафнием-178m2 служить источником гамма-лучей и энергии при разработке оружия и специальных транспортных средств.
  • Бюро стандартов США и Международное бюро мер и весов Франции используют тантал вместо платины для изготовления стандартных аналитических разновесов большой точности;
  • Бериллид тантала чрезвычайно твёрд и устойчив к окислению на воздухе до 1650 °C , применяется в авиакосмической технике;
  • карбид тантала (температура плавления 3880 °C , твёрдость близка к твёрдости алмаза) применяется в производстве твёрдых сплавов - смеси карбидов вольфрама и тантала (марки с индексом ТТ), для тяжелейших условий металлообработки и ударно-поворотного бурения крепчайших материалов (камень, композиты), а также наносится на сопла, форсунки ракет;
  • Оксид тантала(V) используется в атомной технике для варки стекла, поглощающего гамма-излучение . Один из наиболее широко применяемых составов такого стекла: двуокись кремния - 2 %, монооксид свинца (глет) - 82 %, оксид бора - 14 %, пятиокись тантала - 2 %;
  • В нумизматике. С 2006 год
Включайся в дискуссию
Читайте также
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари
Рулет с брусникой из дрожжевого теста