Подпишись и читай
самые интересные
статьи первым!

Композитные и композиционные материалы разница. Композиционные материалы, области применения

Особенности проектирования и внедрения изделий из КМ

При проектировании, изготовлении и внедрении изделий из компо­зиционных материалов на основе волокнистых наполнителей (ВКМ) не­ обходимо учитывать ряд особенностей, присущих этому классу мате­риалов:

а) Анизотропия физико-механических характеристик ВКМ.

Если традиционные материалы (сталь, чугун), а также дисперсно-упрочненные КМ обладают изотропностью свойств, то ВКМ имеют ярко выраженную анизотропию характеристик. При значительном различии характеристик волокнистой арматуры и матрицы соотношение между характеристиками ВКМ в различных направлениях может варьировать­ся в широких пределах: от 3-5 раз до 100 раз и более.

б) При проектировании конструкций, сооружений из традиционных материалов конструктор имеет дело с полуфабрикатами в виде листо­вого, профильного проката, литья и т.д. с гарантированными поставщи­ ком свойствами. Его задача состоит в выборе подходящих полуфабри­катов, определении геометрии, исходя из функционального назначения, и способов соединения отдельных деталей. Задача технолога - обес­печить заданную форму, размеры и качество соединения конструктив­ных элементов. Анализ процессов, протекающих на всех этапах созда­ния полуфабриката, получение материала с требуемым уровнем харак­ теристик относится к компетенции материаловедов. Сложилось вре­менное и организационное разделение процесса получения изделий из традиционных материалов на три этапа:

- материаловедческий - получение материала с требуемыми ха рактеристиками;

- конструкторский - проектирование изделий конструкций;

- технологический - изготовление изделий и машин.

Эти этапы разнесены по времени и могут считаться не связанными между собой, если конструктор руководствуется характеристиками ма­териала, достигнутыми материаловедами, и имеет общие представле­ния об уровне современных технологий.

Изготовление конструкций из КМ происходит, как правило, за одну технологическую операцию с созданием материала. При этом синхрон­но с изготовлением конструкции протекают сложные физико-химические и теплофизические процессы, связанные с образованием структуры и агрегатными превращениями матрицы, взаимодействием ее с арми­рующим материалом. Им сопутствуют механические явления, прямо влияющие на свойства материала и несущую способность композитных деталей, на образование в ней дефектов в ненагруженном состоянии. Поэтому конструктор, проектирующий изделия из КМ , должен знать и учитывать при разработке материаловедческие принципы создания КМ и технологические приемы получения изделий из КМ. Технолог без кон­структорских знаний по условиям нагружения и эксплуатации создавае­ мого изделия из ВКМ не может изготовить изделия, эффективно ис­пользуя отличия КМ от традиционных материалов, т.к. свойства КМ за­висят от структурно-геометрических факторов (объемного содержания армирующих волокон и матрицы, количества и расположения слоев и др.), которые заранее не известны. Поэтому подход должен быть кон структорско-технологическим, а это определяет организационные осо­ бенности производства изделий из КМ .

в) В связи с тесной взаимосвязью этапов изготовления конструк ций из КМ - создание материала, конструкций и технологии получения - более эффективно становится использовать специализированные КБ, имеющие конструкторский и технологический потенциал, оснащенные вычислительной техникой и мощным, но гибким опытным производ­ ством, потому как все конструктивные решения необходимо отрабаты вать на опытных образцах изделий. Такой поход в организации производства должен быть в каждой отрасли, где КМ находят широкое при­ менение: в строительстве, на транспорте, в авиации, химическом ма шиностроении, электротехнической промышленности и др., т.к. предъ являемые к ним требования сильно различаются.

г) При конструировании деталей из полимерных КМ необходимо учитывать их недостатки:

Малую сдвиговую прочность;

Невысокие характеристики при сжатии;

Повышенную ползучесть;

Сравнительно низкую теплостойкость ПКМ.

Особое внимание следует уделить соединениям изделий из ПКМ в связи с малой сдвиговой и контактной прочностью.

д) Несмотря на большой интерес к вопросам предельного состояния, надежных методик, позволяющих определить запасы прочности конструкционных элементов из КМ , нет. В связи со сложностью про блем, связанных с прочностью изделий из КМ , возрастает значение выбора методов при обработке результатов экспериментальных испыта ний.

В настоящее время оценка прочности конструкций из КМ состоит из комплекса испытаний, включающих:

100% испытания эксплуатационными нагрузками;

Выборочные испытания с доведением конструкции до разруше ния.

Гарантию качества и успешное прохождение этих двух видов испы­таний обеспечивает стабильность технологических процессов.

В последние годы на первый план выходит индивидуальная оценка прочности каждой детали с помощью неразрушающих методов испыта­ ния - ультразвук, акустическая эмиссия и др.

е) Определение допусков и посадок на детали из КМ .

Т.к. формирование поверхностей в изделиях из КМ происходит различными способами (намотка, прессование, выкладка и т.д.) и они чаще всего не подвергаются механической обработке, то система до пусков и требования к чистоте поверхности должны строится весьма гибко. Аналогичный подход должен быть и к регламентации разброса массы, связанной с разбросом параметров исходных материалов и их соотношением в КМ , появлением в ходе технологического процесса объемов, различающихся по ориентации наполнителя, и т.д.

ж) Переход на КМ при изготовлении машиностроительной продук­ции затрагивает вопросы детализации узлов машин. Т.к. материал конструируется под конкретные детали, которые в дальнейшем нежелательно подвергать механической обработке, то, естественно, встает вопрос стыковки отдельных деталей. Методы, принятые при изготовле­нии аналогичных узлов машин из металлов, в данном случае либо ма лоэффективны, либо вообще неприемлемы. В связи с этим целесооб­ разно изготавливать из КМ целиком узел, ранее расчленяемый на ряд деталей, которые затем собирались в изделие с помощью разъемных или неразъемных соединений. Это направление весьма эффективно, т.к. сокращаются трудозатраты и энергозатраты , хотя сокращение опе­ раций требует перестройки технологического оборудования и процесса производства.

Например, в США в 1970 г. в массовое производство легковых ав­томобилей была внедрена передняя панель с проемом под облицовку радиатора, впервые изготовлявшаяся из листового КМ . Помимо сниже­ ния массы на 50%, было достигнуто значительное сокращение расхо­ дов за счет объединения нескольких деталей в одну. Эта цельная па­нель исключила множество операций листовой штамповки, механиче­ской обработки на станках и сборки, устранила связанные с ними штам­ пы, формы и станочные зажимные приспособления. Она объединила 16 листовых штамповок и отлитых под давлением деталей в одну деталь из КМ . В 1979 г. на более чем 35 моделях легковых автомобилей стали применять передние панели из КМ , включающие корпуса и гнезда фар, стояночных фонарей, стоп-сигналов, сигналов поворота и габаритных огней.

з) Необходимо изменение подходов к определению экономической эффективности применения КМ . Как правило, экономический эффект от применения КМ образуется у «Потребителя» в виде повышения такти­ ко-технических, эксплуатационных характеристик изделия, его долго­вечности, ремонтопригодности и т.п. Поэтому экономический эффект можно определить только при использовании системного подхода, учи­тывающего все составляющие общего эффекта от замены традицион­ ного материала на КМ , и перехода на новую технологию при изготовле­нии деталей или конструкций в целом.

Только индивидуальный подход с учетом указанных особенностей делает переход к использованию КМ взамен металлов эффективным и перспективным, раскрывающим новые горизонты для развития и со­вершенствования техники.

Классификация композиционных материалов

По типу армирующих наполнителей современные КМ могут быть разделены на две группы:

Дисперсно-упрочненные;

Волокнистые.

Дисперсно-упрочненные композитные материалы (ДУКМ) представляют собой материа­лы, в матрице которых равномерно распределены мелкодисперсные частицы, которые призваны исполнять роль упрочняющей фазы. Дисперсные частицы наполнителя вводят в матрицу специальными технологическими приемами. Частицы не должны активно взаимодействовать с матрицей и не должны растворяться в ней вплоть дотемпературы плавления. В этих материалах основную нагрузку воспринимает матрица, в которой за счет армирующей фазы создается структура, затрудняю­щая движение дислокаций. Дисперсно-упрочненные КМ - изотропны. Их применяют в авиации, ракетостроении и др. Содержание дисперсной фазы составляет ~5-7% (трубки, проволоки, фольга, прутки и т.п.).

Механизм упрочняющего действия от включения дисперсных частиц в матрице, отличается для разных типов ДУКМ.

1) Дисперсно-упрочненные композиционные материалы «пластичная матрица – хрупкий наполнитель»

Для этого типа материалов матрица может быть представлена, например, следующими металлами: Al , Ag , Cu , Ni , Fe , Co , Ti . В качестве наполнителя чаще всего выбираются соединения из оксидов (Al 2 O 3 ; SiO 2 ; Cr 2 O 3 ; ThO 2 ; TiO 2), карбидов (SiC ; TiC ), нитридов (Si 3 N 4 ; AlN ), боридов (TiB 2 ; CrB 2 ; ZrB 2).

На основании опытных данных могут быть сформулированы следующие требования к материалу наполнителя, обеспечивающие наиболее эффективное его использование в качестве упрочняющей фазы. Он должен обладать:

Высокой тугоплавкостью (t пл . > 1000 ° С);

Высокой твердостью и высоким модулем упругости;

Высокой дисперсностью (удельная поверхность – S уд 10 м 2 /г);

Должна отсутствовать коалесценция (слияние) дисперсных частиц в процессе получения и эксплуатации;

Должно иметь место низкое значение скорости диффузиидисперсных частиц в металлическую матрицу.

Механизм упрочнения композиционные материалы «пластичная матрица – хрупкий наполнитель» .

Упрочнение идет по дислокационному механизму: если расстояние между частицами достаточно, то дислокация под действием касательного напряжения выгибается между ними, ее участки смыкаются за каждой частицей, образуя вокруг частиц петли. В областях между дислокационными петлями возникает поле упругих напряжений, затрудняющее проталкивание новых дислокаций между частицами (рис. 1). Этим достигается повышение сопротивления зарождению (инициированию) трещины.

Рис. 1. Схематическое изображение процесса формирования дислокационных петель в пластичной матрице:

1 – дисперсные частицы; 2 – линии дислокаций; 3 – дислокационные петли; 4 – поле упругих напряжений;

d – размер частицы наполнителя; L – расстояние между соседними частицами наполнителя;

τ – направление действия касательных напряжений.

Получение композиционных материалов «пластичная матрица – хрупкий наполнитель» .

В общем случае последовательность технологических операций для получения ДУКМ типа «пластичная матрица – хрупкий наполнитель» является следующей:

а) Получение композитного порошка;

б) Прессование;

в) Спекание;

г) Деформация полуфабриката;

д) Отжиг.

2) Дисперсно-упрочненные композиционные материалы «хрупкая матрица – пластичный наполнитель»

Структура таких ДУКМ представлена керамической матрицей с равномерно распределенными в ней дисперсными металлическими частицами наполнителя. Эти композиты относятся к классу керметов . Расстояние между соседними частицами задается путем варьирования их объемной доли, а эффект от армирования может проявляться при содержании частиц 15-20% объема.

В качестве керамической фазы могут использоваться тугоплавкие оксиды и некоторые тугоплавкие неоксидные соединения: Al 2 O 3 , 3Al 2 O 3 2SiO 2 , Cr 2 O 3 , ZrO 2 , ThO 2 , Y 2 O 3 , Si 3 N 4 , TiN , ZrN , BN, ZrB 2 , TiB 2 , NbB 2 , HfB 2 . В качестве металлической фазы – Fe , Co , Ni , Si , Cu , W, Mo , Cr , Nb , Ta , V, Zr , Hf , Ti . Выбор каждой конкретной керметной пары для получения композита обусловлен возможностью создания стабильной границы раздела в результате твердофазного взаимодействия при температуре, не превышающей температуру плавления наиболее легкоплавкой составляющей пары, либо температуру образования эвтектического расплава.

Механизм торможения разрушения композиционных материалов «хрупкая матрица – пластичный наполнитель» .

Процесс разрушения таких композитов условно можно разделить на две стадии. На первой стадии в ходе нагружения сначала инициируется хрупкое разрушение в матрицевследствие повышенной концентрации напряженийна микронеоднородностях ее структуры: микропорах, границах зерен, крупных неравноосных зернах. При достижении некоторого критического уровня напряжений происходит старт трещины.

На второй стадии распространяющаяся трещина взаимодействует с пластичными металлическими частицами (рис. 2): у ее вершины действуют максимальные напряжения, которые приводят к деформации, удлинению и разрыву металлических частиц. При этом работа разрушения данного композита существенно возрастает по сравнению с таковой характеристикой для неармированного материала. Это происходит за счет затрат энергии трещины на работу пластической деформации всех частиц, попадающих во фронт трещины. В результате сопротивление развитию трещины повышается, поскольку ее берега перекрываются «мостиками связи» из пластичного металла.

Рис. 2. Иллюстрация процесса торможения разрушения в хрупкой матрице:

1 – металлические частицы перед фронтом трещины; 2 – «мостики связи» образованные деформированными

металлическими частицами; 3 – разрушенные металлические частицы; 4 – берега трещины; σ р – растягивающие напряжения

Получение композиционных материалов «хрупкая матрица – пластичный наполнитель» .

Последовательность технологических операций, используемых для получения:

а) Получение композиционной порошковой смеси;

б) Введение в смесь органической связки;

в) Прессование;

г) Удаление органической связки;

д) Спекание;

е) Механическая обработка.

Для обеспечения прессуемости (придания пластичности) смеси порошков компонентов вводят органическую связку путем смешивания с раствором какого-либо органического вещества (поливиниловый спирт, поливинилбутираль , этиленгликоль, каучук и др.) с последующей сушкой для удаления растворителя. В результате выполнения этой операции каждая частица порошковой смеси покрыта тонким слоем пластификатора. Тогда при приложении давления прессования к порошковой смеси, засыпанной в пресс-форму, происходит связывание ее частиц по прослойкам пластификатора. После, путем термообработки изделий в вакууме или в порошковой засыпке из глинозема или сажи, происходит удаление связующего вещества при температуре термодеструкции или сгорания (300 – 400 ° С). После удаления органической связки частицы в объеме изделия удерживаются преимущественно за счет сил трения. Температура спекания композита лимитируется температурой спекания керамической матрицы. Оно проводится в нейтральных газовых средах (аргон, гелий) или в вакууме. В случае необходимости спеченный материал подвергают механической обработке с помощью алмазного инструмента.

Волокнистые КМ можно классифицировать по типу армирующего наполнителя. При их изготовлении в качестве арматуры применяются высокопрочные стеклянные, углеродные, борные, органические волок­на, металлические проволоки, нитевидные кристаллы ряда карбидов, оксидов, нитридов и др.

Армирующие материалы используются в виде моноволокон , нитей, жгутов, сеток, тканей, лент, холстов. Волокнистые КМ можно различать также по способу армирования: ориентированное и стохастическое (случайное). В первом случае композиты обладают четко выраженной анизотропией свойств; во втором - квизиизотропны . Объемная доля наполнителя в волокнистых КМ составляет 60-70%.

По типу матрицы композиты различают:

Полимерные (ПКМ);

Металлические (МКМ );

Керамические (ККМ);

- углерод-углеродные (УУКМ).

Полимерные композитные материалы – это гетерофазные композиционныематериалы с непрерывной полимерной фазой (матрицей), в которой хаотически или в определенном порядке распределены твердые, жидкие или газообразные наполнители. Эти вещества заполняют часть объема матрицы, сокращая тем самым расход дефицитного или дорогостоящего сырья, и (или) модифицируют композицию, придавая ей нужные качества, обусловленные назначением, особенностями технологических процессов производства и переработки, а также условиями эксплуатации изделий. К ним относятся подавляющее большинство пластмасс , резин, лакокрасочных материалов, полимерных компаундов, клеев и др.

В зависимости от типа полимерной матрицы различают наполненные реактопласты, термопласты (по­лиэтилен, поливинилхлорид, капрон и др.), синтетические смолы (полиэфирные, эпоксифенольные и др.) и каучуки. В зависимости от типа наполнителя ПКМ делят на дисперсно-наполненные пластики (наполнитель - дисперсные частицы разнообразной формы, в т. ч. измельченное волокно), армированные пластики (содержат упрочняющий наполнитель непрерывной волокнистой структуры), газонаполненные пластмассы, масло-наполненные каучуки; по природе наполнителя наполненные полимеры подразделяют на асбопластики (наполнитель-асбест), графито-пласты (графит), древесные слоистые пластики (древесный шпон), стеклопластики (стекловолокно), углепластики (углеродное волокно), органопластики (химические волокна), боропластики (борное волокно) и др., а также на гибридные, или поливолокнистые пластики (наполнитель-комбинация различных волокон).

По способу изготовления ПКМ можно разделить на полученные: выкладкой, намоткой, пултрузией , прессованием и др.

Композиционные материалы – искусственно созданные материалы, которые состоят из двух или более компонентов, различающихся по составу и разделенных выраженной границей, и которые имеют новые свойства, запроектированные заранее.

Компоненты композиционного материала различны по геометрическому признаку. Компонент, непрерывный во всем объеме композиционного материала, называется матрицей . Компонент прерывистый, разделенный в объеме композиционного материала, называется арматурой . Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает арматуру от механических повреждений и других воздействий среды.

В качестве матриц в композиционных материалах могут быть использованы , полимеры органические и неорганические, керамические, углеродные и другие материалы. Свойства матрицы определяют технологические параметры процесса получения композиции и ее : плотность, удельную прочность, рабочую температуру, сопротивление усталостному разрушению и воздействию агрессивных сред. Армирующие или упрочняющие компоненты равномерно распределены в матрице. Они, как правило, обладают высокой , и и по этим показателям значительно превосходят матрицу. Вместо термина армирующий компонент можно использовать термин наполнитель.

Классификация композиционных материалов

По геометрии наполнителя композиционные материалы подразделяются на три группы:

  • с нульмерными наполнителями, размеры которых в трех измерениях имеют один и тот же порядок;
  • с одномерными наполнителями, один из размеров которых значительно превышает два других;
  • с двухмерными наполнителями, два размера которых значительно превышают третий.

По схеме расположения наполнителей выделяют три группы композиционных материалов:

  • с одноосным (линейным) расположением наполнителя в виде волокон, нитей, нитевидных кристаллов в матрице параллельно друг другу;
  • с двухосным (плоскостным) расположением армирующего наполнителя, матов из нитевидных кристаллов, фольги в матрице в параллельных плоскостях;
  • с трехосным (объемным) расположением армирующего наполнителя и отсутствием преимущественного направления в его расположении.

По природе компонентов композиционные материалы разделяются на четыре группы:

  • композиционные материалы, содержащие компонент из металлов или сплавов;
  • композиционные материалы, содержащие компонент из неорганических соединений оксидов, карбидов, нитридов и др.;
  • композиционные материалы, содержащие компонент из неметаллических элементов, углерода, бора и др.;
  • композиционные материалы, содержащие компонент из органических соединений эпоксидных, полиэфирных, фенольных и др.

Свойства композиционных материалов зависят не только от физико-химических свойств компонентов, но и от прочности связи между ними. Максимальная прочность достигается, если между матрицей и арматурой происходит образование или .

В композиционных материалах с нульмерным наполнителем наибольшее распространение получила металлическая матрица. Композиции на металлической основе упрочняются равномерно распределенными дисперсными частицами различной дисперсности. Такие материалы отличаются .

В таких материалах матрица воспринимает всю нагрузку, а дисперсные частицы наполнителя препятствуют развитию пластической деформации. Эффективное упрочнение достигается при содержании 5…10 % частиц наполнителя. Армирующими наполнителями служат частицы тугоплавких оксидов, нитридов, боридов, карбидов. Дисперсионно упрочненные композиционные материалы получают методами порошковой металлургии или вводят частицы армирующего порошка в жидкий расплав металла или сплава.

Промышленное применение нашли композиционные материалы на основе , упрочненные частицами оксида алюминия (Al 2 O 3). Их получают прессованием алюминиевой пудры с последующим спеканием (САП). Преимущества САП проявляются при температурах выше 300 o С, когда алюминиевые сплавы разупрочняются. Дисперсионно упрочненные сплавы сохраняют эффект упрочнения до температуры 0,8 Т пл .

Сплавы САП удовлетворительно деформируются, легко обрабатываются резанием, свариваются и . Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги. Из них изготавливают лопатки компрессоров, вентиляторов и турбин, поршневые штоки.

В композиционных материалах с одномерными наполнителями упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон, проволоки, которые скрепляются матрицей в единый монолит. Важно, чтобы прочные волокна были равномерно распределены в пластичной матрице. Для армирования композиционных материалов используют непрерывные дискретные волокна с размерами в поперечном сечении от долей до сотен микрометров.

Материалы, армированные нитевидными монокристаллами, были созданы в начале семидесятых годов для авиационных и космических конструкций. Основным способом выращивания нитевидных кристаллов является выращивание их из перенасыщенного пара (ПК-процесс). Для производства особо высокопрочных нитевидных кристаллов оксидов и других соединений осуществляется рост по П-Ж-К – механизму: направленный рост кристаллов происходит из парообразного состояния через промежуточную жидкую фазу.

Осуществляется создание нитевидных кристаллов вытягиванием жидкости через фильеры. Прочность кристаллов зависит от сечения и гладкости поверхности.

Композиционные материалы этого типа перспективны как . Для увеличения КПД тепловых машин лопатки газовых турбин изготавливают из никелевых сплавов, армированных нитями сапфира (Al 2 O 3), это позволяет значительно повысить температуру на входе в турбину (предел прочности сапфировых кристаллов при температуре 1680 o С выше 700 МПа).

Армирование сопл ракет из порошков вольфрама и молибдена производят кристаллами сапфира как в виде войлока, так и отдельных волокон, в результате этого удалось удвоить материала при температуре 1650 o С. Армирование пропиточного полимера стеклотекстолитов нитевидными волокнами увеличивает их прочность. Армирование литого металла снижает его в конструкциях. Перспективно упрочнение стекла неориентированными нитевидными кристаллами.

Для армирования композиционных материалов применяют металлическую проволоку из разных металлов: стали разного состава, вольфрама, ниобия, – в зависимости от условий работы. Стальная проволока перерабатывается в тканые сетки, которые используются для получения композиционных материалов с ориентацией арматуры в двух направлениях.

Для армирования легких металлов применяются волокна бора, карбида кремния. Особенно ценными свойствами обладают углеродистые волокна, их применяют для армирования металлических, керамических и полимерных композиционных материалов.

Эвтектические композиционные материалы – сплавы эвтектического или близкого к эвтектическому состава, в которых упрочняющей фазой выступают ориентированные кристаллы, образующиеся в процессе направленной кристаллизации. В отличие от обычных композиционных материалов, эвтектические получают за одну операцию. Направленная ориентированная структура может быть получена на уже готовых изделиях. Форма образующихся кристаллов может быть в виде волокон или пластин. Способами направленной кристаллизации получают композиционные материалы на основе , кобальта, ниобия и других элементов, поэтому они используются в широком интервале температур.

Я посвятил истории композитных материалов. Я продолжаю занимать свой досуг этой теме и сегодня хочу рассказать немного о терминах и технологиях прототипирования с использованием полимерных композитов. Если вам нечем заняться длинными зимними вечерами, то вы всегда можете смастерить из углепластиковой ткани сноуборд, корпус для мотоцикла или чехол на смартфон. Конечно, процесс может в итоге выйти дороже, нежели покупка готового продукта, но интересно что-то мастерить своими руками.

Под катом - обзор методов изготовления изделий из композитных материалов. Буду вам благодарен, если в комментариях вы меня дополните, чтобы в результате получился более полный пост.


Композиционный материал создается минимум из двух компонентов с четкой границей между ними. Есть слоистые композитные материалы - например, фанера. Во всех же других композитах можно разделить компоненты на матрицу, или связующее, и армирующие элементы - наполнители. Композиты обычно разделают по виду армирующего наполнителя или по материалу матрицы. Подробнее об использовании композитов вы можете прочитать в посте , а эта публикация посвящена методам изготовления продуктов из композитов.

Ручное формование

В случае с изготовлением изделий единичными экземплярами наиболее распространенным методом является ручное формование. На подготовленную матрицу наносится гелькоут – материал для получения хорошей отделки на внешней части армированного материала, позволяющий также подобрать цвет для изделия. Затем в матрицу укладывается наполнитель – например, стеклоткань – и пропитывается связующим. Удаляем пузырьки воздуха, ждем, пока все остынет, и дорабатываем напильником – обрезаем, высверливаем и так далее.

Этот метод широко используется для создания деталей корпуса автомобилей, мотоциклов и мопедов. То есть для тюнинга в тех случаях, когда он не ограничивается наклейкой пленки «под карбон».

Напыление

Напыление не требует раскроя стекломатериала, но взамен нужно использование специального оборудования. Данный метод часто используется для работы с крупными объектами, такими как корпусы лодок, автотранспорт и так далее. Точно так же, как и в случае с ручным формованием, сначала анносится гелькоут, затем стекломатериал.

RTM (инжекция)

При методе инжекции полиэфирной смолы в закрытую форму используется оснастка из матрицы и ответной формы – пуансона. Стекломатериал укладывается между матрицей и ответной формой, затем в форму под давлением вливается отвердитель – полиэфирная смола. И, конечно, доработка напильником после отверждения – по вкусу.

Вакуумная инфузия

Для метода вакуумной инфузии необходим пакет, в котором с помощью насоса создается вакуум. В самом пакете располагается армирующий материал, поры которого после откачки воздуха заполняются жидким связующим.

Пример метода - для изготовления скейтборда.

Намотка

Метод намотки композитов позволяет сделать сверхлегкие баллоны для сжатого газа, для чего используют РЕТ-лейнер, подкачанный до 2-5 атмосфер, а также композитные трубы, используемые в нефтедобывающей отрасли, химической промышленности и в коммунальном хозяйстве. Из названия легко понять, что стеклоткань наматывают на подвижный или неподвижный объект.

На видео - процесс намотки стеклоткани на баллон.

Пултрузия

Пультрузия – это “протяжка”. При этом методе происходит непрерывный процесс протягивания композиционного материала сквозь тянущую машину. Скорость процесса составляет до 6 метров в минуту. Волокна пропускаются через полимерную ванну, где пропитываются связующим, после чего проходят сквозь преформовочное устройство, получая окончательную форму. Затем в пресс-форме материал нагревается, и на выходе мы получаем окончательный затвердевший продукт.

Процесс производства шпунтовых свай методом пултрузии.

Прямое прессование

Изделия из термопластов изготавливают в пресс-формах под давлением. Для этого используют высокотемпературные гидравлические прессы с усилием от 12 до 100 тонн и максимальной температурой около 650 градусов. Таким способом делают, например, пластиковые ведра.

Автоклавное формование

Автоклав необходим для проведения процессов при нагреве и под давлением выше атмосферного с целью ускорить реакцию и увеличить выход продукта. Внутрь автоклава помещаются композитные материалы на специальных формах.

Продукты из композитов

Композитные материалы широко используются в авиастроении. Например, построен из них.

Автопром.

Протезы и ортезы.

Если у вас появились дополнения, то обязательно напишите о них в комментариях. Спасибо.

Использование композитных материалов в строительстве

Недорогой и разносторонний, бетон является одним из лучших строительных материалов во многих предложениях. Являясь настоящим композитом, типичный бетон состоит из гравия и песка, связанных вместе в матрице из цемента, с металлической арматурой, обычно добавляемой для усиления прочности. Бетон превосходно ведет себя при сжатии, но становится хрупким и непрочным при растяжении. Растягивающие напряжения, так же как и пластическая усадка во время отверждения, приводят с трещинам, которые поглощают воду, что, в конечном счете, приводит к коррозии металлической арматуры и существенной потере монолитности бетона при разрушении металла.

Композитная арматура утвердилась на строительном рынке благодаря доказанному сопротивлению коррозии. Новые и обновленные конструкторские руководства и тестовые протоколы облегчают инженерам выбор армированных пластиков.

Усиленные волокнами пластики (стеклопластик, базальтопластик) с давних пор рассматривались как материалы, позволяющие улучшить характеристики бетона.

За последние 15 лет композитная арматура перешла от экспериментального прототипа к эффективному заменителю стали во многих проектах, особенно в связи с повышением цен на сталь.

Композитные сетки в сборных бетонных панелях: высокий потенциал углеродно-эпоксидные сетки C-GRID заменяют традиционную сталь или арматуру в сборных структурах в качестве вторичного армирования.

C-GRID является крупной сеткой из жгутов на основе углерода/эпоксидной смолы. Используется как замена вторичной стальной армирующей сетки в бетонных панелях и архитектурных приложениях. Размер сетки меняется как в зависимости от бетона и типа заполнителя, так и от требований к прочности панели

Использование коротких волокон в бетоне для улучшения его свойств было признанной технологией на протяжении десятилетий, и даже веков, если принять во внимание, что в Римской Империи строительные растворы были армированы конским волосом. Армирование волокнами усиливает прочность и упругость бетона (способность к пластической деформации без разрушения) посредством удерживания части нагрузки при повреждении матрицы и препятствуя росту трещин.

Добавление волокон позволяет материалу деформироваться пластично и выдерживать растягивающие нагрузки.

Усиленный волокнами бетон был использован для изготовления этих предварительно напряженных мостовых балок. Использование арматуры не потребовалось из-за высокой эластичности и прочности материала, которая была придана ему стальными армирующими волокнами, добавленными в бетонную смесь.

Алюминиевый композитный материал - это панель, состоящая из двух алюминиевых листов и пластикового либо минерального наполнителя между ними. Композитная структура материала придаёт ему лёгкость и высокую прочность в сочетании с упругостью и стойкостью к излому. Химическая и лакокрасочная обработка поверхности обеспечивает материалу превосходную устойчивость к коррозии и температурным колебаниям. Благодаря сочетанию этих уникальных свойств, алюминиевый композитный материал является одним из наиболее востребованных в строительстве.

Алюминиевый композит обладает рядом существенных преимуществ, обеспечивающих ему растущую с каждым годом популятность как отделочного материала.

Минимальный вес в сочетании с высокой жёсткостью. Панели алюминиевого композитного материала отличаются низким весом, обусловленным применением алюминиевых покрывающих листов и облегченного центрального слоя в сочетании с высокой жесткостью, задаваемой комбинацией вышеуказанных материалов. В условиях применения на фасадных конструкциях данное обстоятельство выгодно отличает алюминиевые композитные материалы от альтернативных материалов, таких как листовые алюминий и сталь, керамический гранит, фиброцементные плиты. Применение алюминиевого композитного материала значительно снижает общий вес конструкции вентилируемого фасада. композитный бетонный алюминиевый металлический

Алюминиевый композитный материал способен противостоять скручиванию. Причина - в нанесении верхнего слоя методом прокатки. Плоскостность обеспечивается применением прокатки вместо обычной прессовки, которая дает высокую равномерность нанесения слоя. Максимальная пологость составляет 2мм на 1220 мм длины, что составляет 0,16% от последней.

  • - Устойчивость лакокрасочного покрытия к воздействию окружающей среды. Благодаря чрезвычайно устойчивому многослойному покрытию материал в течение длительного времени не теряет интенсивность окраски под воздействием солнечного цвета и агрессивных компонентов атмосферы.
  • - Широкий выбор цветов и фактур. Материал выпускается с покрытием, выполненным лакокрасками: солидные цвета и цвета «металлик» в любом диапазоне цветов и оттенков, покрытиями под камень и дерево. Помимо этого выпускаются панели с напылением «хром», «золото», панели с фактурной поверхностью, панели с полированным покрытием из нержавеющей стали, титана, меди.

Панели алюминиевого композитного материала имеют сложную структуру, образованную алюминиевыми листами и наполнителем центрального слоя. Сопряжение данных материалов обеспечивает панелям жесткость в сочетании с эластичностью, что делает алюминиевые композитные материалы устойчивым к нагрузкам и деформациям, создающимся окружающей средой. Материал не утрачивает своих свойств в течение чрезвычайно длительного времени.

Устойчивость материала к коррозии определяется применением в структуре панели листов алюминиевого сплава, защищенного многослойным лакокрасочным покрытием. В случае повреждения покрытия поверхность листа защищается образованием оксидной пленки

Композиционная структура панели алюминиевого композитного материала обеспечивает хорошую звукоизоляцию, поглощая звуковые волны и вибрации.

Панели легко поддаются таким видам механической обработки как гибка, резка, фрезеровка, сверление, вальцовка, сварка, склеивание, без ущерба покрытию и нарушению структуре материала. При нагрузках, возникающих в процессе сгибания панелей, в том числе в радиус не отмечается расслаивание панелей либо нарушения поверхностных слоев, такие как растрескивание алюминиевых листов и лакокрасочного покрытия. При производстве на заводе панели защищаются от механических повреждений специальной пленкой, удаляемой после завершения монтажных работ.

Панели легко принимают практически любую заданную форму, например радиусную. Пригодность материала к спаиванию позволяет добиваться сложной геометрии изделий, что невозможно ни с одним другим облицовочным материалом, кроме алюминия, перед которым алюминиевые композитные материалы значительно выигрывает по весу.

Применение алюминиевого композитного материала позволяет создавать панели облицовки различных размеров и форм, делает данный материал незаменимым при решении сложных архитектурных задач.

  • - Длительный срок службы. алюминиевого композитного материала в течение длительного времени устойчивы к воздействию внешней среды, таким как солнечный свет, атмосферные осадки, ветровые нагрузки, колебания температуры, благодаря применению устойчивого покрытия и достигнутому в материале сочетанию жесткости и эластичности. Расчетный срок службы панелей на открытом воздухе составляет около 50 лет.
  • - Минимальный уход в процессе эксплуатации. Наличие высококачественного покрытия способствует самоочищению панелей от внешних загрязнений. Так же панели легко моются не агрессивными очистителями.

Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами.

У первых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.

Композиционный материал конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы в виде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия.

Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

Все эти комбинированные материалы объединены в систему. Система усиления из композитов используется практически для всех видов конструкций:

  • 1. Бетонных и железобетонных
  • 2. Металлических (в том числе стальных и алюминиевых)
  • 3. Деревянных
  • 4. Кирпичной (каменной) кладкой.

Также они обеспечивают целый спектр потребностей жизнеобеспечения:

  • 1. Защита от взрывов, взломов и повреждения.
  • 2. Усиление конструкций
  • 3. Баллистическая защита стен и защита от взрывов.
  • 4. Защита кабелей и проводов от взрывов

Рассмотрим достоинства и недостатки композитных материалов. Достоинство:

  • 1. Коррозийная стойкость
  • 2. Прочность на растяжение
  • 3. Простота применения
  • 4. Низкая стоимость рабочей силы
  • 5. Короткое время реализации
  • 6. Отсутствие размерных ограничений
  • 7. Экстремально высокая усталостная прочность
  • 8. Не требует консервации
  • 9. Возможность использования конструкций из разного материала

Недостатки:

  • 1. Относительная стоимость материала
  • 2. Ограничение сферы применения

Из выше изложенных достоинств и недостатков можно сделать вывод: что по сравнению с обычными материалами, композитные имеют практически единственный недостаток-это их достаточно высокая цена. Поэтому может сложиться мнение, что этот метод является дорогостоящим, однако если сравнивать объём расхода материалов-стали на усиление идёт больше чем композитов примерно в тридцать раз. Другими преимуществами композитных материалов является значительное уменьшение стоимости усилия из-за сокращения времени производства работ, использование рабочей силы и механического оборудования. Следовательно композитные системы усиления являются основными конкурентами перед применением стали.

Однако, не смотря на преимущества перед обычными материалами, композиционные материалы имеют характерные для них минусы. К ним следует отнести низкую огнестойкость, изменение свойств при воздействии ультрафиалетового излучения, возможное трещинообразование при изменении объёма в условиях ограничения свободы деформаций. Физико-механические свойства этих материалов делают их восприимчивыми к температурным колебаниям. При высоких температурах они склонны к значительным деформациям ползучести.

Материалы на основе нескольких компонентов, что обусловливает их эксплуатационные и технологичные характеристики. В основе композитов лежит матрица на основе металла, полимера или керамики. Дополнительное армирование выполняется наполнителями в виде волокон, нитевидных кристаллов и различных частиц.

За композитами - будущее?

Пластичность, прочность, широкая сфера применения - вот чем отличаются современные композитные материалы. Что это такое с точки зрения производства? Эти материалы состоят из металлической или неметаллической основы. Для усиления материала используются хлопья большей прочности. Среди можно выделить пластик, который армируется борными, углеродными, стеклянными волокнами, или алюминий, армированный стальными или бериллиевыми нитями. Если комбинировать содержание компонентов, можно получать композиты разной прочности, упругости, стойкости к абразивам.

Основные типы

Классификация композитов основана на их матрице, которая может быть металлической и неметаллической. Материалы с металлической матрицей на основе алюминия, магния, никеля и их сплавов обретают дополнительную прочность за счет волокнистых материалов или тугоплавких частиц, которые не растворяются в основном металле.

Композиты с неметаллической матрицей в основе имеют полимеры, углерод или керамику. Среди полимерных матриц наиболее популярны эпоксидная, полиамидная и фенолформальдегидная. Форма композиции придается за счет матрицы, которая выступает своеобразным связующим веществом. Для упрочнения материалов используются волокна, жгуты, нити, многослойные ткани.

Изготовление композитных материалов ведется на основе следующих технологических методов:

  • пропитка армирующих волокон матричным материалом;
  • формование в пресс-форме лент упрочнителя и матрицы;
  • холодное прессование компонентов с дальнейшим спеканием;
  • электрохимическое нанесение покрытия на волокна и дальнейшее прессование;
  • осаждение матрицы плазменным напылением и последующее обжатие.

Какой упрочнитель?

Во многих сферах промышленности нашли применение композитные материалы. Что это такое, мы уже сказали. Это материалы на основе нескольких компонентов, которые обязательно упрочняются специальными волокнами или кристаллами. От прочности и упругости волокон зависит и прочность самих композитов. В зависимости от вида упрочнителя все композиты можно поделить:

  • на стекловолокниты;
  • карбоволокниты с углеродными волокнами;
  • бороволокниты;
  • органоволокниты.

Упрочнительные материалы могут укладываться в две, три, четыре и больше нити, чем их больше, тем прочнее и надежнее в эксплуатации будут композиционные материалы.

Древесные композиты

Отдельно стоит упомянуть древесный композит. Он получается посредством сочетания сырья разного типа, при этом в качестве основного компонента выступает древесина. Каждый древесно-полимерный композит состоит из трех элементов:

  • частиц измельченной древесины;
  • термопластичного полимера (ПВХ, полиэтилена, полипропилена);
  • комплекса химических добавок в виде модификаторов - их в составе материала до 5 %.

Самый популярный вид древесных композитов - это композитная доска. Ее уникальность в том, что она объединяет в себе свойства и древесины, и полимеров, что существенно расширяет сферу ее применения. Так, доска отличается плотностью (на ее показатель влияет базовая смола и плотность древесинных частичек), хорошим сопротивлением на изгиб. При этом материал экологичный, сохраняет текстуру, цвет и аромат натурального дерева. Использование композитных досок абсолютно безопасно. За счет полимерных добавок композитная доска обретает высокий уровень износостойкости и влагостойкости. Ее можно использовать для отделки террас, садовых дорожек, даже если на них приходится большая нагрузка.

Особенности производства

Древесные композиты имеют особенную структуру за счет сочетания в них полимерной основы с древесиной. Среди материалов подобного типа можно отметить древесно-стружечные, разной плотности, плиты из ориентированной щепы и древесно-полимерный композит. Производство композитных материалов данного типа ведется в несколько этапов:

  1. Измельчается древесина. Для этого используются дробилки. После дробления древесину просеивают и делят на фракции. Если влажность сырья - выше 15 %, его обязательно высушивают.
  2. Дозируются и смешиваются основные компоненты в определенных пропорциях.
  3. Готовое изделие прессуется и форматируется для обретения товарного вида.

Основные характеристики

Мы описали самые популярные полимерные композитные материалы. Что это такое, теперь понятно. Благодаря слоистой структуре есть возможность армирования каждого слоя параллельными непрерывными волокнами. Стоит отдельно сказать о характеристиках современных композитов, которые отличаются:

  • высоким значением временного сопротивления и предела выносливости;
  • высоким уровнем упругости;
  • прочностью, которая достигается армированием слоев;
  • за счет жестких армирующих волокон композиты обладают высокой стойкостью к напряжениям на разрыв.

Композиты на основе металлов отличаются высокой прочностью и жаропрочностью, при этом они практически неэластичны. За счет структуры волокон уменьшается скорость распространения трещин, которые иногда появляются в матрице.

Полимерные материалы

Полимерные композиты представлены в многообразии вариантов, что открывает большие возможности по их использованию в разных сферах, начиная от стоматологии и заканчивая производством авиационной техники. Наполнение композитов на основе полимеров выполняется разными веществами.

Наиболее перспективными сферами использования можно считать строительство, нефтегазовую промышленность, производство автомобильного и железнодорожного транспорта. Именно на долю этих производств приходится порядка 60 % объема использования полимерных композиционных материалов.

Благодаря высокой устойчивости полимерных композитов к коррозии, ровной и плотной поверхности изделий, которые получаются методом формования, повышается надежность и долговечность эксплуатации конечного продукта.

Рассмотрим популярные виды

Стеклопластики

Для армирования этих композиционных материалов используются стеклянные волокна, сформованные из расплавленного неорганического стекла. Матрица основывается на термоактивных синтетических смолах и термопластичных полимерах, которые отличают высокая прочность, низкая теплопроводность, высокие электроизоляционные свойства. Изначально они использовались при производстве антенных обтекателей в виде куполообразных конструкций. В современном мире стеклопластики широко применяются в строительной сфере, судостроении, производстве бытового инвентаря и спортивных предметов, радиоэлектронике.

В большинстве случаев стеклопластики производятся на основе напыления. Особенно эффективен этот метод при мелко- и среднесерийном производстве, например корпусов катеров, лодок, кабин для автомобильного транспорта, железнодорожных вагонов. Технология напыления удобна экономичностью, так как не требуется раскраиваться стекломатериал.

Углепластики

Свойства композитных материалов на основе полимеров дают возможность использовать их в самых разных сферах. В них в качестве наполнителя используются углеродные волокна, получаемые из синтетических и природных волокон на основе целлюлозы, пеков. Волокно обрабатывается термически в несколько этапов. По сравнению со стеклопластиками углепластики отличаются более низкой плотностью и более высоким при легкости и прочности материала. Благодаря уникальным эксплуатационным свойствам углепластики находят применение в машино- и ракетостроении, производстве космической и медицинской техники, велосипедов и спортивных принадлежностей.

Боропластики

Это многокомпонентные материалы, в основе которых лежат борные волокна, введенные в термореактивную полимерную матрицу. Сами волокна представлены мононитями, жгутами, которые оплетаются вспомогательной стеклянной нитью. Большая твердость нитей обеспечивает прочность и стойкость материала к агрессивным факторам, но при этом боропластики отличаются хрупкостью, что осложняет обработку. Борные волокна стоят дорого, поэтому сфера применения боропластиков ограничена в основном авиационной и космической промышленностью.

Органопластики

В этих композитах в качестве наполнителей выступают в основном синтетические волокна - жгуты, нити, ткани, бумага. Среди особенных свойств этих полимеров можно отметить низкую плотность, легкость по сравнению со стекло- и углепластиками, высокую прочность при растяжении и высокое сопротивление ударам и динамическим нагрузкам. Этот композиционный материал широко используется в таких сферах, как машино-, судо-, автостроение, при производстве космической техники, химическом машиностроении.

В чем эффективность?

Композитные материалы за счет уникального состава могут использоваться в самых разных сферах:

  • в авиации при производстве деталей самолетов и двигателей;
  • космической технике для производства силовых конструкций аппаратов, которые подвергаются нагреванию;
  • автомобилестроении для создания облегченных кузовов, рам, панелей, бамперов;
  • горной промышленности при производстве бурового инструмента;
  • гражданском строительстве для создания пролетов мостов, элементов сборных конструкций на высотных сооружениях.

Использование композитов позволяет увеличить мощность двигателей, энергетических установок, уменьшая при этом массу машин и оборудования.

Какие перспективы?

По мнению представителей сферы промышленности России, композиционный материал относится к материалам нового поколения. Планируется, что к 2020 году вырастут объемы внутреннего производства продукции композитной отрасли. Уже сейчас на территории страны реализуются пилотные проекты, направленные на разработку композитных материалов нового поколения.

Применение композитов целесообразно в самых разных сферах, но наиболее эффективно оно в отраслях, связанных с высокими технологиями. Например, сегодня ни один летательный аппарат не создается без использования композитов, а в некоторых из них используется порядка 60 % полимерных композитов.

Благодаря возможности совмещения различных армирующих элементов и матриц можно получить композицию с определенным набором характеристик. А это, в свою очередь, дает возможность применять эти материалы в самых разных сферах.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари