Подпишись и читай
самые интересные
статьи первым!

Тепловые пункты систем. Схемы тепловых пунктов

Тепловой пункт или сокращенно ТП это комплекс оборудования расположенный в отдельном помещении обеспечивающий отопление и горячее водоснабжение здания или группы зданий. Основное отличие ТП от котельной заключается в том, что в котельной происходит нагрев теплоносителя за счет сгорания топлива, а тепловой пункт работает с нагретым теплоносителем, поступающим из централизованной системы. Нагрев теплоносителя для ТП производят теплогенерирующие предприятия - промышленные котельные и ТЭЦ. ЦТП это тепловой пункт обслуживающий группу зданий , например, микрорайон, поселок городского типа, промышленное предприятие и т.д. Необходимость в ЦТП определяется индивидуально для каждого района на основании технических и экономических расчетов, как правило, возводят один центральный тепловой пункт для группы объектов с расходом теплоты 12-35 МВт

Центральный тепловой пункт в зависимости от назначения состоит из 5-8 блоков. Теплоноситель - перегретая вода до 150°С. ЦТП, состоящие из 5-7 блоков, рассчитаны на тепловую нагрузку от 1,5 до 11,5 Гкал/ч. Блоки изготавливаются по типовым альбомам, разработанным АО "Моспроект-1" выпуски с 1 (1982 г) по 14 (1999 г.) "Центральные тепловые пункты систем теплоснабжения", "Блоки заводского изготовления", "Блоки инженерного оборудования заводского изготовления для индивидуальных и центральных тепловых пунктов", а также по индивидуальным проектам. В зависимости от вида и количества подогревателей, диаметра трубопроводов, обвязки и запорно-регулирующей арматуры блоки имеют различные массы и габаритные размеры.

Для лучшего понимания функций и принципов работы ЦТП дадим краткую характеристику тепловым сетям. Тепловые сети состоят из трубопроводов и обеспечивают транспортировку теплоносителя. Они бывают первичные, соединяющие теплогенерирующие предприятия с тепловыми пунктами и вторичные, соединяющие ЦТП с конечными потребителями. Из этого определения можно сделать вывод, что ЦТП являются посредником между первичными и вторичными тепловыми сетями или теплогенерирующими предприятиями и конечными потребителями. Далее подробно опишем основные функции ЦТП.

4.2.2 Задачи, решаемые тепловыми пунктами

Подробнее распишем задачи, решаемые центральными тепловыми пунктами:

    преобразование теплоносителя, например, превращение пара в перегретую воду

    изменение различных параметров теплоносителя, таких как давление, температура и т. д.

    управление расходом теплоносителя

    распределение теплоносителя по системам отопления и горячего водоснабжения

    водоподготовка для ГВС

    защита вторичных тепловых сетей от повышения параметров теплоносителя

    обеспечение отключения отопления или горячего водоснабжения в случае необходимости

    контроль расхода теплоносителя и других параметров системы, автоматизация и управление

4.2.3 Устройство тепловых пунктов

Ниже приведена принципиальная схема теплового пункта

Схема ТП зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем горячего водоснабжения (ГВС) и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служитсистема подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

Тепловым пунктом называется сооружение, которое служит для присоединения местных систем теплопотребления к тепловым сетям. Тепловые пункты подразделяются на центральные (ЦТП) и индивидуальные (ИТП). ЦТП служат для теплоснабжения двух и более зданий, ИТП - для теплоснабжения одного здания. При наличии ЦТП в каждом отдельном здании обязательно устройство ИТП, который выполняет только те функции, которые не предусмотрены в ЦТП и необходимы для системы теплопотребления данного здания. При наличии собственного источника теплоты (котельной) тепловой пункт, как правило, располагается в помещении котельной.

В тепловых пунктах размещается оборудование, трубопроводы, арматура, приборы контроля, управления и автоматизации, посредством которых осуществляются:

Преобразование параметров теплоносителя, например, для снижения температуры сетевой воды в расчетном режиме со 150 до 95 0 С;

Контроль параметров теплоносителя (температуры и давления);

Регулирование расхода теплоносителя и распределение его по системам потребления теплоты;

Отключение систем потребления теплоты;

Защита местных систем от аварийного повышения параметров теплоносителя (давления и температуры);

Заполнение и подпитка систем потребления теплоты;

Учет тепловых потоков и расходов теплоносителя и др.

На рис. 8 приведена одна из возможных принципиальных схем индивидуального теплового пункта с элеватором для отопления здания. Через элеватор система отопления присоединяется в том случае, если надо снижать температуру воды для системы отопления, например, со 150 до 95 0 С (в расчетном режиме). При этом располагаемый напор перед элеватором, достаточный для его работы, должен быть не менее 12-20 м вод. ст., а потеря напора не превышает 1,5 м вод. ст. Как правило, к одному элеватору присоединяется одна система или несколько мелких систем с близкими гидравлическими характеристиками и с суммарной нагрузкой не более 0,3 Гкал/ч. При больших необходимых напорах и теплопотреблении применяются смесительные насосы, которые также используются и при автоматическом регулировании работы системы теплопотребления.

Подключение ИТП к тепловой сети производится задвижкой 1. Вода очищается от взвешенных частиц в грязевике 2 и поступает в элеватор. Из элеватора вода с расчетной температурой 95 0 С направляется в систему отопления 5. Охлажденная в отопительных приборах вода возвращается в ИТП с расчетной температурой 70 0 С. Часть обратной воды используется в элеваторе, а остальная вода очищается в грязевике 2 и поступает в обратный трубопровод теплосети.

Постоянный расход горячей сетевой воды обеспечивает автоматический регулятор расхода РР. Регулятор РР получает импульс на регулирование от датчиков давления, установленных на подающем и обратном трубопроводах ИТП, т.е. он реагирует на разность давлений (напор) воды в указанных трубопроводах. Напор воды может меняться по причине увеличения или уменьшения давления воды в теплосети, что обычно связано в открытых сетях с изменение расхода воды на нужды ГВС.


Например , если напор воды возрастает, то расход воды в системе увеличивается. Во избежание перегрева воздух в помещениях регулятор уменьшит свое проходное сечение, чем восстановит прежний расход воды.

Постоянство давления воды в обратном трубопроводе системы отопления автоматически обеспечивает регулятор давления РД. Падение давления может быть следствием утечек воды в системе. В этом случае регулятор уменьшит проходное сечение, расход воды снизится на величину утечки и давление восстановится.

Расход воды (теплоты) измеряется водомером (теплосчетчиком) 7. Давление и температура воды контролируются, соответственно, манометрами и термометрами. Задвижки 1, 4, 6 и 8 используются для включения или отключения теплового пункта и системы отопления.

В зависимости от гидравлических особенностей тепловой сети и местной системы отопления в тепловом пункте могут также устанавливаться:

Подкачивающий насос на обратном трубопроводе ИТП, если располагаемый напор в тепловой сети недостаточен для преодоления гидравлического сопротивления трубопроводов, оборудования ИТП и систем теплопотребления. Если при этом давление в обратном трубопроводе будет ниже статического давления в этих системах, то подкачивающий насос устанавливается на подающем трубопроводе ИТП;

Подкачивающий насос на подающем трубопроводе ИТП, если давление сетевой воды недостаточно для предотвращения вскипания воды в верхних точках систем потребления теплоты;

Отсекающий клапан на подающем трубопроводе на вводе и подкачивающий насос с предохранительным клапаном на обратном трубопроводе на выходе, если давление в обратном трубопроводе ИТП может превысить допускаемое давление для системы теплопотребления;

Отсекающий клапан на подающем трубопроводе на входе в ИТП, а также предохранительный и обратный клапаны на обратном трубопроводе на выходе из ИТП, если статическое давление в тепловой сети превышает допускаемое давление для системы теплопотребления и др.

Рис 8. Схема индивидуального теплового пункта с элеватором для отопления здания:

1, 4, 6, 8 - задвижки; Т - термометры; М - манометры; 2 - грязевик; 3 - элеватор; 5 -радиаторы системы отопления; 7 - водомер (теплосчетчик); РР - регулятор расхода; РД - регулятор давления

Как было показано на рис. 5 и 6, системы ГВС подсоединяются в ИТП к подающему и обратному трубопроводам через водоподогреватели или непосредственно, через регулятор температуры смешения типа ТРЖ.

При непосредственном водоразборе вода на ТРЖ подается из подающего или из обратного или из обоих трубопроводов вместе в зависимости от температуры обратной воды (рис.9). Например , летом, когда сетевая вода имеет 70 0 С, а отопление отключено, в систему ГВС поступает только вода из подающего трубопровода. Обратный клапан служит для предотвращения перетекания воды из подающего трубопровода в обратный при отсутствии водоразбора.

Рис. 9. Схема узла присоединения системы ГВС при непосредственном водоразборе:

1, 2, 3, 4, 5, 6 - задвижки; 7 - обратный клапан; 8 - регулятор температуры смешения; 9 - датчик температуры смеси воды; 15 - водоразборные краны; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Ш - штуцер; Т - термометр; РД - регулятор давления (напора)

Рис. 10. Двухступенчатая схема последовательного присоединения водоподогревателей ГВС:

1,2, 3, 5, 7, 9, 10, 11, 12, 13, 14 - задвижки; 8 - обратный клапан; 16 - циркуляционный насос; 17 - устройство для отбора импульса давления; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Т - термометр; М - манометр; РТ - регулятор температуры с датчиком

Для жилых и общественных зданий также широко применяется схема двухступенчатого последовательного присоединения водоподогревателей ГВС (рис.10). В данной схеме водопроводная вода вначале подогревается в подогревателе I-ой ступени, а затем в подогревателе II-ой ступени. При этом водопроводная вода проходит через трубки подогревателей. В подогревателе I-ой ступени водопроводная вода греется обратной сетевой водой, которая после охлаждения идет в обратный трубопровод. В подогревателе II-ой ступени водопроводная вода греется горячей сетевой водой из подающего трубопровода. Охлажденная сетевая вода поступает в систему отопления. В летний период эта вода подается в обратный трубопровод по перемычке (в обвод системы отопления).

Расход горячей сетевой воды на подогреватель II-ой ступени регулирует регулятор температуры (клапан термореле) в зависимости от температуры воды за подогревателем II-ой ступени.

Автоматизированный тепловой пункт является важным узлом в тепловой системе. Именно благодаря ему тепло из центральных сетей поступает в жилые дома. Тепловые пункты бывают индивидуальные (ИТП), обслуживающие МКД и центральные. Из последних тепло поступает в целые микрорайоны, поселки или различные группы объектов. В статье мы подробно остановимся на принципе работы тепловых пунктов, расскажем, как их монтируют, и остановимся на тонкостях в функционировании устройств.

Как работает автоматизированный центральный тепловой пункт

Что делают тепловые пункты? В первую очередь, принимают электроэнергию от центральной сети и распределяют ее по объектам. Как было отмечено выше, существует автоматизированный центральный тепловой пункт, принцип работы которого заключаются в распределении тепловой энергии в необходимом соотношении. Это нужно для того, чтобы все объекты получали воду оптимальной температуры с достаточным напором. Что касается индивидуальных тепловых пунктов, они, прежде всего, рационально распределяют тепло между квартирами в МКД.

Зачем нужны ИТП, если системой теплоснабжения уже предусмотрены районные тепловые узлы? Если рассматривать МКД, где довольно много пользователей коммунальных услуг, слабый напор и низкая температура воды в них не редкость. Индивидуальные тепловые пункты успешно решают эти проблемы. Для обеспечения комфорта жителей МКД устанавливаются теплообменники, дополнительные насосы и иное оборудование.

Центральная сеть - источник водоснабжения. Именно оттуда, через вводный трубопровод со стальной задвижкой, под определенным напором идет горячая вода. На входе давление воды намного выше, чем нужно внутренней системе. В связи с этим в тепловом пункте должен быть установлен специальный прибор - регулятор давления. Чтобы обеспечить получение потребителем чистой воды оптимальной температуры и с необходимым уровнем давления, тепловые пункты оснащают всевозможными приборами:

  • автоматикой и датчиками температуры;
  • манометрами и термометрами;
  • приводами и регулирующими клапанами;
  • насосами с частотным регулированием;
  • предохранительными клапанами.

Автоматизированный центральный тепловой пункт работает по аналогичной схеме. ЦТП могут быть оснащены наиболее мощным оборудованием, дополнительными регуляторами и насосами, что объясняется объемами перерабатываемой ими энергии. В автоматизированный центральный тепловой пункт также должны быть включены современные системы автоматического контроля и регулировки для эффективного теплоснабжения объектов.

Теплопункт пропускает через себя обработанную воду, после чего она вновь уходит в систему, но уже по пути другого трубопровода. Автоматизированные системы тепловых пунктов с грамотно установленным оборудованием стабильно подают тепло, в них не возникает аварийных ситуаций, а энергопотребление становится более эффективным.

Источники тепла для ТП - предприятия, генерирующие тепло. Речь идет о теплоэлектроцентралях, котельных. Тепловые пункты соединяются с источниками и потребителями теплоэнергии при помощи теплосетей. Они, в свою очередь, бывают первичными (магистральными), которые объединяют ТП и предприятия, генерирующие тепло, и вторичными (разводящими), объединяющими тепловые пункты и конечных потребителей. Тепловой ввод является участком теплосети, который соединяет тепловые пункты и магистральные тепловые сети.

Тепловые пункты включают в себя ряд систем, благодаря которым пользователи получают теплоэнергию.

  • Система ГВС. Она необходима, чтобы абоненты получали горячую водопроводную воду. Нередко потребители пользуются теплом из системы горячего водоснабжения, чтобы частично отапливать помещения, к примеру, ванные комнаты в МКД.
  • Отопительная система нужна, чтобы обогревать помещения и поддерживать в них заданную температуру. Схемы присоединения отопительных систем бывают зависимыми и независимыми.
  • Вентиляционная система требуется для подогрева воздуха, который поступает в вентиляцию объектов извне. Система также может быть использована, чтобы присоединять друг к другу зависимые отопительные системы пользователей.
  • Система ХВС. Не является частью систем, которые потребляют теплоэнергию. При этом система есть во всех тепловых пунктах, которые обслуживают МКД. Система холодного водоснабжения существует, чтобы обеспечивать необходимый уровень давления в системе водоснабжения.

Схема автоматизированного теплового пункта зависит как от особенностей пользователей теплоэнергии, которых обслуживает тепловой пункт, так и особенностей источника, который снабжает ТП тепловой энергией. Самым распространенным является автоматизированный тепловой пункт, у которого закрытая система ГВС и независимая схема присоединения отопительной системы.

Носитель тепла (к примеру, вода с температурным графиком 150/70), поступающий в тепловой пункт по подающей трубе теплового ввода, отдает тепло в подогревателях систем ГВС, где температурный график равен 60/40, и отопления с температурным графиком 95/70, а также поступает в вентиляционную систему пользователей. Далее теплоноситель возвращается в обратный трубопровод теплового ввода и по магистральным сетям направляется обратно на предприятие, генерирующее тепло, где используется вновь. Определенный процент теплового носителя может расходовать потребитель. Чтобы восполнять потери в первичных теплосетях на котельных и ТЭЦ, специалисты пользуются системами подпитки, источниками теплового носителя для которых являются системы водоподготовки данных предприятий.

Водопроводная вода, поступающая в тепловой пункт, минует насосы ХВС. После насосов определенную долю холодной воды получают потребители, а другую часть нагревает подогреватель первой ступени ГВС. Далее вода направляется в циркуляционный контур системы ГВС.

В циркуляционном контуре работают циркуляционные насосы ГВС, которые заставляют воду двигаться по кругу: от тепловых пунктов к пользователям и обратно. Пользователи же отбирают воду из контура, когда это необходимо. В ходе циркуляции по контуру вода постепенно охлаждается, и чтобы ее температура всегда была оптимальной, нужен ее постоянный подогрев в подогревателе второй ступени ГВС.

Отопительная система является замкнутым контуром, по которому тепловой носитель двигается от тепловых пунктов к отопительной системе зданий и в обратном направлении. Такому движению способствуют циркуляционные насосы отопления. Со временем не исключены утечки теплоносителя из контура отопительной системы. Чтобы восполнять потери, специалисты пользуются системой подпитки теплового пункта, в которой применяют первичные теплосети как источники теплового носителя.

Какие преимущества имеет автоматизированный тепловой пункт

  • Протяженность труб теплосети в целом сокращается вдвое.
  • На 20–25 % снижаются финансовые вложения в теплосети и затраты на материалы для строительства и теплоизоляции.
  • Электрической энергии на перекачку теплового носителя требуется на 20–40 % меньше.
  • Наблюдается до 15 % экономии тепловой энергии на отопление, так как поступление тепла определенному абоненту регулируется в автоматическом режиме.
  • Происходит снижение потери тепловой энергии при транспортировке ГВС в 2 раза.
  • Аварийность сетей существенно сокращается, особенно благодаря исключению из тепловой сети труб ГВС.
  • Поскольку для работы автоматизированных теплопунктов не требуется непрерывно находящегося там персонала, в привлечении большого количества квалифицированных специалистов нет необходимости.
  • Поддержание комфортных условий проживания благодаря контролю параметров тепловых носителей происходит в автоматическом режиме. В частности, поддерживается температура и давление сетевой воды, воды в отопительной системе, воды из водопровода, а также воздуха в отапливаемых помещениях.
  • Каждое здание оплачивает потребленное по факту тепло. Вести подсчеты использованных ресурсов удобно благодаря счетчикам.
  • Удается экономить тепло, а благодаря полному заводскому исполнению снижаются расходы на монтаж.

Мнение эксперта

Выгода автоматического регулирования теплоснабжения

К. Е. Логинова,

специалист компании Enerdgy Transfer

Почти любая система централизованного теплоснабжения имеет основную проблему, связанную с наладкой и регулировкой гидравлического режима. Если не уделять внимания данным опциям, помещение или не нагревается до конца, или перегревается. Для решения проблемы можно использовать автоматизированный индивидуальный тепловой пункт (АИТП), предоставляющий пользователю теплоэнергию в том количестве, в котором нужно.

Автоматизированный индивидуальный тепловой пункт ограничивает расход сетевой воды в отопительных системах пользователей, которые находятся рядом с центральным тепловым пунктом. Благодаря АИТП эта сетевая вода перераспределяется к удаленным потребителям. Кроме того, за счет АИТП энергия расходуется в оптимальном количестве, а температурный режим в квартирах всегда остается комфортным, вне зависимости от погодных условий.

Автоматизированный индивидуальный тепловой пункт дает возможность снизить сумму оплаты за тепло и потребление ГВС где-то на 25 %. Если температура на улице превышает минус 3 градуса, собственникам квартир в МКД начинает грозить переплата за отопление. Лишь благодаря АИТП тепловая энергия расходуется в доме в том количестве, в котором нужно для поддержания комфортной среды. Именно в связи с этим множество «холодных» домов устанавливают автоматизированные индивидуальные тепловые пункты, дабы избежать низкой некомфортной температуры.

Из рисунка видно, как два корпуса общежитий потребляют теплоэнергию. В корпусе 1 установлен автоматизированный индивидуальный тепловой пункт, в корпусе 2 его нет.

Потребление тепловой энергии двумя корпусами общежитий с АИТП (корпус 1) и без него (корпус 2)

АИТП устанавливают на вводе системы теплоснабжения здания, в подвальном помещении. Генерация тепла не является функцией тепловых пунктов, в отличие от котельных. Тепловые пункты работают с подогретым носителем тепла, который поставляет централизованная теплосеть.

Стоит отметить, что в АИТП применяется частотная регулировка насосов. Благодаря системе оборудование работает более надежно, не происходят провалы и гидроудары, а уровень потребления электрической энергии существенно понижается.

Что включают в себя автоматизированные тепловые пункты? Экономия в АИТП воды и тепла осуществляется благодаря тому, что параметры теплового носителя в системе теплоснабжения оперативно меняются с учетом изменяющихся погодных условий или потребления определенной услуги, к примеру, горячей воды. Это достигается за счет того, что используется компактное экономичное оборудование. Речь в данном случае идет о циркуляционных насосах с низким уровнем шума, компактных теплообменниках, современных электронных приборах автоматической регулировки подачи и учета тепловой энергии и иных вспомогательных элементах (фото).


Основные и вспомогательные элементы АИТП:

1 - щит управления; 2 - бак-аккумулятор; 3 - манометр; 4 - биметаллический термометр; 5 - коллектор подающего трубопровода системы отопления; 6 - коллектор обратного трубопровода системы отопления; 7 - теплообменник; 8 - циркуляционные насосы; 9 - датчик давления; 10 - механический фильтр

Обслуживание автоматизированных тепловых пунктов необходимо осуществлять каждый день, каждую неделю, раз в месяц или раз в год. Все зависит от регламента.

В рамках ежедневного обслуживания оборудование и узлы теплопункта тщательно осматривают, выявляя неполадки и оперативно устраняя их; контролируют, как работает отопительная система и ГВС; проверяют, соответствуют ли показания контрольных приборов режимным картам, отражают параметры работы в журнале АИТП.

Обслуживание автоматизированных тепловых пунктов раз в неделю подразумевает проведение определенных мероприятий. В частности, специалисты осматривают измерительные и приборы автоматического контроля, выявляя возможные неполадки; проверяют, как работает автоматика, смотрят на резервное питание, подшипники, запорно-регулирующую арматуру насосного оборудования, уровень масла в гильзах термометров; чистят насосное оборудование.

В рамках ежемесячного обслуживания специалисты проверяют, как работает насосное оборудование, имитируя аварии; проверяют, как закреплены насосы, в каком состоянии находятся электродвигатели, контакторы, магнитные пускатели, контакты и предохранители; продувают и проверяют манометры, контролируют автоматику узлов отпуска тепла на отопление и горячее водоснабжение, тестируют работу в разных режимах, контролируют узел подпитки отопления, снимают показания расхода тепловой энергии со счетчика с целью передать их организации, поставляющей тепло.

Обслуживание автоматизированных тепловых пунктов раз в год подразумевает их осмотр и диагностику. Специалисты проверяют открытую электрическую проводку, предохранители, изоляцию, заземление, отключающие автоматы; осматривают и меняют теплоизоляцию трубопроводов и водонагревателей, смазывают подшипники электродвигателей, насосов, зубчатых колес, клапанов регулировки, гильз манометров; проверяют, насколько герметичны соединения и трубопроводы; смотрят на болтовые соединения, укомплектованность теплопункта оборудованием, меняют сломанные составляющие, промывают грязевик, очищают или меняют сетчатые фильтры, чистят поверхности нагрева ГВС и системы отопления, опрессовывают давлением; сдают подготовленный к сезону автоматизированный индивидуальный тепловой пункт, оформляя ведомость о пригодности его использования в зимний период.

Основное оборудование можно применять в течение 5–7 лет. По истечении этого срока выполняют его капитальный ремонт или меняют некоторые элементы. Основным деталям АИТП поверка не нужна. Ей подлежат КИП, узел учета, датчики. Поверка, как правило, проводится с периодичностью раз в 3 года.

В среднем цена регулирующего клапана составляет на рынке от 50 до 75 тыс. руб., насоса - от 30 до 100 тыс. руб., теплообменника - от 70 до 250 тыс. руб., тепловой автоматики - от 75 до 200 тыс. руб.

Автоматизированные блочные тепловые пункты

Автоматизированные блочные тепловые пункты, или БТП, производятся на заводах. Для монтажных работ их поставляют готовыми блоками. Для создания теплового пункта данного типа может использоваться один блок или несколько. Блочное оборудование монтируют компактно, обычно на одной раме. Как правило, его используют, чтобы экономить место, если условия достаточно тесные.

Автоматизированные блочные тепловые пункты упрощают решение даже сложных экономических и производственных задач. Если мы говорим об отрасли экономики, здесь следует затронуть следующие моменты:

  • оборудование начинает работать более надежно, соответственно, аварии происходят реже, а денег на ликвидацию требуется меньше;
  • регулировать тепловую сеть удается максимально точно;
  • сокращаются расходы на водоподготовку;
  • уменьшаются ремонтные участки;
  • можно достигать высокой степени архивирования и диспетчеризации.

В сферах ЖКХ, МУП, УО (управляющих организациях):

  • обслуживающий персонал требуется в меньшем количестве;
  • оплата за использованную по факту теплоэнергию осуществляется без финансовых издержек;
  • снижаются потери на подпитку системы;
  • освобождаются свободные площади;
  • удается достичь долговечности и высокого уровня ремонтопригодности;
  • управлять тепловой нагрузкой становится комфортнее и легче;
  • не требуется постоянное операторское и сантехническое вмешательство в работу теплового пункта.

Что касается проектных организаций, здесь можно говорить о:

Для компаний, работающих в промышленной сфере, - это:

  • резервирование в высокой степени, что особенно важно, если технологические процессы ведутся непрерывно;
  • четкое следование высокотехнологическим процессам и их учет;
  • возможность использовать конденсат, если есть, технологический пар;
  • регулировка температуры по цехам;
  • регулировка отбора ГВС и пара;
  • снижение подпитки и т. д.

В ТП большей части объектов обычно есть кожухотрубные теплообменники и гидравлические регуляторы прямого давления. Чаще всего ресурсы у данного оборудования уже исчерпались, кроме того оно работает в режимах, не советующих расчетным. Последний момент вызван тем, что сейчас поддержание тепловых нагрузок ведется на уровне значительно более низком, чем это предусмотрено проектом. У регулирующей аппаратуры есть свои функции, которые, однако, в случае существенных отклонений от расчетного режима она не осуществляет.

Если автоматизированные системы тепловых пунктов подлежат реконструкции, лучше пользоваться современным компактным оборудованием, позволяющим работать автоматически и экономить порядка 30 % энергии в сравнении с оборудованием, которое использовали в 60–70 гг. В данный момент тепловые пункты оснащены, как правило, независимой схемой подключения отопительных систем и ГВС, базой для которых служат разборные пластинчатые теплообменники.

Чтобы управлять тепловыми процессами, обычно пользуются специализированными контроллерами и электронными регуляторами. Вес и габариты современных пластинчатых теплообменников значительно меньше кожухотрубных с соответствующей мощностью. Пластинчатые теплообменники компактны и легки, а значит их несложно монтировать, просто обслуживать и ремонтировать.

Важно!

Основу расчета теплообменников пластинчатого типа составляет система критериальных управлений. Перед расчетом теплообменника проводят расчет оптимального распределения нагрузки ГВС между ступенями подогревателей и температурного режима всех ступеней в отдельности, учитывая метод регулировки отпуска тепла от теплового источника и схем присоединения подогревателей ГВС.

Индивидуальный автоматизированный тепловой пункт

ИТП является целым комплексом устройств, который находится на территории отдельного помещения и состоит, в том числе, из элементов теплооборудования. Благодаря индивидуальному АТП данные установки подключаются к теплосети, трансформируются, происходит управление режимами потребления тепла, осуществляется работоспособность, выполняется распределение по типам потребления теплового носителя, регулируются его параметры.

Тепловая установка, обслуживающая объект или отдельные его части, - это ИТП, или индивидуальный тепловой пункт. Установка необходима, чтобы поставлять в дома, объекты ЖКХ и производственные комплексы ГВС, вентиляцию и тепло. Для работы ИТП необходимо подключить его к системе водо-, тепло- и электроснабжения, чтобы активировать циркуляционное насосное оборудование.

ИТП малого размера может успешно применяться в доме, где проживает одна семья. Данный вариант также подходит малогабаритным строениям, напрямую подключенным к централизованной сети теплоснабжения. Оборудование данного типа предназначено, чтобы отапливать помещения и подогревать воду. ИТП больших габаритов мощностью 50 кВт–2 МВт обслуживают большие или многоквартирные здания.

Классическая схема автоматизированного теплового пункта индивидуального типа состоит из следующих узлов:

  • ввод теплосети;
  • счетчик;
  • подключение вентиляционной системы;
  • подключение отопления;
  • подключение ГВС;
  • согласование давлений между системами теплопотребления и теплоснабжения;
  • подпитка систем отопления и вентиляции, подключенных по независимой схеме.

Когда разрабатывается проект ТП, следует помнить, что обязательные узлы - это:

  • счетчик;
  • согласование давлений;
  • ввод теплосети.

Тепловой пункт можно оснащать и другими узлами. Их количество определяется проектным решением в каждом отдельном случае.

Допуск в эксплуатацию ИТП

Для подготовки ИТП к использованию в МКД требуется подача в Энергонадзор следующей документации:

  • Техусловия для подключения, которые действуют в данный момент, и справка о том, что они выполнены. Справку выдает энергоснабжающее предприятие.
  • Проектные документы, где есть все необходимые согласования.
  • Акт об ответственности сторон за использование и разделение балансовой принадлежности, который составили потребитель и представитель энергоснабжающего предприятия.
  • Акт о том, что абонентское ответвление ТП готово к постоянному или временному использованию.
  • Паспорт индивидуального теплового пункта, где кратко перечислены характеристики систем теплоснабжения.
  • Справка о том, что счетчик теплоэнергии готов к эксплуатации.
  • Справка, что договор на снабжение тепловой энергией с энергоснабжающим предприятием заключен.
  • Акт о приемке проведенных работ между пользователем и монтажным предприятием. В документе должен быть указан номер лицензии и дата, когда она выдана.
  • Приказ о назначении ответственного специалиста за безопасное использование и нормальное техническое состояние теплосетей и тепловых установок.
  • Перечень, где отражены оперативные и оперативно-ремонтные ответственные лица по обслуживаю теплосетей и тепловых установок.
  • Копия свидетельства сварщика.
  • Сертификаты на трубопроводы и электроды, используемые в работе.
  • Акты на проведение скрытых работ, исполнительную схему теплового пункта, где указана нумерация арматуры, а также схемы запорной арматуры и трубопроводов.
  • Акт на промывку и опрессовку систем (теплосети, отопление, ГВС).
  • Должностные инструкции, а также инструкции по технике безопасности и правила поведения при пожаре.
  • Инструкции по эксплуатации.
  • Акт о том, что сети и установки допущены к использованию.
  • Журнал учета КИПиА, выдачи нарядов-допусков, оперативного учета обнаруженных дефектов в ходе осмотра установок и сетей, проверке зданий и инструкций.
  • Наряд из теплосетей на подключение.

Специалисты, производящие обслуживание автоматизированных тепловых пунктов, должны обладать соответствующей квалификацией. Кроме того, ответственные лица обязаны сразу же знакомиться с техническими документами, где обозначено, как использовать ТП.

Типы ИТП

Схема ИТП для отопления независимая. В соответствии с ней устанавливают пластинчатый теплообменник, рассчитанный на стопроцентную нагрузку. Предусмотрен также монтаж сдвоенного насоса, который компенсирует потери уровня давления. Отопительную систему подпитывает обратный трубопровод теплосетей. ТП данного типа можно оснастить блоком ГВС, счетчиком и иными необходимыми узлами и блоками.

Схема автоматизированного теплового пункта индивидуального типа для ГВС также независима. Она бывает параллельной и одноступенчатой. Такой ИТП содержит 2 пластинчатых теплообменника, и каждый должен работать с нагрузкой 50 %. Комплектация теплового пункта также предусматривает группу насосов, которые предназначены, чтобы компенсировать понижение давления. В ТП также иногда устанавливают блок системы отопления, счетчик и другие блоки и узлы.

ИТП для отопления и ГВС. Организация автоматизированного теплового пункта в этом случае организуется по независимой схеме. Для системы отопления предусмотрен пластинчатый теплообменник, рассчитанный на стопроцентную нагрузку. Схема ГВС является двухступенчатой, независимой. В ней два пластинчатых теплообменника. Чтобы компенсировать понижение уровня давления, схема автоматизированного теплового пункта предполагает установку группы насосов. Для подпитки системы отопления предусмотрено соответствующее насосное оборудование из обратного трубопровода теплосетей. ГВС подпитывает система ХВС.

Помимо этого в ИТП (индивидуальном тепловом пункте) есть счетчик.

ИТП для отопления, горячего водоснабжения и вентиляции . Тепловая установка подключается по независимой схеме. Для системы отопления и вентиляции используют пластинчатый теплообменник, выдерживающий нагрузку в 100 %. Схему ГВС можно обозначить как одноступенчатую, независимую и параллельную. В ней есть два пластинчатых теплообменника, каждый из которых рассчитан на нагрузку 50 %.

Понижение уровня давления компенсируется группой насосов. Отопительная система подпитывается благодаря обратному трубопроводу теплосетей. ГВС подпитывается из ХВС. ИТП в МКД можно дополнительно оснащать счетчиком.

Расчет тепловых нагрузок здания для выбора оборудования для автоматизированного теплового пункта

Тепловая нагрузка на отопление - это объем тепла, которое отдают все обогревающие устройства в целом, установленные в доме или на территории другого объекта. Отметим, перед монтажом всех технических средств необходимо все тщательно просчитать, чтобы обезопасить себя от непредвиденных ситуаций и ненужных денежных расходов. Если грамотно рассчитать тепловые нагрузки на систему отопления, можно достичь эффективной и бесперебойной работы системы обогрева жилого дома или иного здания. Расчет способствует оперативному выполнению абсолютно всех задач, связанных с теплоснабжением, и обеспечению их работы в соответствии с требованиями и нормами СНиП.

В общую тепловую нагрузку на современную отопительную систему включены определенные параметры нагрузок:

  • на общую центральную отопительную систему;
  • на систему напольного отопления (если она есть в помещении) - теплого пола;
  • систему вентиляции (естественной и принудительной);
  • систему ГВС;
  • на различные нужды технологического характера: бассейны, бани и иные похожие конструкции.
  • Вид и предназначение зданий. При расчетах важно учитывать, к какому типу относится недвижимость - квартира это, административная постройка или здание нежилого назначения. Кроме того, вид постройки влияет на норму нагрузки, которую, в свою очередь, определяют организации, поставляющие тепло. Сумма оплаты за услуги отопления также зависит также именно от этого.
  • Архитектурную составляющую. При расчетах важно знать габариты различных наружных конструкций, к которым относятся стены, полы, крыши и другие ограждения; масштабы проемов - балконов, лоджий, окон и дверей. Учитывают также, сколько этажей в здании, есть ли в нем подвалы, чердаки, какими особенностями они обладают.
  • Температурный режим для всех объектов в здании с учетом требований. Здесь речь идет о температурных режимах в отношении всех комнат в жилом доме или зон административной постройки.
  • Конструкцию и особенности ограждений снаружи, включая вид материалов, толщину и наличие прослоек для утепления.
  • Предназначение объекта. Обычно применяется к производственным объектам, в цехе или на участке которых предполагается создание определенных температурных условий.
  • Наличие и характеристики помещений специального назначения (речь идет о бассейнах, саунах и иных объектах).
  • Уровня техобслуживания (есть ли в помещении ГВС, вентиляционные системы и кондиционер, какое там централизованное отопление).
  • Общее число точек, из которых берется горячая вода . На этот параметр стоит смотреть в первую очередь. Чем больше точек забора, тем больше тепловой нагрузки ложится на всю отопительную систему.
  • Количество жителей дома или людей, пребывающих на территории объекта. Показатель влияет на требования к температуре и влажности. Данные параметры являются факторами, которые содержит в себе формула расчета тепловой нагрузки.
  • Другие показатели. Если мы говорим об объекте промышленности, здесь важно количество смен, работников в одну смену и рабочих дней в году. Применительно к частному домовладению важно, сколько в нем жильцов, количество санузлов, комнат и т. д.

Способы определения тепловых нагрузок

1. Укрупненным методом расчета на отопительную систему пользуются в случае отсутствия информации о проектах или несоответствии подобных сведений реальным показателям. Укрупненный расчет тепловой нагрузки отопительной системы производится по довольно простой формуле:

Qmax от. = α*V*q0*(tв-tн.р.)*10 – 6,

где α - поправочный коэффициент, учитывающий климат в регионе, в котором располагается объект (его используют, если расчетная температура отличается от минус 30 градусов); q0 является удельной характеристикой отопительной системы, которую выбирают в зависимости от температуры самой холодной недели за год; V - наружный объем постройки.

2. В рамках комплексного теплотехнического метода обследования обязательно термографируют все конструкции - стены, двери, перекрытия, окна. Отметим, благодаря подобным процедурам возможно определение и фиксация факторов, существенно влияющих на тепловые потери на объекте.

Результаты тепловизионной диагностики позволят получить представление о реальном перепаде температуры при прохождении определенного количества тепла через 1 м 2 конструкций ограждения. Кроме того, это дает возможность узнать о расходе тепловой энергии в случае определенного температурного перепада.

При расчетах особое внимание уделяют практическим измерениям, которые являются неотъемлемой частью работы. Благодаря им можно узнать о тепловой нагрузке и потерях тепла, которые будут происходить на конкретном объекте в течение определенного срока. Благодаря практичному расчету получают информацию о показателях, которые не освещает теория, а если точнее, узнают об «узких местах» каждого из сооружений.

Установка автоматизированного теплового пункта

Предположим, в рамках общего собрания владельцы помещений в МКД решили, что организация автоматизированного теплового пункта все-таки нужна. Сегодня такое оборудование представлено в широком ассортименте, однако не каждый автоматизированный тепловой пункт может подойти именно вашему домовладению.

Это интересно!

99 % пользователей не имеют понятия о том, что главное - это первоначальное проведение технико-экономического исследования в МКД. Только после обследования нужно подбирать автоматизированный индивидуальный тепловой пункт, состоящий или из блоков и модулей прямо с завода, или собрать оборудование в подвале вашего дома, применив для этого отдельные запчасти.

АИТП, выпущенные на заводе, более легкие и быстрые в монтаже. Требуется лишь крепление модульных блоков к фланцам с последующим подключением прибора к розетке. В связи с этим большая часть монтажных компаний отдает предпочтение именно таким автоматизированным тепловым пунктам.

Если собран на заводе автоматизированный тепловой пункт, цена на него всегда выше, но это компенсируется хорошим качеством. Автоматизированные тепловые пункты выпускают заводы двух категорий. В первую входят крупные предприятия, где производят серийную сборку ТП, во вторую - компании среднего и крупного масштаба, изготавливающие тепловые пункты из блоков в соответствии с индивидуальными проектами.

Серийным производством автоматизированных тепловых пунктов в России занимаются всего несколько компаний. Такие ТП собраны очень качественно, из надежных деталей. Однако серийное производство имеет и существенный недостаток - невозможность изменения габаритных размеров блоков. Замена одного производителя запчастей на другого невозможна. Технологическая схема автоматизированного теплового пункта также не поддается изменениям, и адаптировать ее под ваши потребности нельзя.

Этих недостатков не имеют автоматизированные блочные тепловые пункты, для которых разрабатывают индивидуальные проекты. Такие тепловые пункты производят в каждом мегаполисе. Однако здесь есть свои риски. В частности, можно столкнуться с недобросовестным производителем, собирающим ТП, грубо говоря, «в гараже», или же наткнуться на ошибки в проектировании.

В ходе демонтажа проемов дверей и реконструкции стен нередко наблюдается увеличение работ по монтажу в 2–3 раза. При этом никто не может дать гарантии, что производители не допустили ошибку случайно при замере проемов и отправили на производство верные габариты.

Организация автоматизированного теплового пункта сборного типа всегда возможна в доме, даже при нехватке места в подвале. Такой ТП может включать в себя блоки по типу заводских. Автоматизированный тепловой пункт, цена которого гораздо ниже, также имеет недостатки.

Заводы всегда сотрудничают с проверенными поставщиками и приобретают запчасти у них. Кроме того, есть заводская гарантия. Автоматизированные блочные тепловые пункты проходят процедуру опрессовки, то есть их сразу проверяют на протечки еще в заводских условиях. Для окраски их труб используется краска высокого качества.

Контроль за бригадами рабочих, производящих монтаж - достаточно сложное мероприятие. В каком месте и каким образом закупаются манометры, шаровые краны? Эти детали успешно подделывают в азиатских странах, и если данные комплектующие стоят недорого, то лишь из-за того, что при их изготовлении была использована некачественная сталь. Кроме того, нужно смотреть на сварочные швы, их качество. УК многоквартирных домов, как правило, не располагают необходимым оборудованием. Вам непременно следует требовать от подрядчиков гарантии на монтаж, а сотрудничать, конечно, лучше с компаниями, проверенными временем. У специализированных предприятий в наличии всегда есть необходимое оборудование. Эти организации располагают ультразвуковыми и рентгеновскими дефектоскопами.

Монтажная компания должна быть членом СРО. Не меньшее значение приобретает и сумма страховых выплат. Экономия на страховых взносах не является отличительной чертой крупных предприятий, поскольку им важно рекламировать свои услуги и быть уверенными в том, что клиент спокоен. Непременно следует смотреть на то, какая сумма уставного капитала у монтажного предприятия. Минимальный размер - 10 тыс. руб. Если вам попалась организация примерно с таким капиталом, скорее всего, вы наткнулись на шабашников.

Ключевые технические решения, используемые в АИТП, можно распределить по двум группам:

  • схема соединения с теплосетью независимая - в этом случае тепловой носитель контура отопления в доме отделен от теплосети бойлером (теплообменником) и циркулирует по замкнутому циклу непосредственно внутри объекта;
  • схема соединения с теплосетью зависимая - тепловой носитель районной теплосети применяется в радиаторах отоплений нескольких объектов.

На рисунках ниже указаны самые распространенные схемы соединения тепловых сетей и тепловых пунктов.

При независимых схемах соединения используются пластинчатые или кожухотрубные теплообменные агрегаты. Они бывают разных видов, со своими плюсами и минусами. При зависимых схемах соединения с теплосетью используют узлы подмеса или элеваторы с управляемым соплом. Если говорить о наиболее оптимальном варианте, это - автоматизированные тепловые пункты, схема присоединения у которых зависимая. Такой автоматизированный тепловой пункт, цена которого существенно ниже, более надежен. Обслуживание автоматизированных тепловых пунктов такого типа также можно назвать качественным.

Увы, если необходимо организовать теплоснабжение на объектах со множеством этажей, используют исключительно независимую схему присоединения для соблюдения соответствующих технологических правил.

Есть множество способов, как скомпоновать автоматизированный тепловой пункт для определенного объекта с использованием качественных запчастей, выпущенных мировыми или отечественными производителями. Руководство УК вынуждено полагаться на проектировщиков, однако они обычно аффилированы с конкретным производителем ТП или компанией, производящей монтаж.

Мнение эксперта

В России не хватает энергосервисных компаний - адвокатов потребителей

А. И. Маркелов,

генеральный директор компании «Энерджи Трансфер»

На рынке теплосберегающих технологий сейчас отсутствует баланс. Нет механизма, благодаря которому потребитель может грамотно и компетентно выбирать специалистов по проектированию, монтажу, а также компании по производству АИТП. Все это приводит к тому, что организация автоматизированного теплового пункта не приносит желаемых результатов.

Как правило, в ходе монтажа АИТП не производится наладка (гидравлическая балансировка) отопительной системы объекта. Однако она нужна, поскольку качество отопления в подъездах разное. В одном подъезде дома может быть очень холодно, в другом жарко.

При монтаже автоматизированного теплового пункта можно пользоваться пофасадным регулированием, когда регулировка одной стороны МКД не зависит от другой. Благодаря всем этим процедурам монтаж АИТП становится более эффективным.

Развитые страны Европы достаточно успешно пользуются энергосервисом. Энергосервисные компании существуют, для того чтобы отстаивать интересы потребителей. Благодаря им пользователям никогда не приходится напрямую разбираться с продавцами. При отсутствии экономии, достаточной для окупаемости расходов, энергосервисному предприятию может грозить банкротство, так как его прибыль зависит от экономии пользователя.

Остается надеяться на появление в России адекватных правовых механизмов, за счет которых удастся достичь экономии при оплате КУ.

Тепловые пункты: устройство, работа, схема, оборудование

Тепловой пункт представляет собой комплекс технологического оборудования, которое используется в процессе теплоснабжения, вентиляции и горячего водоснабжения потребителей (жилых и производственных зданий, строительных площадок, объектов социального назначения). Главное назначение тепловых пунктов - это распределение тепловой энергии от тепловой сети между конечными потребителями.

Преимущества установки тепловых пунктов в системе теплоснабжения потребителей

Среди преимуществ тепловых пунктов можно назвать следующие:

  • минимизация тепловых потерь
  • сравнительно низкие эксплуатационные затраты, экономичность
  • возможность выбора режима теплоснабжения и теплопотребления в зависимости от времени суток и сезона
  • бесшумная работа, малые габариты (по сравнению с другим оборудованием системы теплообеспечения)
  • автоматизация и диспетчеризация процесса эксплуатации
  • возможность изготовления по индивидуальному заказу

Тепловые пункты могут иметь разные тепловые схемы, типы систем теплопотребления и характеристики используемого оборудования, что зависит от индивидуальных требований Заказчика. Комплектация ТП определяется на основе технических параметров тепловой сети:

  • тепловые нагрузки на сеть
  • температурный режим холодной и горячей воды
  • давление систем тепло- и водоснабжения
  • возможные потери давления
  • климатические условия и т.д.

Виды тепловых пунктов

Вид необходимого теплового пункта зависит от его назначения, количества подводящих теплосистем, количества потребителей, способу размещения и монтажа и выполняемых пунктом функций. В зависимости от вида теплового пункта выбирается его технологическая схема и комплектация.

Тепловые пункты бывают следующих видов:

  • индивидуальные тепловые пункты ИТП
  • центральные тепловые пункты ЦТП
  • блочные тепловые пункты БТП

Открытые и закрытые системы тепловых пунктов. Зависимые и независимые схемы подключения тепловых пунктов

В открытой системе теплоснабжения вода для работы теплового пункта поступает непосредственно из теплосетей. Водозабор может быть полным или частичным. Объем воды, забранный для нужд теплового пункта, восполняется поступлением воды в теплосеть. Следует отметить, что водоподготовка в таких системах осуществляется только на входе в теплосеть. Из-за этого качество воды, поступающей потребителю, оставляет желать лучшего.

Открытые системы, в свою очередь, могут быть зависимыми и независимыми.

В зависимой схеме подключения теплового пункта к тепловой сети теплоноситель из теплосетей попадает непосредственно в систему отопления. Такая система достаточно проста, так как в ней отсутствует необходимость установки дополнительного оборудования. Хотя эта же особенность ведет к существенному недостатку, а, именно, к невозможности регулирования подачи тепла потребителю.

Независимые схемы подключения теплового пункта характеризуются экономической выгодой (до 40%), так как в них между оборудованием конечных потребителей и источником теплоэнергии установлены теплообменники тепловых пунктов, которые регулируют количество подаваемого тепла. Также неоспоримым преимуществом является повышение качества подаваемой воды.

В связи с энергоэффективностью независимых систем многие тепловые компании реконструируют и модернизируют свое оборудование из зависимых систем в независимые.

Закрытая система теплоснабжения является полностью изолированной системой и использует циркулирующую воду в трубопроводе без забора ее из тепловых сетей. Такая система использует воду только в качестве теплоносителя. Утечка теплоносителя возможна, но вода восполняется автоматически при помощи регулятора подпитки.

Количество теплоносителя в закрытой системе остается постоянным, а выработка и распределение тепла потребителю регулируется температурой теплоносителя. Закрытая система характеризуется высоким качеством водоподготовки и высокой энергоэффективностью.

Способы обеспечения потребителей тепловой энергией

По способу обеспечения потребителей тепловой энергией различают одноступенчатые и многоступенчатые тепловые пункты.

Одноступенчатая система характеризуются непосредственным присоединение потребителей к тепловым сетям. Место присоединение называется абонентским вводом. Для каждого объекта теплопотребления должен быть предусмотрен свое технологическое оборудование (подогреватели, элеваторы, насосы, арматура, оборудование КИПиА и др.).

Недостатком одноступенчатой системы подключения является ограничение предела допустимого максимального давления в теплосетях из-за опасности высокого давления для радиаторов отопления. В связи с этим такие системы, в основном, используют для небольшого количества потребителей и для тепловых сетей небольшой длины.

Многоступенчатые системы подключения характеризуются наличием тепловых пунктов между источником тепла и потребителем.

Индивидуальные тепловые пункты

Индивидуальные тепловые пункты обслуживают одного мелкого потребителя (дом, небольшое строение или здание), который уже подключен к системе центрального теплоснабжения. Задача такого ИТП - обеспечение потребителя горячей водой и отоплением (до 40 кВт). Существуют крупные индивидуальные пункты, мощность которых может достигать 2 МВт. Традиционно ИТП размещают в подвале или техническом помещении здания, реже их располагают в отдельно стоящих помещениях. К ИТП подключают только теплоноситель и осуществляют подвод водопроводной воды.

ИТП состоят из двух контуров: первый контур - это контур отопления для поддержания заданной температуры в отапливаемом помещении при помощи датчика температуры; второй контур - это контур горячего водоснабжения.

Центральные тепловые пункты

Центральные тепловые пункты ЦТП применяют для теплообеспечения группы зданий и сооружений. ЦТП выполняют функцию обеспечения потребителей ГВС, ХВС и теплом. Степень автоматизации и диспетчеризации центральных тепловых пунктов (только контроль за параметрами или контроль/управление параметрами ЦТП) определяется Заказчиком и технологическими нуждами. ЦТП могут иметь как зависимую, так и независимую схему подключения к тепловой сети. При зависимой схеме подключения теплоноситель в самом тепловой пункте разделяется на систему отопления и систему горячего водоснабжения. В независимой схеме подключения теплоноситель нагревается во втором контуре теплового пункта поступающей водой из тепловой сети.

Они поставляются на монтажную площадку в полной заводской готовности. На месте последующей эксплуатации осуществляется только подключение к теплосетям и настройка оборудования.

Оборудование центрального теплового пункта (ЦТП) включает в себя следующие элементы:

  • подогреватели (теплообменники) - секционные, многоходовые, блочного типа, пластинчатые - в зависимости от проекта, для горячего водоснабжения, поддерживающие нужную температуру и напор воды у водоразборных точек
  • циркуляционные хозяйственные, противопожарные, отопительные и резервные насосы
  • смесительные устройства
  • тепловые и водомерные узлы
  • контрольно-измерительные приборы КИП и автоматики
  • запорно-регулирующая арматура
  • расширительный мембранный бак

Блочные тепловые пункты (модульные тепловые пункты)

Блочный (модульный) тепловой пункт БТП имеет блочное исполнение. БТП может состоять из более, чем одного блока (модуля), смонтированных, зачастую, на одной объединенной раме. Каждый модуль является независимым и законченным пунктом. При этом регулирование работой общее. Блоснче тепловые пункты могут иметь как локальную систему управления и регулирования, так и дистанционное управление и диспетчеризацию.

В состав блочного теплового пункта могут входить как индивидуальные тепловые пункты, так и центральные тепловые пункты.

Основные системы теплоснабжения потребителей в составе теплового пункта

  • система горячего водоснабжения (открытая или закрытая схема подключения)
  • система отопления (зависимая или независимая схема подключения)
  • система вентиляции

Типовые схемы подключения систем в тепловых пунктах

Типовая схема подключения системы ГВС


Типовая схема подключения системы отопления


Типовая схема подключения системы ГВС и отопления


Типовая схема подключения системы ГВС, отопления и вентиляции


В состав теплового пункта также входит система холодного водоснабжения, но она не является потребителем тепловой энергии.

Принцип работы тепловых пунктов

Тепловая энергия поступает на тепловые пункты от теплогенерирующих предприятий посредством тепловых сетей - первичных магистрельных теплосетей. Вторичные, или разводящие, теплосети соединяют ТП уже с конечным потребителем.

Магистральные теплосети обычно имеют большую протяженность, соединяя источник тепла и непосредственно тепловой пункт, и диаметр (до 1400 мм). Зачастую магистральные тепловые сети могут объединять несколько теплогенерирующих предприятий, что увеличивает надежность обеспечения потребителей энергией.

Перед поступление в магистральные сети вода проходит водоподготовку, которая приводит химические показатели воды (жесткость, рН, содержание кислорода, железа) в соответствии с нормативными требованиями. Это необходимо для того, чтобы снижать уровень коррозионного влияния воды на внутреннюю поверхность труб.

Разводящие трубопроводы имеют сравнительно малую протяженность (до 500 м), соединяя тепловой пункт и уже конечного потребителя.

Теплоноситель (холодная вода) поступает по подающему трубопроводу в тепловой пункт, где проходит через насосы системы холодного водоснабжения. Далее он (теплоноситель) использует первичные подогреватели ГВС и подается в циркуляционный контур системы горячего водоснабжения, откуда поступает уже к конечному потребителю и обратно в ТП, постоянно циркулируя. Для поддержания необходимой температуры теплоносителя, он постоянно подогревается в подогревателе второй ступени ГВС.

Система отопления - это такой же замкнутый контур, как и система ГВС. В случае возникновения утечек теплоносителя, его объем восполняется из системы подпитки теплового пункта.

Затем теплоноситель поступает в обратный трубопровод и поступает опять на теплогенерирующее предприятие по магистральным трубопроводам.

Типовая комплектация тепловых пунктов

Для обеспечения надежной эксплуатации тепловых пунктов они поставляются со следующим минимальным технологическим оборудованием:

  • два пластинчатых теплообменника (паяные или разборные) для системы отопления и системы ГВС
  • насосная станция для перекачки теплоносителя к потребителю, а именно - к отопительным приборам здания или сооружения
  • система автоматического регулирования количества и температуры теплоносителя (датчики, контроллеры, расходомеры) для контроля параметров теплоносителя, учета тепловых нагрузок и регулирования расхода
  • система водоподготовки
  • технологическое оборудование - запорная арматура, обратные клапаны, контрольно-измерительные приборы, регуляторы

Следует отметить, что комплектация теплового пункта технологическим оборудованием во многом зависит от схемы подключения системы горячего водоснабжения и схемы подключения системы отопления.

Так, например, в закрытых системах устанавливаются теплообменники, насосы и оборудование водоподготовки для дальнейшего распределения теплоносителя между системой ГВС и системой отопления. А в открытых системах устанавливаются смесительные насосы (для смешения горячей и холодной воды в нужной пропорции) и регуляторы температуры.

Наши специалисты оказывают весь комплекс услуг, начиная с проектирования, производства, поставки, и заканчивая монтажом и пуско-наладкой тепловых пунктов различной комплектации.

Когда речь заходит о рациональном использовании тепловой энергии, все сразу же вспоминают о кризисе и неимоверных счетах по «жировкам», им спровоцированных. В новых домах, где предусмотрены инженерные решения, позволяющие регулировать потребление тепловой энергии в каждой отдельной квартире, можно найти оптимальный вариант отопления или горячего водоснабжения (ГВС), который устроит жильца. В отношении старых строений дело обстоит куда сложнее. Индивидуальные тепловые пункты становятся единственным разумным решением задачи экономии тепла для их обитателей.

Определение ИТП — индивидуальный тепловой пункт

Согласно хрестоматийному определению ИТП — это не что иное, как тепловой пункт, предназначенный для обслуживания целого здания или отдельных его частей. Эта сухая формулировка требует пояснения.

Функции индивидуального теплового пункта заключаются в перераспределении энергии, поступающей из сети (центральный тепловой пункт или котельная) между системами вентиляции, ГВС и отопления, в соответствии с потребностями здания. При этом учитывается специфика обслуживаемых помещений. Жилые, складские, подвальные и другие их виды, разумеется, должны отличаться и по температурному режиму и параметрам вентиляции.

Установка ИТП подразумевает наличие отдельного помещения. Чаще всего оборудование монтируется в подвальных или технических помещениях многоэтажек, пристройках к многоквартирным домам или в отдельно стоящих строениях, находящихся в непосредственной близости.

Модернизация здания путем установки ИТП требует существенных финансовых затрат. Несмотря на это, актуальность ее проведения продиктована преимуществами, сулящими несомненные выгоды, а именно:

  • расход теплоносителя и его параметры подвергаются учету и оперативному контролю;
  • распределение теплоносителя по системе в зависимости от условий теплопотребления;
  • регулирование расхода теплоносителя, в соответствии с возникшими требованиями;
  • возможность изменения вида теплоносителя;
  • повышенный уровень безопасности в случаях аварий и прочие.

Возможность влиять на процесс расхода теплоносителя и его энергетические показатели привлекательна сама по себе, не говоря об экономии от рационального использования тепловых ресурсов. Единовременные же затраты на оборудование ИТП с лихвой окупятся за весьма скромный промежуток времени.

Структура ИТП зависит от того, какие системы потребления он обслуживает. В общем случае в его комплектацию могут входить системы обеспечения отопления, ГВС, отопления и ГВС, а также отопления, ГВС и вентиляции. Поэтому в состав ИТП обязательно входят следующие устройства:

  1. теплообменники для передачи тепловой энергии;
  2. арматура запорного и регулирующего действия;
  3. приборы для контроля и измерения параметров;
  4. насосное оборудование;
  5. щиты управления и контроллеры.

Здесь приведены лишь устройства, присутствующие на всех ИТП, хотя каждый конкретный вариант может иметь и дополнительные узлы. Источник холодного водоснабжения, обычно находится в том же помещении, например.

Схема теплового пункта отопления построена с использованием пластинчатого теплообменника и является полностью независимой. Для поддержания давления на требуемом уровне устанавливается сдвоенный насос. Предусмотрен простой способ «доукомплектации» схемы системой горячего водоснабжения и другими узлами, и агрегатами, включая приборы учета.

Работа ИТП для ГВС подразумевает включение в схему пластинчатых теплообменников, работающих только на нагрузку по ГВС. Перепады давления в этом случае компенсируются группой насосов.

В случае организации систем для отопления и ГВС выше рассмотренные схемы объединяются. Пластинчатые теплообменники отопления работают вместе с двухступенчатым контуром ГВС, причем подпитка системы отопления осуществляется от обратного трубопровода теплосети посредством соответствующих насосов. Сеть холодного водоснабжения же является подпитывающим источником для системы ГВС.

Если к ИТП необходимо подключить и систему вентиляции, то он оснащается еще одним пластинчатым теплообменником, связанным с ней. Отопление и ГВС продолжают работать по ранее описанному принципу, а контур вентиляции подключается аналогично отопительному с добавлением необходимых контрольно-измерительных приборов.

Индивидуальный тепловой пункт. Принцип работы

Центральный тепловой пункт, являющийся источником теплоносителя, подает горячую воду на вход индивидуального теплового пункта через трубопровод. Причем эта жидкость никоим образом не попадает ни в одну из систем здания. Как для отопления, так и для подогрева воды в системе ГВС, а также вентиляции используется исключительно температура подаваемого теплоносителя. Передача энергии в системы происходит в теплообменниках пластинчатого типа.

Температура передается магистральным теплоносителем воде, забранной из системы холодного водоснабжения. Итак, цикл движения теплоносителя начинается в теплообменнике, проходит через тракт соответствующей системы, отдавая тепло, и по обратному магистральному водопроводу возвращается для дальнейшего использования на предприятие, обеспечивающее теплоснабжение (котельную). Часть цикла, предусматривающая отдачу тепла, обогревает жилища и делает воду в кранах горячей.

Холодная вода поступает в подогреватели из системы холодного водоснабжения. Для этого используется система насосов, поддерживающих требуемый уровень давления в системах. Насосы и дополнительные устройства необходимы для снижения, либо повышения, давления воды из снабжающей магистрали до допустимого уровня, а также его стабилизации в системах здания.

Преимущества использования ИТП

Четырехтрубная система теплоснабжения от центрального теплового пункта, применявшаяся раньше достаточно часто, имеет массу недостатков, которые отсутствуют у ИТП. Кроме того, последний имеет ряд весьма значительных преимуществ перед конкурентом, а именно:

  • экономичность, обусловленная значительным (до 30%) снижением потребления тепла;
  • доступность приборов упрощает контроль как за расходом теплоносителя, так и количественными показателями тепловой энергии;
  • возможность гибкого и оперативного влияния на расход тепла путем оптимизации режима его потребления, в зависимости от погоды, например;
  • простота монтажа и довольно скромные габаритные размеры устройства, позволяющие размещать его в небольших помещениях;
  • надежность и стабильность работы ИТП, а также благоприятное влияние на те же характеристике обслуживаемых систем.

Этот перечень можно продолжать сколь угодно долго. Он отражает лишь основные, лежащие на поверхности, преимущества, получаемые при использовании ИТП. В него можно добавить, например, возможность автоматизации управления ИТП. В этом случае его экономические и эксплуатационные показатели становятся еще более привлекательными для потребителя.

Наиболее существенным недостатком ИТП, если не считать транспортных расходов и затрат на погрузочно-разгрузочные мероприятия, является необходимость улаживания всевозможного рода формальностей. Получение соответствующих разрешений и согласований можно отнести к очень серьезным задачам.

Фактически, такие задачи сможет решить только специализированная организация.

Этапы установки теплового пункта

Понятно, что одного решения, пусть и коллективного, основанного на мнении всех жильцов дома, недостаточно. Кратко процедуру оснащения объекта, многоквартирного дома, например, можно описать следующим образом:

  1. собственно, позитивное решение жильцов;
  2. заявка в теплоснабжающую организацию для разработки технического задания;
  3. получение технических условий;
  4. пред проектное обследование объекта, для определения состояния и состава имеющегося оборудования;
  5. разработка проекта с последующим его утверждением;
  6. заключение договора;
  7. реализация проекта и проведение пусконаладочных испытаний.

Алгоритм может показаться, на первый взгляд, достаточно сложным. На самом же деле, всю работу начиная от решения и заканчивая принятием в эксплуатацию можно сделать менее чем за два месяца. Все заботы нужно возложить на плечи ответственной компании, специализирующейся на оказании подобного рода услуг и позитивно зарекомендовавшей себя. Благо, сейчас таковых предостаточно. Останется лишь дожидаться результата.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари