Подпишись и читай
самые интересные
статьи первым!

Компенсация температурных деформаций трубопроводов. Оборудование тепловых сетей

Независимо от материала, из которого они сделаны, подвержены температурным удлинениям и сокращениям. Чтобы найти величину линейного изменения длины трубопроводов при их расширении и сужении выполняется расчет. Если им пренебречь и не установить необходимые компенсаторы, то, при открытой прокладке трассы, трубы могут провиснуть или даже станут причиной выхода из строя всей системы. Поэтому расчёт температурных удлинений трубопроводов обязателен и требует профессиональных знаний.

В данной части учебного курса « », при участии специалиста компании REHAU, расскажем:

  • Почему нужно учитывать температурные удлинения трубопроводов.
  • Как рассчитать прогиб трубопровода при температурном удлинении.
  • Как рассчитать и смонтировать плечо компенсатора температурных удлинений.
  • Как компенсировать температурные деформации полимерных трубопроводов.
  • Какие полимерные трубопроводы лучше всего использовать при открытой водопроводной и отопительной разводке.

Необходимость расчета температурных удлинений трубопроводов из полимерных материалов

Температурные удлинения или сокращения трубопроводов происходят под влиянием изменения рабочей температуры, перемещаемой по ним воды, а также температуры окружающей среды. Соответственно, при монтаже нужно обеспечить достаточную степень свободы трубопроводов, а также рассчитать необходимые допуски на увеличение их длины. Часто начинающие застройщики не учитывают эти изменения при монтаже водопроводной и отопительной разводки. Типичные ошибки:

  • Замоноличивание труб холодного и горячего водоснабжения в стяжку пола без использования утеплителя или защитной гофры.
  • Открытая прокладка труб, например, при монтаже радиаторов системы отопления, без использования специальных компенсаторов.

Сергей Булкин Руководитель технического отдела направления «Внутренние инженерные системы» компании REHAU

Учет температурных удлинений трубопроводов из полимерных материалов, в частности, из РЕ-Ха, следует производить только при их открытой прокладке. При скрытой прокладке компенсация температурных удлинений происходит за счет изгибов трубопроводов, уложенных в защитной гофротрубе или в теплоизоляции, при изменении направления трассы. В этом случае компенсация удлинений происходит благодаря напряжениям в стяжке или в штукатурке.

Технология скрытой прокладки трубопроводов в штробах или в стяжке должна обеспечивать возможность компенсации возникающих деформаций без механических повреждений труб и соединительных элементов.

Отметим, что стяжка выдерживает напряжение без разрушений, т.к. возникающие усилия очень малы и составляют незначительный процент от имеющегося запаса её прочности. Необходимо только проследить, чтобы при заливке стяжки или оштукатуривании стен раствор не попадал внутрь гофротрубы или под теплоизоляцию. Присоединение труб к водоразборной арматуре производится через настенные угольники, которые прочно закрепляются на строительной конструкции или на специальном кронштейне. В результате - осевые перемещения труб в теплоизоляции или защитной гофротрубе, за счет температурных удлинений, не оказывают усилий на узел присоединения. При присоединении трубопроводов к распределительным коллекторам выполняется поворот под 90° на выходе из стяжки или из-под штукатурки.

Таким образом на узлы присоединения трубопроводов к коллектору будут передаваться усилия от очень коротких участков, которыми можно пренебречь.

При открытой прокладке температурные удлинения полимерных трубопроводов, в частности, трубопроводов из РЕ-Ха, будут очень заметны, т.к. эти трубопроводы имеют большой коэффициент температурного удлинения.

Физический смысл коэффициента температурного удлинения состоит в том, что он показывает, на сколько миллиметров удлинится 1 м трубы при его нагреве на 1 градус.

Эта же величина имеет и обратный смысл, т.е. если трубопровод охладить на 1 градус, то коэффициент температурного удлинения покажет, на сколько миллиметров укоротится 1 м трубопровода.

Коэффициент температурного удлинения – это физическая характеристика материала, из которого изготовлен трубопровод.

Расчет температурного удлинения трубопроводов из сшитого полиэтилена РЕ-Ха

Температурные удлинения или сокращения трубопроводов происходят из-за изменения рабочей температуры циркулирующей по ним воды, а также температуры окружающей среды. При открытой прокладке трубопровод должен свободно удлиняться или укорачиваться без перенапряжения материала труб, соединительных деталей и соединений трубопровода. Это достигается за счет компенсирующей способности элементов трубопровода. Например:

  • Правильной расстановкой опор (креплений).
  • Наличием отводов в трубопроводе в местах поворота, других гнутых элементов и установкой температурных компенсаторов.

Устройство компенсаторов необходимо только при значительных линейных удлинениях трубопроводов . Поскольку система должна быть рациональна, то сначала рассчитывается температурное удлинение трубопровода. Возьмём трубопроводы из сшитого полиэтилена РЕ-Ха. Для расчета нам потребуется:

Таб. 1. Коэффициент температурного удлинения и константа материала для водопроводных труб.

Сергей Булкин

Температурное удлинение участка трубопровода пропорционально его длине и разнице температур монтажа и максимальной рабочей температуры. Если мы, например, монтируем участок трубопровода горячей воды длиной 10 м, и температура окружающего воздуха, т.е. температура монтажа, составляет 20°С, а максимальная рабочая температура составит 70°С, то температурное удлинение можно посчитать по формуле

ΔL = L α ΔТ (t макс. раб. – t монтажа). Где:

  • ΔL - температурное удлинение в мм;
  • L - длина трубопровода в м;
  • α - коэффициент температурного удлинения в мм/м·К;
  • ΔТ - разность температур в К.

Подставляем значения в формулу:

ΔL = L α (t макс. раб. – t монтажа) = 10 0,15 (70 – 20) = 75 мм.

Т.е. 10-метровый участок при этом удлинится на 75 мм или 7.5 см. Это приведет к деформации системы и провисанию трубопровода. Данные деформации, прежде всего, нарушают внешний вид системы. Но на значительной длине могут разрушить, прежде всего, крепежные устройства или привести к поломке запорно-регулировочной арматуры или фасонной части. Человеческий глаз способен воспринимать прогиб трубопровода (ΔН), начиная от 5 мм .

Прогиб трубы в результате температурного удлинения.

Следующий шаг - расчет величины прогиба (провисания) трубопровода.

Расчет прогиба трубопровода и способы компенсации температурных деформаций полимерных трубопроводов

Зная длину участка между хомутами (L) и его длину при максимальной рабочей температуре (L 1), прогиб трубопровода определяется с помощью зависимости:

Итого, при температурном удлинении трубопровода на 75 мм на 10-метровом отрезке прогиб составит:

Сергей Булкин

Бороться с температурными деформациями полимерных трубопроводов можно разными способами :

  • Установкой дополнительных хомутов крепления.
  • Устройством Г-образного компенсатора.
  • Устройством П-образного компенсатора.
  • Применением фиксирующего желоба как компенсатора.
  • Устройством дополнительных неподвижных опор.
  • Применением металлополимерных трубопроводов, в которых слой алюминия прочно приклеен к внутреннему самонесущему слою из РЕ-Ха.

Рассмотрим каждый из этих способов.

Способы компенсации температурных деформаций полимерных трубопроводов

1. Устройство дополнительных хомутов крепления.

За счет устройства дополнительных хомутов крепления предотвращается провисание или прогиб трубопроводов. Рекомендуемое максимальное расстояние между хомутами для полимерных труб из РЕ-Ха приведены в таблице 2.

2. Устройство Г-образного компенсатора.

Г-образные компенсаторы устраиваются так же, как и при прокладке стальных трубопроводов. Устраивать Г-образные компенсаторы на полимерных трубах из РЕ-Ха значительно эффективнее, т.к. эти трубы отличаются высокой эластичностью. При этом, в качестве Г-образных компенсаторов можно использовать места поворота трубопроводов под 90°. Необходимо по формуле, как было описано выше, определить температурное удлинение ΔL от прямого участка перед поворотом. Эта величина влияет на расстояние от трубопровода до строительной конструкции. Расстояние до строительной конструкции должно быть не менее величины ΔL. Кроме этого, необходимо дать трубе возможность свободно изгибаться. Для этого первый хомут крепления, после поворота, следует устанавливать на определенном расстоянии от поворота.

Устройство Г-образного компенсатора на полимерных трубах .

  • LBS – длина плеча компенсатора;
  • х – минимальное расстояние от стены;
  • ΔL – температурное удлинение;
  • FP – неподвижная опора;
  • L – длина трубы;
  • GS – скользящий хомут.

Длина плеча компенсатора, в основном, зависит от материала (константы материала С). Компенсаторы обычно устанавливаются в местах изменения направления трубопровода.

Фиксирующие желоба на компенсаторы не устанавливают, чтобы не нарушить изгиб трубы.

Длина плеча компенсатора определяется по формуле:

  • С – константа материала трубы;
  • d – наружный диаметр трубопровода в мм;
  • ΔL – температурное удлинение участка трубопровода.

Если температурное удлинение составило 75 мм, константа материала С = 12, а диаметр трубопровода равен 25 мм, то длина плеча компенсатора составит:

Сергей Булкин

Г-образный компенсатор – это самое экономичное устройство для компенсации температурных удлинений. Для его устройства не требуется никаких дополнительных устройств и элементов.

3. Устройство П-образного компенсатора.

П-образные компенсаторы устраиваются в тех случаях, когда нежелательна компенсация температурных удлинений на краях участка. Его устраивают, как правило, посередине отрезка трубопровода, и компенсация температурных удлинений направлена к центру отрезка. Основания П-образного компенсатора смещаются к центру равномерно с обеих сторон, поэтому каждая сторона компенсирует половину температурного удлинения ΔL/2. Плечи П-образного компенсатора являются плечами компенсации LBS.

Длина плеча компенсатора вычисляется по приведенной выше формуле, а ширина основания П-образного компенсатора должна быть не менее половины длины плеча компенсатора.

Устройство П-образного компенсатора на полимерных трубах.

4. Фиксирующий желоб как компенсатор температурных удлинений.

Фиксирующий желоб – это ложемент из оцинкованной стали трехметровой длины с отбортовкой по краям. Фиксирующие желоба выпускаются на соответствующие диаметры трубопроводов. Трубопроводы защелкиваются в фиксирующие желоба. При этом фиксирующий желоб охватывает трубу примерно на 60°.

Силы трения трубопровода о стенки желоба превышают силу температурных удлинений трубопровода.

При установке фиксирующего желоба необходимо выдержать отступ в 2 мм от полимерных надвижных гильз.

При установке фиксирующего желоба снизу трубопровода обеспечивается его механическая защита.

При использовании фиксирующего желоба минимальное расстояние между хомутами крепления при использовании трубопроводов всех диаметров может составлять 2 м.

5. Использование неподвижных опор

Если компенсацию температурных удлинений необходимо произвести на длинном участке трубопровода, на котором имеется много ответвлений, например, водопроводный стояк в 20-й этажном здании, на каждом этаже которого установлены тройники для поквартирной разводки, то компенсацию температурных удлинений можно произвести с помощью установки неподвижных опор. Для этого с обеих сторон тройника за надвижными гильзами устанавливаются обычные скользящие хомуты.

Формирование неподвижной опоры как компенсатора температурных удлинений трубопровода .

Хомуты не позволят фасонной части сдвинуться ни вверх, ни вниз. Тем самым длинный участок разбит на много коротких участков, равных высоте этажа, приблизительно 3 м. Как мы помним из формулы расчета, температурное удлинение прямо пропорционально длине участка, а мы ее сократили. При устройстве неподвижных опор на каждом этаже на стояке не потребуется устройства никаких других компенсаторов температурного удлинения трубопровода. Если есть, например, «холостой» стояк, у которого по всей длине нет боковых отводов, то можно искусственно установить на этом стояке, например, равнопроходные муфты и на них сформировать неподвижные опоры, как было описано выше. Чтобы уменьшить затраты, можно установить на стояке Г или П-образные компенсаторы или поставить сильфонный компенсатор.

Полимерные трубопроводы для устройства современной открытой водопроводной и отопительной разводки

Современные металлополимерные трубопроводы - это труба из сшитого полиэтилена, в которой слой алюминия прочно приклеен к внутреннему самонесущему слою из РЕ-Ха. У таких трубопроводов наименьший коэффициент температурного удлинения, т.к. алюминиевый слой компенсирует температурные удлинения и удерживает внутренний полимерный слой от температурных деформаций.

Коэффициент температурного удлинения металлополимерных трубопроводов – всего 0,026 мм/м·К, что в 5.76 раза меньше, чем у обычных трубопроводов из сшитого полиэтилена.

Температурное удлинение участка металлополимерного трубопровода длиной 10 м при температуре окружающего воздуха (т.е. температуре монтажа 20 °С и максимальной рабочей температуре 70 °С) составит всего:

ΔL = L α (t макс. раб. – t монтажа) = 10 0,026 (70 – 20) = 13 мм.

Для сравнения: ранее мы рассчитали температурное удлинение обычного РЕ-Ха трубопровода длиной 10 м, которое составило 75 мм.

Поэтому металлополимерные трубопроводы позиционируются как трубопроводы для открытой прокладки. Но вариант с металлополимерными трубами окажется дороже, т.к. эти трубы стоят больше, чем обычные трубы из сшитого полиэтилена РЕ-Ха.

Заключение

Нельзя игнорировать температурные удлинения трубопроводов из сшитого полиэтилена РЕ-Ха при открытой прокладке водопроводной разводки и монтаже отопительной системы. Для компенсации удлинений следует применять один из вышеперечисленных в статье методов, строго соблюдая рекомендации производителя.

190. Температурные деформации рекомендуется компенсировать за счет поворотов и изгибов трассы трубопроводов. При невозможности ограничиться самокомпенсацией (на совершенно прямых участках значительной протяженности и др.) на трубопроводах устанавливаются П-образные, линзовые, волнистые и другие компенсаторы.

В тех случаях, когда в проектной документации предусматривается продувка паром или горячей водой, рекомендуется рассчитывать на эти условия компенсирующую способность.

192. Рекомендуется применять П-образные компенсаторы для технологических трубопроводов всех категорий. Их рекомендуется изготавливать либо гнутыми из цельных труб, либо с использованием гнутых, крутоизогнутых или сварных отводов.

В случае предварительной растяжки (сжатия) компенсатора ее величину рекомендуется указывать в проектной документации.

193. Для П-образных компенсаторов гнутые отводы рекомендуется в целях безопасности изготавливать из бесшовных, а сварные - из бесшовных и сварных прямошовных труб.

194. Применять водогазопроводные трубы для изготовления П-образных компенсаторов не рекомендуется, а электросварные со спиральным швом - допускается для прямых участков компенсаторов.

195. В целях безопасности рекомендуется П-образные компенсаторы устанавливать горизонтально с соблюдением общего уклона. В обоснованных случаях (при ограниченной площади) их допускается размещать вертикально петлей вверх или вниз с соответствующим дренажным устройством в низшей точке и воздушниками.

196. П-образные компенсаторы перед монтажом рекомендуется устанавливать на трубопроводах вместе с распорными приспособлениями, которые удаляют после закрепления трубопроводов на неподвижных опорах.

197. Линзовые компенсаторы, осевые, а также линзовые компенсаторы шарнирные рекомендуется применять для технологических трубопроводов в соответствии с НТД.

198. При установке линзовых компенсаторов на горизонтальных газопроводах с конденсирующимися газами для каждой линзы рекомендуется в целях безопасности предусматривать дренаж конденсата. Патрубок для дренажной трубы рекомендуется в целях безопасности изготавливать из бесшовной трубы. При установке линзовых компенсаторов с внутренним стаканом на горизонтальных трубопроводах с каждой стороны компенсатора рекомендуется в целях безопасности устанавливать направляющие опоры на расстоянии не более 1,5 DN компенсатора.

199. При монтаже трубопроводов компенсирующие устройства рекомендуется в целях безопасности предварительно растягивать или сжимать. Величину предварительной растяжки (сжатия) компенсирующего устройства рекомендуется указывать в проектной документации и в паспорте на трубопровод. Величина растяжки может изменяться на величину поправки, учитывающей температуру при монтаже.

200. Качество компенсаторов, подлежащих установке на технологических трубопроводах, рекомендуется подтверждать паспортами или сертификатами.

201. При установке компенсатора в паспорт трубопровода рекомендуется вносить следующие данные:

Техническую характеристику, завод-изготовитель и год изготовления компенсатора;

Расстояние между неподвижными опорами, компенсацию, величину предварительного растяжения;

Температуру окружающего воздуха при монтаже компенсатора и дату установки.

202. Расчет П-образных, Г-образных и Z-образных компенсаторов рекомендуется производить в соответствии с требованиями НТД.

Цель занятия. Ознакомление студентов с основными методами соединения труб в трубопроводах и их разгрузки от напряжений, возникающих вследствие температурных деформаций.

Раздел 1. Соединения труб в технологических трубопроводах]

Соединения, отдельных звеньев труб между собой и с арматурой производятся различными способами. Выбор способа зависит от необходимой надежности работы, начальной стоимости, требуемой частоты разборки, свойств материала соединяемых деталей, наличия соответствующего инструмента, навыков монтажного и эксплуатационного персонала.

Все виды соединений можно подразделить на разъемные и неразъемные. К разъемным относятся соединения на резьбе (с помощью муфт, ниппелей), на фланцах, на раструбах и с помощью специальных приспособлений. К неразъемным относятся соединения с помощью сварки, пайки или склейки.

Соединения на резьбе . Резьбовые соединения труб применяются, главным образом в трубопроводах тепло- водоснабжения и газовых линиях хозяйственно-бытового назначения. В химической промышленности такие соединения используют в трубопроводах сжатого воздуха. Для соединения на резьбе концы труб снаружи нарезаются трубной резьбой. Такая резьба отличается от нормальной (метрической) значительно меньшим шагом и меньшей глубиной. Поэтому она не вызывает значительного ослабления стенки трубы. Кроме того, трубная резьба имеет угол при вершине треугольника 55°, в то время как метрическая – 60°.

Трубная резьба выполняется в двух вариантах: со срезом вершины по прямой, и скруглением. Трубные резьбы с прямым и закругленным профилем, изготовленные с надлежащими допусками, взаимозаменяемы.

Для соединения труб в трубопроводах высокого давления применяется коническая резьба. Соединение на конической резьбе отличается исключительной герметичностью.

Концы труб соединяют между собой и с арматурой с помощью резьбовых муфт. Муфтовые резьбовые соединения обычно применяют для трубопроводов диаметром до 75 мм. Иногда этот вид соединения применяется также при прокладке труб больших диаметров (до 600 мм).

Муфта (рис. 5.1, а и б ) представляет собой короткий полый цилиндр, внутренняя поверхность которого сплошь нарезана трубной резьбой. Муфты изготовляются из ковкого чугуна для условных проходов диаметром от 6 до 100 мм и из стали для условных проходов диаметром от 6 до 200 мм. Для соединения с помощью муфты соединяемые трубы нарезают на половину длины муфты, и свинчивают. Если стыкуют две ранее смонтированные трубы, то применяют сгон (рис. 5.1, в). Для уплотнения муфтового соединения ранее применяли льняную прядь или асбестовый шнур. Для повышения герметичности газовых линий уплотнительный материал пропитывали краской. В настоящее время льняная прядь практически вытеснена фторпластовым уплотнительным материалом (ФУМ) и специальной пастой (гермепласт).



Рис. 5.1.– Резьбовые фасонные части. а, 6 – муфты; в – согон; г – контргайка.

Для разветвлений трубопроводов собранных на резьбе используют тройники и крестовины, для переходов с одного диаметра на другой – специальные муфты или вставки.

Фланцевые соединения. Фланцы – металлические диски, которые привариваются или привинчиваются к трубе, а затем соединяются болтами с другим фланцем (рис. 5.2). Для этого по периметру диска делаются несколько отверстий. Соединить таким образом можно не только два участка трубопровода, но и присоединить трубу к резервуару, насосу, подвести ее к оборудованию или измерительному прибору. Фланцевые соединения применяются в энергетической промышленности, нефтегазовой, химической и других отраслях производства. Фланцы обеспечивают легкость монтажа и демонтажа.

Больше всего производятся стальные фланцы, хотя для некоторых видов труб выпускают и пластиковые. При производстве учитывается диаметр трубы, к которой будет производиться крепление, и ее форма. В зависимости от формы трубы внутреннее отверстие во фланце может быть не только круглым, но и овальным или даже квадратным. На трубу фланец крепят, применяя сварку. Парный фланец крепится на другом участке трубы или оборудования, а затем оба фланца привинчиваются друг к другу болтами через имеющиеся отверстия. Фланцевые соединения делят на беспрокладочные и с прокладками. В первых герметичность обеспечивается за счет тщательной обработки и большого сжатия. Во вторых между фланцами помещается прокладка. Прокладки бывают нескольких видов, в зависимости от формы самих фланцев. Если фланец имеет гладкую поверхность, то прокладка может быть картонной, резиновой или паронитовой. Если один фланец имеет желоб для выступа, который находится на парном фланце, то применяют паронитовую и асбометаллическую прокладку. Делается это обычно при установке на трубах с высоким давлением.

По способу посадки на трубу фланцы делят на приварные (рис. 5.3, е, ж, з), литые заодно с трубой (рис. 5.3, а, б), с шейкой на резьбе (рис. 5.3, в), свободные на отбортованной трубе (рис. 5.3, к) или кольцах (рис. 5.3, з), последние плоские или с шейкой под отбортовку.

По другой классификации различают фланцы свободные (рис. 5.3, з, и, к), воротниковые (рис. 5.3, а, б, ж, з) и плоские (рис. 5.3, в, г, д, е).

Фланцы имеют размеры, зависящие от диаметра трубы (Dy ) и давления (Py ), но присоединительные размеры всех фланцев одинаковы для одинаковых Dy и Py .

Раструбные соединения. Раструбные соединения (рис. 5.4) применяются при прокладке некоторых видов стальных, чугунных, керамиковых, стеклянных, фаолитовых, асбоцементных труб, а также труб из пластмасс. Его преимущество – относительная простота и дешевизна. В то же время ряд недостатков: трудность разъема соединения, недостаточная надежность, возможность нарушения плотности при появлении незначительного перекоса смежных труб,– ограничивают применение этого вида соединений.

Рис. 5.4.– Раструбное соединение. 1 – раструб, 2 – набивка

Для уплотнения раструбного соединения (рис. 5.4) кольцевое пространство образуемое раструбом 1 одной трубы и телом другой, заполняют набивкой 2, в качестве которой используют промасленную прядь, асбестовый шнур или резиновые кольца. После чего наружный участок этого пространства зачеканивают или замазывают какой-либо мастикой. Метод ведения этих работ и род применяемых материалов зависят от материала труб. Так, раструбы чугунных водопроводных труб конопатят льняной прядью и зачеканивают увлажненным цементом, а в особо ответственных случаях заливают расплавленным свинцом, который затем также зачеканивают. Раструбы керамиковых канализационных труб заполняют до половины пеньковой смоляной прядью. Вторая половина заполняется белой, хорошо промятой глиной. В жилищном строительстве заделка раструбов чугунных труб осуществляется асфальтовой мастикой.

Специальные приспособления . Используется большое количество разнообразных специальных соединений для труб. Однако наиболее распространенными являются легкоразборные. В качестве примера рассмотрим соединение с помощью соединительной гайки (рис. 5.5.)

Соединительная гайка состоит из трех металлических частей (1, 2 и 4) и мягкой прокладки 3. Основные части гайки 1 и 4 навертываются на короткие резьбы труб. Средняя часть – накидная гайка 2 – стягивает между собой эти основные части. Герметичность соединения достигается мягкой (резиновой, асбестовой, паронитовой) прокладкой 3. Благодаря наличию прокладки накидная гайка не соприкасается с протекающей по трубам средой, а потому опасность заедания гайки сводится к минимуму.

Соединение труб сваркой, пайкой и склеиванием. В промышленности широкое распространение получили методы соединения труб сваркой, пайкой и склейкой. Сваркой или пайкой можно соединять трубы из черных металлов (кроме чугунных), цветных металлов, а также из винипласта.

Отличие сварки от пайки заключается в том, что в первом случае для соединения труб используется такой же материал, как и тот, из которого они изготовлены. Во втором – сплав (припой) с температурой плавления существенно меньшей, чем у материала трубы. Припои принято делить на две группы – мягкие и твёрдые. К мягким относятся припои с температурой плавления до 300 °С, к твёрдым – выше 300 °С. Кроме того, припои существенно различаются по механической прочности. Мягкими припоями являются оловянно-свинцовые сплавы (ПОС). Большое количество оловянно-свинцовых припоев содержит небольшой процент сурьмы. Наиболее распространёнными твёрдыми припоями являются медно-цинковые (ПМЦ) и серебряные (ПСр) с различными добавками.

Стоимость подготовки труб под сварку и стоимость самой сварки во много раз ниже стоимости фланцевого соединения (пары фланцев, прокладки, болтов с гайками, работы по посадке фланца на трубу). Хорошо выполненное сварное соединение весьма долговечно и не требует ремонта и связанных с этим остановок производства, что имеет место, например, при вырывании прокладок у фланцевого соединения.

На сварном трубопроводе фланцы ставят лишь в местах установки арматуры. Возможны, однако, случаи применения стальной арматуры с концами под приварку.

Несмотря на преимущества сварки и пайки труб перед другими видами соединений, их не следует производить в трех случаях:

· если передаваемый по трубам продукт действует разрушающе на наплавленный металл или на нагреваемые при сварке концы труб;

· если трубопровод требует частой разборки;

· если трубопровод находится в цехе, характер производства которого исключает работу с открытым пламенем.

При соединении труб из углеродистой стали может быть применена как кислородно-ацетиленовая (газовая), так и электродуговая сварка. Газовая сварка имеет по сравнению с электродуговой следующие преимущества:

· металл в шве получается более вязким;

· работы могут быть произведены в трудно доступных местах;

· потолочные швы выполняются гораздо легче.

Электродуговая сварка имеет, однако, свои преимущества:

· она в 3-4 раза дешевле газовой сварки;

· свариваемые детали прогреваются слабее.

При подготовке к сварке труб толщиой не менее 5 мм кромки труб запиливают под углом 30-45°. Внутренняя часть стенки остается нескошенной на толщине 2-3 мм. Для обеспечения хорошего провара труб между ними оставляют зазор 2-3 мм. Этот зазор предохраняет также концы труб от сплющивания и изгибания. По наружной поверхности шва наплавляют усиливающий валик высотой 3-4 мм. Для предохранения от попадания капелек расплавленного металла внутрь трубы шов не доваривают на 1 мм до внутренней поверхности трубы

Соединение труб из цветных металлов с помощью сварки или пайки производится по одному из способов, показанных на рис. 5.6.

Сварка встык (рис. 5.6, а) широко применяется при соединении свинцовых и алюминиевых труб. Сваркой (пайкой) с разбортовкой и подкаткой концов (рис.21, б, в и г) пользуются при соединении свинцовых и медных труб. В тех случаях, когда к соединению предъявляются требования особенно высокой прочности, сварной шов выполняется, как показано на рис. 5.6, д.

Для усиления шва при соединении алюминиевых труб проводят наплавку металла валиком (рис. 5.6, а), а при соединении свинцовых и медных труб наружные края труб, кроме того, слегка отбортовывают (рис. 5.6, б, в, г).

Соединение алюминиевых и свинцовых труб производится наплавкой металла, одинакового с основным металлом труб, т. е. сваркой; соединение медных труб – как сваркой, так и пайкой (твердым припоем).

Трубы из фаолита можно соединять путем склеивания по способам, показанным на рис. 5.6, в, д. Трубы из винипласта соединяют по способам, показанным на рис. 5.6, а, б и в, причем соединение по способу, показанному на рис. 5.6, б, отличается большой прочностью.

Раздел 2. Температурное удлинение трубопроводов и его компенсация.

Температура нормальной эксплуатации трубопроводов отличается, часто существенно, от температуры при которой производился их монтаж. В результате температурных удлинений в материале труб возникают механические напряжения, которые, если не принять специальных мер, могут привести к их разрушению. Такие меры называются компенсацией температурных удлинений или просто – температурной компенсацией трубопровода.

Рис. 5.7. Изгиб трубопровода при самокомпенсации

Простейшим и наиболее дешевым методом температурной компенсации трубопроводов является так называемая «самокомпенсация». Сущ­ность этого метода заключается в том, что трубопровод прокладывается с поворотами таким образом, чтобы прямые участки не превышали определенной расчетной длины. Прямой участок трубы, расположенный под углом к другому его отрезку и составляющий с ним одно целое (рис. 5.7), может воспринять его удлинение за счет собственной упругой деформаций. Обычно оба расположенные под углом участка трубы взаимно воспринимают тепловые удлинения и таким образом играют роль компенсаторов. Для иллюстрации на рис. 5.7 сплошной линией изображен трубопровод после монтажа, а штрихпунктирной – в рабочем, деформированном состоянии (деформация утрирована).

Самокомпенсация легко осуществляется на трубопроводах из стали, меди, алюминия и винипласта, так как эти материалы обладают значительной прочностью и эластичностью. На трубопроводах из других материалов удлинение воспринимается обычно с помощью компенсаторов, описание которых дается ниже.

Пользуясь деформацией прямого участка трубы, можно, вообще говоря, воспринять тепловое удлинение любой величины при условии, что компенсирующий участок имеет достаточную длину. На практике, однако, обычно не идут дальше значений 400 мм для стальных труб и 250 мм для винипластовых.

Если самокомпенсация трубопровода недостаточна для разгрузки температурных напряжений или ее невозможно осуществить, то прибегают к использованию специальных устройств, в качестве которых применяют линзовые и сальниковые компенсаторы, а также компенсаторы гнутые из труб.

Линзовые компенсаторы. Работа линзового компенсатора основана на прогибе круглых пластин или волнообразных уширений, составляющих тело компенсатора. Линзовые компенсаторы могут быть изготовлены из стали, красной меди или алюминия.

По способу выполнения различают следующие типы линзовых компенсаторов: сварные из отштампованных полуволн (рис. 5.8, а и б), сварные тарельчатые (рис. 5.8, в), сварные барабанные (рис. 5.8, г) и предназначенные специально для работы на вакуум-трубопроводах (рис. 5.8, д).

Рис. 5.8.– Линзовые компенсаторы.

Общими преимуществами линзовых компенсаторов всех без исключения типов является их компактность и нетребовательность в отношении обслуживания. Эти преимущества в большинстве случаев обесцениваются существенными их недостатками. Основные из них следующие:

· линзовый компенсатор создает значительные осевые усилия, действующие на неподвижные опоры трубопровода;

· ограниченная компенсирующая способность (максимальная деформация линзового компенсатора не превышает 80 мм):

· непригодность линзовых компенсаторов для давлений выше 0,2-0,3 МПа;

· сравнительно высокое гидравлическое сопротивление;

· сложность изготовления.

В силу перечисленных соображений линзовые компенсаторы применяются очень редко, а именно при совпадении ряда специфических условий: при низком давлении среды (от вакуума до 0,2 МПа), при наличии трубопровода большого диаметра (не менее 100 мм), при малой длине участка, обслуживаемого компенсатором (обычно не более 20 м), при передаче по трубопроводу газов и паров, но не жидкостей.

Сальниковые компенсаторы. Простейший тип сальникового компенсатора (так называемый односторонний неразгруженный компенсатор) показан на рис. 5.9. Он состоит из корпуса 4 с лапой (которой он крепится к неподвижной опоре), стакана 1 и сальника. Последний включает, сальниковую набивку 3 и грундбуксу (уплотнитель набивки) 2. Набивка сальника выполняется обычно из натертого графитом асбестового шнура, уложенного в виде отдельных колец. Стакан и корпус присоединяются посредством фланцев к трубопроводу. Стакан имеет бортик (помечен буквой а ), предотвращающий выпадение стакана из корпуса.

Основными достоинствомами сальниковых компенсаторов являются их компактность и значительная компенсирующая способность (обычно до 200 мм и выше).

Недостатки сальниковых компенсаторов:

· большие осевые усилия,

· необходимость периодического обслуживания сальников (что требует остановки трубопровода),

· возможность пропуска (протечки) среды через сальник,

· возможность заедания сальника, приводящая к поломке какой-либо детали трубопровода.

Заедание сальника может произойти вследствие неточной укладки трубопровода по прямой линии, оседания одной из опор в процессе эксплуатации, искривления продольной оси трубопровода под влиянием температурных изменений в ответвлении, разъедания поверхностей скольжения и отложения на них накипи или ржавчины.

В силу перечисленных недостатков сальниковые компенсаторы на трубопроводах общего назначения применяются чрезвычайно редко (например, на теплотрассах в стесненных городских условиях). Они находят применение на трубопроводах, выполненных из таких материалов, как: чугун (ферросилид и антихлор), стекло и фарфор, фаолит. Эти материалы по своим свойствам требуют укладки на жесткие основания, которые могут обеспечить хорошую работу сальниковых компенсаторов и из-за своей хрупкости исключают возможность применения самокомпенсации. Сальниковые компенсаторы, устанавливаемые на трубопроводах из этих материалов, выполняются из коррозионностойких материалов, что исключает заедание от ржавления трущихся поверхностей.

Все прочие трубопроводы, требующие компенсации тепловых удлинений, рекомендуется выполнять самокомпенсируемыми или снабжать, по возможности, компенсаторами из гнутых труб. О них ниже.

Компенсаторы, гнутые из труб. Компенсаторы этого типа в условиях предприятий и на магистральных трубопроводах являются наиболее распространенными. Гнутые компенсаторы выполняются из стальных, медных, алюминиевых и винипластовых труб.

а б
Рис. 5.11.– Гнутые компенсаторы а – П-образный; б – S-образный

В зависимости от способа изготовления различают компенсаторы: гладкие (рис. 5.10, а), складчатые (рис. 5.10, б), волнистые (рис. 5.10, в), а в зависимости от конфигурации – лирообразные (рис. 5.10), П-образные (рис. 5.11, а) и S-образные (рис. 5.11, б).

Под термином «складчатый» понимается компенсатор, кривизна которого получается вследствие образования складок на внутренней поверхности изгибов, под термином «волнистый» – компенсатор, имеющий на криволинейных участках волны по всему сечению трубы. Основное различие между этими компенсаторами заключается в их компенсирующей способности и гидравлическом сопротивлении. Если принять компенсирующую способность гладкого компенсатора за единицу, то при прочих равных условиях компенсирующая способность складчатого компенсатора составит около 3, а волнистого около 5 – 6. В то же время гидравлическое сопротивление этих устройств минимально у гладкого и максимально у волнистого компенсатора.

К недостаткам гнутых компенсаторов всех без исключения типов следует отнести:

· значительные габариты, затрудняющие применение этих компенсаторов в тесных местах;

· сравнительно большое гидравлическое сопротивление;

· возникновение со временем явлений усталости в материале компенсатора.

Наряду с этим гнутые компенсаторы обладают следующими преимуществами:

· значительной компенсирующей способностью (обычно до 400 мм);

· незначительной величиной осевых усилий, нагружающих неподвижные опоры трубопровода;

· легкостью изготовления на месте монтажа;

· нетребовательностью в отношении прямолинейности трубопровода и появления перекосов в нем в процессе работы;

· простотой эксплуатации (не требует обслуживания).

Современным способом продления срока эксплуатации трубопроводных систем является использование компенсаторов. Они помогают предотвратить различные изменения, которые происходят в трубах из-за постоянного перепада температур, давления и разного рода вибраций. Отсутствие компенсаторов на трубах может привести к таким нежелательным последствиям, как изменение длины трубы, ее расширение либо сжатие, что в дальнейшем приводит к прорыву трубопровода. В этой связи проблеме надежности трубопроводов и компенсаторов уделяется самое пристальное внимание и осуществляется поиск оптимальных решений по обеспечению технической безопасности компенсационных систем.

Существуют компенсаторы трубные, сальниковые, линзовые и сильфонные. Наиболее простым способом является применение естественной компенсации за счет гибкости самого трубопровода с использованием при этом колен П-образной формы. П-образные компенсаторы применяются при надземных и канальных прокладках трубопроводов. Для них при надземной прокладке требуются дополнительные опоры, а при канальной - специальные камеры. Всё это приводит к значительному удорожанию трубопровода и вынужденному отчуждению зон дорогостоящей земли.

Сальниковые компенсаторы, которые до недавнего времени чаще всего использовались в российских теплосетях, тоже имеют ряд серьезных недостатков. С одной стороны, сальниковый компенсатор может обеспечить компенсацию любых по величине осевых перемещений. С другой стороны, сейчас не существует сальниковых уплотнений, способных обеспечивать герметичность трубопроводов с горячей водой и паром в течение длительного времени. В связи с этим требуется регулярное обслуживание сальниковых компенсаторов, но даже это не спасает от протечек теплоносителя. А поскольку при подземной прокладке теплопроводов для установки сальниковых компенсаторов требуются специальные камеры обслуживания, это значительно усложняет и делает более дорогим строительство и эксплуатацию теплотрасс с компенсаторами такого типа.

Линзовые компенсаторы применяются, в основном, на тепло-, газовых магистралях, водо- и нефтепроводах. Жесткость этих компенсаторов такова, что для их деформации требуются значительные усилия. Тем не менее, линзовые компенсаторы обладают весьма низкой компенсирующей способностью по сравнению с другими типами компенсаторов, к тому же трудоемкость их изготовления достаточно высока, а большое количество сварных швов (что вызвано технологией изготовления) снижает надежность этих устройств.

Учитывая данное обстоятельство, актуальным в настоящее время становится применение компенсаторов сильфонного типа, которые не дают утечек и не требуют обслуживания. Сильфонные компенсаторы имеют малые габариты, могут устанавливаться в любом месте трубопровода при любом способе его прокладки, не требуют строительства специальных камер и обслуживания в течение всего срока эксплуатации. Срок их службы, как правило, соответствует сроку службы трубопроводов. Применение сильфонных компенсаторов обеспечивает надежную и эффективную защиту трубопроводов от статистических и динамических нагрузок, возникающих при деформациях, вибрации и гидроударе. Благодаря использованию при изготовлении сильфонов высококачественных нержавеющих сталей, сильфонные компенсаторы способны работать в самых жестких условиях с температурами рабочих сред от «абсолютного нуля» до 1000 °С и воспринимать рабочие давления от вакуума до 100 атм., в зависимости от конструкции и условий работы.

Основной частью сильфонного компенсатора является сильфон - упругая гофрированная металлическая оболочка, обладающая способностью растягиваться, изгибаться либо сдвигаться под действием перепада температур, давления и другого рода изменений. Между собой они различаются по таким параметрам как размеры, давление и типы смещений в трубе (осевые, сдвиговые и угловые).

На основании данного критерия компенсаторы выделяют осевые, сдвиговые, угловые (поворотные) и универсальные.

Сильфоны современных компенсаторов состоят из нескольких тонких слоев нержавеющей стали, которые формируются при помощи гидравлической или обычной прессовки. Многослойные компенсаторы нейтрализуют воздействие высокого давления и различного рода вибраций, не вызывая при этом реакционных сил, которые в свою очередь провоцируются деформацией.

Компания «Кронштадт» (Санкт-Петербург), официальный представитель датского производителя Belman Production A/S, поставляет на российский рынок сильфонные компенсаторы, специально разработанные для тепловых сетей. Этот тип компенсаторов широко применяется при строительстве теплосетей в Германии и странах Скандинавии.

Устройство данного компенсатора имеет ряд отличительных особенностей.

Во-первых, все слои сильфона выполнены из высококачественной нержавеющей стали AISI 321 (аналог 08Х18Н10Т) или AISI 316 TI (аналог 10Х17Н13М2Т). В настоящее время, при строительстве тепловых сетей часто используются компенсаторы, в которых внутренние слои сильфона изготавливаются из материала более низкого качества, чем наружные. Это может привести к тому, что при любом, даже незначительном повреждении внешнего слоя, или при небольшом дефекте сварного шва, вода, в которой содержатся хлор, кислород и различные соли, попадет внутрь сильфона и спустя некоторое время он разрушается. Конечно, стоимость сильфона, в котором из качественной стали изготавливаются только внешние слои, несколько ниже. Но эта разница в цене не идет ни в какое сравнение со стоимостью работ в случае аварийной замены вышедшего из строя компенсатора.

Во-вторых, компенсаторы Belman оснащаются как наружным защитным кожухом, защищающим сильфон от механических повреждений, так и внутренним патрубком, который защищает внутренние слои сильфона от воздействия абразивных частиц, содержащихся в теплоносителе. Кроме того, наличие внутренней защиты сильфона препятствует отложению песка на линзы сильфона и снижает сопротивление потоку, что тоже немаловажно при проектировании теплотрассы.

Удобство монтажа - ещё одна отличительная особенность компенсаторов Belman. Этот компенсатор, в отличие от аналогов, поставляется полностью готовым к установке в теплосеть: наличие специального фиксирующего устройства позволяет монтировать компенсатор не прибегая к какой-либо предварительной растяжке и не требует дополнительного нагрева участка теплосети перед установкой. Компенсатор оснащен предохранительным приспособлением, которое защищает сильфон от перекручивания при монтаже и препятствует чрезмерному сжатию сильфона в период эксплуатации.

В тех случаях, когда вода, протекающая по трубопроводу, содержит много хлора или возможно поступление к компенсатору грунтовых вод, компания Belman предлагает сильфон, в котором наружный и внутренний слои изготовлены из специального сплава, особо устойчивого к воздействию агрессивных веществ. Для бесканальной прокладки теплотрасс данные компенсаторы выпускаются в пенополиуретановой изоляции и оснащаются системой оперативного дистанционного контроля.

Все указанные преимущества компенсаторов для тепловых сетей производства компании Belman, вкупе с высоким качеством изготовления, позволяют гарантировать безаварийную работу сильфона в течение не менее 30 лет.

Литература:

  1. Антонов П.Н. «Об особенностях применения компенсаторов», журнал «Трубопроводная арматура», № 1, 2007.
  2. Поляков В. «Локализация деформации труб посредством сильфонных компенсаторов», «Промышленные Ведомости» №№ 5-6, май-июнь 2007
  3. Логунов В.В., Поляков В.Л., Слепченок В.С. «Опыт применения осевых сильфонных компенсаторов в тепловых сетях», журнал «Новости теплоснабжения», № 7, 2007.

Трубы и их соединения.

Техника транспорта теплоты предъявляет следующие основные требования к трубам, применяемым для теплопроводов:

· достаточная механическая прочность и герметичность при имеющихся давлениях теплоносителя;

· эластичность и стойкость против термических напряжений при переменном тепловом режиме;

· постоянство механических свойств;

· стойкость против внешней и внутренней коррозии;

· малая шероховатость внутренних поверхностей;

· отсутствие эрозии внутренних поверхностей;

· малый коэффициент температурных деформаций;

· высокие теплоизолирующие свойства стенок трубы;

· простота, надежность и герметичность соединения отдельных элементов;

· простота хранения, транспортировки и монтажа.

Все известные до настоящего времени типы труб одновременно не удовлетворяют всем перечисленным требованиям. В частности, этим требованиям не вполне удовлетворят стальные трубы, применяемые для транспорта пара и горячей воды. Однако высокие механические свойства и эластичность стальных труб, а также простота, надежность и герметичность соединений (сварка) обеспечили практически стопроцентное применение этих труб в системах централизованного теплоснабжения.

Основные типы стальных труб, применяемых для тепловых сетей:

Диаметром до 400 мм включительно – бесшовные, горячекатаные;

Диаметром выше 400 мм – электросварные с продольным швом и электросварные со спиральным швом.

Трубопроводы тепловых сетей соединяются между собой при помощи электрической или газовой сварки. Для водяных тепловых сетей преимущество отдаётся сталям марок Ст2сп и Ст3сп.

Схема трубопроводов, размещение опор и компенсирующих устройств должны быть выбраны таким образом, чтобы суммарное напряжение от всех одновременно действующих нагрузок ни в одном сечении трубопровода не превосходило допускаемого. Наиболее слабым местом стальных трубопроводов, по которому следует вести проверку напряжений, являются сварные швы.

Опоры.

Опоры являются ответственными деталями теплопровода. Они воспринимают усилия от трубопроводов и передают их на несущие конструкции или грунт. При сооружении теплопроводов применяют опоры двух типов: свободные и неподвижные.



Свободные опоры воспринимают вес трубопровода и обеспечивают его свободное перемещение при температурных деформациях. Неподвижные опоры фиксируют положение трубопровода в определенных точках и воспринимают усилия, возникающие в местах фиксации под действием температурных деформаций и внутреннего давления.

При бесканальной прокладке обычно отказываются от установки свободных опор под трубопроводами во избежание неравномерных посадок и дополнительных изгибающих напряжений. В этих теплопроводах трубы укладываются на нетронутый грунт или тщательно утрамбованный слой песка. При расчете изгибающих напряжений и деформаций трубопровод, лежащий на свободных опорах, рассматривается как многопролетная балка.

По принципу работы свободные опоры делятся на скользящие, роликовые, катковые и подвесные.

При выборе типа опор следует не только руководствоваться значением расчетных усилий, но и учитывать работу опор в условиях эксплуатации. С увеличением диаметров трубопроводов резко возрастают силы трения на опорах.

Рис. А Скользящая опора:1 – тепловая изоляция; 2 – опорный полуцилиндр; 3 – стальная скоба; 4 – бетонный камень; 5 – цементно-песчаный раствор

Рис.Б Роликовая опора. Рис.В Катковая опора. Рис.Г Подвесная опора.

В некоторых случаях, когда по условиям размещения трубопроводов относительно несущих конструкций скользящие и катящиеся опоры не могут быть установлены, применяются подвесные опоры. Недостатком простых подвесных опор является деформация труб вследствие различной амплитуды подвесок, находящихся на различном расстоянии от неподвижной опоры, из-за разных углов поворота. По мере удаления от неподвижной опоры возрастают температурная деформация трубопровода и угол поворота подвесок.

Компенсация температурных деформаций.

Компенсация температурных деформаций производится специальными устройствами – компенсаторами.

По принципу действия компенсаторы разделяются на радиальные и осевые.

Радиальные компенсаторы позволяют перемещение трубопровода и в осевом, и в радиальном направлениях. При радиальной компенсации термическая деформация трубопровода воспринимается за счет изгиба эластичных вставок или отдельных участков самого трубопровода.

Рис.Компенсаторы. а) П-образный; б) Ω-образный;в) S-образный.

Преимущества – простота устройства, надежность, разгруженность неподвижных опор от усилий внутреннего давления. Недостаток – поперечное перемещение деформируемых участков. Это требует увеличения сечения непроходных каналов и затрудняет применение засыпных изоляций и бесканальной прокладки.

Осевые компенсаторы допускают перемещения трубопровода только по направлению оси. Выполняются скользящего типа – сальниковые и упругие – линзовые (сильфонные).

Линзовые компенсаторы устанавливаются на трубопроводах низкого давления – до 0,5 МПа.

Рис. Компенсатор. а) односторонний сальниковый: б) трехволновой линзовый компенсатор

1 – стакан; 2 – корпус; 3 – набивка; 4 –упорное кольцо; 5 – грундбукса.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари