Подпишись и читай
самые интересные
статьи первым!

Электрическая дуга: описание и характеристики. Строение и свойства электрической дуги

Если говорить о характеристиках вольтовой дуги, то стоит упомянуть, что она отличается более низким напряжением, чем тлеющий разряд, и полагается на термоэлектронное излучение электронов от электродов, поддерживающих дугу. В англоязычных странах этот термин считается архаичным и устаревшим.

Методы подавления дуги можно использовать для уменьшения ее продолжительности или вероятности образования.

В конце 1800-х годов вольтова дуга широко использовалась для общественного освещения. Некоторые электрические дуги низкого давления используются во многих приложениях. Например, для освещения применяются люминесцентные лампы, ртутные, натриевые и металлогалогенные лампы. Ксеноновые дуговые лампы использовались для кинопроекторов.

Открытие вольтовой дуги

Считается, что это явление впервые было описано сэром Хамфри Дэви в статье 1801 года, опубликованной в Journal of Natural Philosophy, Chemistry and Arts Уильяма Николсона. Однако явление, описанное Дэви, не было электрической дугой, но лишь искрой. Поздние исследователи писали: «Это, очевидно, описание не дуги, а искры. Суть первой заключается в том, что она должна быть непрерывной, и ее полюса не должны соприкасаться после того, как она возникла. Искра, созданная сэром Хамфри Дэви, была явно не непрерывной, и хотя в течение некоторого времени после контакта с атомами углерода оставалась заряженной, скорее всего не было соединения дуги, которое необходимо для ее классификации как вольтовой».

В том же году Дэви публично продемонстрировал эффект перед Королевским обществом, передав электрический ток через два соприкасающихся угольных стержня, а затем оттянув их на небольшое расстояние друг от друга. Демонстрация показала «слабую» дугу, с трудом отличимую от устойчивой искры, между точками древесного угля. Научное сообщество предоставило ему более мощную батарею из 1000 пластин, и в 1808 году он продемонстрировал возникновение вольтовой дуги в крупных масштабах. Ему также приписывают ее название на английском языке (electric arc). Он назвал ее дугой, потому что она принимает форму восходящего лука, когда расстояние между электродами становится близким. Это связано с проводящими свойствами раскаленного газа.

Как появилась вольтова дуга? Первая непрерывная дуга была зафиксирована независимо в 1802 г. и описана в 1803 г. как «специальная жидкость с электрическими свойствами» русским ученым Василием Петровым, экспериментирующий с медно-цинковой батареей, состоящей из 4200 дисков.

Дальнейшее изучение

В конце девятнадцатого века вольтова дуга широко использовалась для общественного освещения. Тенденция электрических дуг к мерцанию и шипению была серьезной проблемой. В 1895 году Герта Маркс Айртон написала серию статей об электричестве, объяснив, что вольтова дуга была результатом контакта кислорода с углеродными стержнями, используемыми для создания дуги.

В 1899 году она была первой женщиной, когда-либо читавшей свой собственный доклад перед Институтом инженеров-электриков (IEE). Ее доклад был озаглавлен как «Механизм электрической дуги». Вскоре после этого Айртон была избрана первой женщиной-членом Института инженеров-электриков. Следующая женщина была принята в институт аж в 1958 году. Айртон подала прошение прочесть доклад перед Королевским научным обществом, но ей не разрешили сделать этого из-за ее пола, и «Механизм электрической дуги» был прочитан Джоном Перри вместо нее в 1901 году.

Описание

Электрическая дуга представляет собой вид с наибольшей плотностью тока. Максимальная сила тока, проводимого по дуге, ограничена только внешней средой, а не самой дугой.

Дуга между двумя электродами может быть инициирована ионизацией и тлеющим разрядом, когда ток через электроды увеличивается. Пробивное напряжение электродного зазора представляет собой комбинированную функцию давления, расстояния между электродами и типа газа, окружающего электроды. Когда начинается дуга, ее напряжение на клеммах намного меньше, чем у тлеющего разряда, а ток выше. Дуга в газах вблизи атмосферного давления характеризуется видимым светом, высокой плотностью тока и высокой температурой. Она отличается от тлеющего разряда примерно одинаковыми эффективными температурами как электронов, так и положительных ионов, и в тлеющем разряде ионы имеют гораздо меньшую тепловую энергию, чем электроны.

При сваривании

Вытянутая дуга может быть инициирована двумя электродами, первоначально находящимися в контакте и разнесенными в процессе эксперимента. Это действие может инициировать дугу без высоковольтного тлеющего разряда. Это способ, которым сварщик начинает сваривать соединение, мгновенно прикасаясь сварочным электродом к предмету.

Другим примером является разделение электрических контактов на переключателях, реле или автоматических выключателях. В высокоэнергетических схемах может потребоваться подавление дуги, чтобы предотвратить повреждение контактов.

Вольтова дуга: характеристики

Электрическое сопротивление вдоль непрерывной дуги создает тепло, которое ионизует больше молекул газа (где степень ионизации определяется температурой), и в соответствии с этой последовательностью газ постепенно превращается в тепловую плазму, которая находится в тепловом равновесии, поскольку температура относительно однородно распределяется по всем атомам, молекулам, ионам и электронам. Энергия, передаваемая электронами, быстро диспергируется с более тяжелыми частицами за счет упругих столкновений из-за их большой подвижности и больших чисел.

Ток в дуге поддерживается термоэлектронной и полевой эмиссией электронов на катоде. Ток может быть сконцентрирован в очень малой горячей точке на катоде - порядка миллиона ампер на квадратный сантиметр. В отличие от тлеющего разряда, дуга имеет мало различимую структуру, поскольку положительный столбец достаточно яркий и простирается почти до электродов с обоих концов. Падение катода и падение анода в несколько вольт происходит в пределах доли миллиметра каждого электрода. Положительный столбец имеет более низкий градиент напряжения и может отсутствовать в очень коротких дугах.

Низкочастотная дуга

Низкочастотная (менее 100 Гц) дуга переменного тока напоминает дугу постоянного тока. На каждом цикле дуга инициируется пробоем, и электроды меняют роли, когда ток меняет направление. По мере увеличения частоты тока не хватает времени для ионизации при расхождении на каждом полупериоде, и пробой больше не нужен для поддержания дуги - характеристика напряжения и тока становится более омической.

Место среди прочих физических явлений

Различные формы электрических дуг являются возникающими свойствами нелинейных моделей тока и электрического поля. Дуга встречается в заполненном газом пространстве между двумя проводящими электродами (часто из вольфрама или углерода), что приводит к возникновению очень высокой температуры, способной плавить или испарять большинство материалов. Электрическая дуга представляет собой непрерывный разряд, в то время как аналогичный электрический искровой разряд является мгновенным. Вольтова дуга может возникать либо в цепях постоянного тока, либо в цепях переменного. В последнем случае она может повторно ударяться о каждом полупериоде возникновения тока. Электрическая дуга отличается от тлеющего разряда тем, что плотность тока довольно велика, а падение напряжения внутри дуги низкое. На катоде плотность тока может достигать одного мегаампера на квадратный сантиметр.

Разрушительный потенциал

Электрическая дуга имеет нелинейную зависимость между током и напряжением. Как только дуга будет создана ​​(либо путем прогрессирования из тлеющего разряда, либо путем мгновенного касания электродов, а затем разделения их), увеличение тока приводит к более низкому напряжению между дуговыми терминалами. Этот эффект отрицательного сопротивления требует, чтобы какая-то положительная форма импеданса (как электрического балласта) была помещена в цепь для поддержания стабильной дуги. Это свойство является причиной того, что неконтролируемые электрические дуги в аппарате становятся настолько разрушительными, ведь после своего возникновения дуга будет потреблять все больше тока от источника постоянного напряжения до тех пор, пока устройство не будет уничтожено.

Практическое применение

В промышленном масштабе электрические дуги используются для сварки, плазменной резки, механической обработки электрическим разрядом, в качестве дуговой лампы в кинопроекторах и в освещении. Электродуговые печи используются для производства стали и других веществ. Карбид кальция получают именно таким образом, поскольку для достижения эндотермической реакции (при температурах 2500 °С) требуется большое количество энергии.

Углеродистые дуговые огни были первыми электрическими огнями. Они использовались для уличных фонарей в XIX веке и для создания специализированных устройств, таких как прожекторы, до Второй мировой войны. Сегодня электрические дуги низкого давления используются во многих областях. Например, для освещения используются люминесцентные лампы, ртутные, натриевые и металлогалогенные лампы, а ксеноновые дуговые лампы используются для кинопроекторов.

Формирование интенсивной электрической дуги, подобно мелкомасштабной дуговой вспышке, является основой взрывоопасных детонаторов. Когда ученые узнали, что такое вольтова дуга и как ее можно использовать, разнообразие мирового вооружения пополнилось эффективной взрывчаткой.

Основным оставшимся применением является высоковольтное распределительное устройство для сетей передачи. Современные устройства также используют гексафторид серы под высоким давлением.

Заключение

Несмотря на частоту ожогов вольтовой дугой, она считается очень полезным физическим явлением, до сих пор широко использующимся в промышленности, производстве и создании декоративных предметов. Она обладает своей эстетикой, и ее образ часто мелькает в научно-фантастических фильмах. Поражение вольтовой дугой не является смертельным.

Введение

Способы гашения электрической дуги… Тема актуальна и интересна. Итак начнем. Задаемся вопросами: Что такое электрическая дуга? Как её контролировать? Какие процессы происходят при её образовании? Из чего она состоит? И как выглядит.

Что такое электрическая дуга?

Электрическая дуга (Вольтова дуга, Дуговой разряд ) -- физическое явление, один из видов электрического разряда в газе. Впервые была описана в 1802 году русским учёным В.В.Петровым.

Электрическая дуга является частным случаем четвёртой формы состояния вещества -- плазмы -- и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.

Образование и свойства дуги

При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами и пр. Зачастую, для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь.

Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения, в воздушном промежутке образуется достаточное количество плазмы для того, чтобы напряжение пробоя (или сопротивление воздушного промежутка) в этом месте значительно упало. При этом искровые разряды превращаются в дуговой разряд -- плазменный шнур между электродами, являющийся плазменным тоннелем. Эта дуга является по сути проводником, и замыкает электрическую цепь между электродами, средний ток увеличивается ещё больше нагревая дугу до 5000-50000 K. При этом считается, что поджиг дуги завершён.

Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии. Электрическая сварочная дуга представляет собой мощный электрический разряд, протекающий в газовой среде. Дуговой разряд характеризуется двумя основными особенностями: выделением значительного количества тепла и сильным световым эффектом. Температура обычной сварочной дуги около 6000°С.

Свет дуги ослепительно яркий и используется в различных осветительных устройствах. Дуга излучает большое количество видимых и невидимых тепловых (инфракрасных) и химических (ультрафиолетовых) лучей. Невидимые лучи вызывают воспаление глаз и обжигают кожу человека, поэтому для защиты от них сварщики применяют специальные щитки и спецодежду.

Использование дуги

В зависимости от среды, в которой происходит дуговой разряд, различают следующие сварочные дуги:

1. Открытая дуга. Горит в воздухе. Состав газовой среды зоны дуги-- воздух с примесью паров свариваемого металла, материала электродов и электродных покрытий.

2. Закрытая дуга. Горит под слоем флюса. Состав газовой среды зоны дуги -- пары основного металла, материала электрода и защитного флюса.

3. Дуга с подачей защитных газов. В дугу подаются.под давлением различные газы -- гелий, аргон, углекислый газ, водород, светильный газ и различные смеси газов. Состав газовой среды в зоне дуги -- атмосфера защитного газа, пары материала электрода и основного металла.

Питание дуги может осуществляться от источников постоянного или переменного тока. В случае питания постоянным током различают дугу прямой полярности (минус источника питания на электроде, плюс -- на основном металле) и обратной полярности (минус на основном металле, плюс на электроде). В зависимости от материала электродов дуги различают с плавким (металлическим) и неплавким (угольным, вольфрамовым, керамическим и др.) электродами.

При сварке дуга может быть прямого действия (основной металл участвует в электрической цепи дуги) и косвенного действия (основной металл не участвует в электрической цепи дуги). Дуга косвенного действия применяется сравнительно мало.

Плотность тока в сварочной дуге может быть различна. Применяются дуги с нормальной плотностью тока -- 10--20 а/мм2 (обычная ручная сварка, сварка в некоторых защитных газах) и с большой плотностью тока -- 80--120 а/мм2 и больше (автоматическая, полуавтоматическая сварка под флюсом, в среде защитных газов).

Возникновение дугового разряда возможно только в случае, когда газовый столб между электродом и основным металлом будет ионизирован, т. е. будет содержать ионы и электроны. Это достигается тем, что газовой молекуле или атому сообщается соответствующая энергия, называемая энергией ионизации, в результате чего из атомов и молекул выделяются электроны. Среду дугового разряда можно представить газовым проводником электрического тока,имеющим круглоцилиндрическую форму. Состоит дуга из трех областей -- катодная область, столб дуги, анодная область.

Во время горения дуги на электроде и основном металле наблюдаются активные пятна, которые представляют собой нагретые участки на поверхности электрода и основного металла; через эти пятна проходит весь ток дуги. На катоде пятно именуется катодным, на аноде -- анодным. Сечение средней части столба дуги несколько больше размеров катодного и анодного пятен. Его размер соответственно зависит от размеров активных пятен.

Напряжение дуги изменяется в зависимости от плотности тока. Эта зависимость, изображенная графически, называется статической характеристикой дуги. При малых значениях плотности тока статическая характеристика имеет падающий характер, т. е. напряжение дуги уменьшается по мере увеличения тока. Это обусловлено тем, что с увеличением тока площадь сечения столба дуги и электропроводность увеличиваются, а плотность тока и градиент потенциала в столбе дуги уменьшаются. Величина катодного и анодного падений напряжений дуги не изменяется от величины тока и зависит только от материала электрода, основного металла, газовой среды и давления газа в зоне дуги.

При плотностях тока сварочной дуги обычных режимов, применяемых при ручной сварке, напряжение дуги не зависит от величины тока, так как площадь сечения столба дуги увеличивается пропорционально току, а электропроводность изменяется весьма мало, и плотность тока в столбе дуги практически остается постоянной. При этом величина катодного и анодного падений напряжений остается неизменной. В дуге большой плотности тока при увеличении силы тока катодное пятно и сечение столба дуги не могут увеличиваться, хотя плотность тока возрастает пропорционально силе тока. При этом температура и электропроводность столба дуги несколько повышаются.

Напряжение электрического поля и градиент потенциала столба дуги будут возрастать с увеличением силы тока. Катодное падение напряжения увеличивается, вследствие чего статическая характеристика будет носить возрастающий характер, т. е. напряжение дуги с увеличением тока дуги будет возрастать. Возрастающая статическая характеристика является особенностью дуги высокой плотности тока в различных газовых средах. Статические характеристики относятся к установившемуся стационарному состоянию дуги при неизменной ее длине.

Устойчивый процесс горения дуги при сварке может происходить при соблюдении определенных условий. На устойчивость процесса горения дуги влияет ряд факторов; напряжение холостого хода источника питания дуги, род тока, величина тока, полярность, наличие индуктивности в цепи дуги, наличие емкости, частота тока и др.

Способствуют улучшению устойчивости дуги увеличение тока, напряжения холостого хода источника питания дуги, включение индуктивности в цепь дуги, увеличение частоты тока (при питании переменным током) и ряд других условий. Устойчивость может быть также существенно улучшена за счет применения специальных электродных обмазок, флюсов, защитных газов и ряда других технологических факторов.

гашение электрическая дуга сварочный

Электрическая дуга – это мощный, длительно существующий между находящимися под напряжением электродами, электрический разряд в сильно ионизированной смеси газов и паров. Характеризуется высокой температурой газов и большим током в зоне разряда.

Электроды подключаются к источникам переменного (сварочный трансформатор) или постоянного тока (сварочный генератор или выпрямитель) при прямой и обратной полярности.

При сварке постоянным током электрод подсоединенный к положительному полюсу называется анодом, а к отрицательному – катодом. Промежуток между электродами называется областью дугового промежутка или дуговым промежутком (рисунок 3.4). Дуговой промежуток обычно разделяют на 3 характерные области:

  1. анодная область, примыкающая к аноду;
  2. катодная область;
  3. столб дуги.

Любое зажигание дуги начинается с короткого замыкания, т.е. с замыкания электрода с изделием. При этом U д = 0, а ток I max = I кор.замык. В месте замыкания появляется катодное пятно, которое является непременным (необходимым) условием существования дугового разряда. Образующийся жидкий металл при отводе электрода растягивается, перегревается и температура достигает, до температуры кипения – возбуждается (зажигается) дуга.

Зажигание дуги можно производить и без соприкосновения электродов за счет ионизации, т.е. пробоя диэлектрического воздушного (газового) промежутка за счет повышения напряжения осцилляторами (аргонодуговая сварка).

Дуговой промежуток является диэлектрической средой, которое необходимо ионизировать.

Для существования дугового разряда достаточно U д = 16÷60 В. Прохождение электрического тока через воздушный (дуговой) промежуток возможно только при наличии в нем электронов (элементарных отрицательных частиц) и ионов: положительные (+) ионы – все молекулы и атомы элементов (легче образуют металлы Ме); отрицательные (–) ионы – легче образуют F, Cr, N 2 , O 2 и другие элементы обладающие сродством к электронам е.

Рисунок 3.4 – Схема горения дуги

Катодная область дуги является источником электронов, ионизирующих газы в дуговом промежутке. Электроны выделившиеся из катода ускоряются электрическим полем и удаляются от катода. Одновременно под воздействием этого поля к катоду направляются +ионы:

U д = U к + U с + U а;

Анодная область имеет значительно больший объем U a < U к.

Столб дуги – основная доля дугового промежутка представляет смесь электронов, + и – ионов и нейтральных атомов (молекул). Столб дуги нейтрален:

∑зар.отр. = ∑зарядов положит.частиц.

Энергия для поддержания стационарной дуги поступает от источника питания ИП.

Разная температура, размеров анодных и катодных зон и разное количество тепла выделяющейся – обуславливает существование при сварке на постоянном токе прямой и обратной полярности:

Q a > Q к; U a < U к.

  • при требовании большого количества тепла для прогрева кромок больших толщин металла применяется прямая полярность (например, при наплавке);
  • при тонкостенных и не допускающих перегрева свариваемых металлов обратная полярность (+ на электроде).

2.1. ПРИРОДА СВАРОЧНОЙ ДУГИ

Электрическая дуга представляет собой один из видов электриче­ских разрядов в газах, при котором наблюдается прохождение электри­ческого тока через газовый промежуток под воздействием электрическо­го поля. Электрическую дугу, используемую для сварки металлов, назы­вают сварочной дугой. Дуга является частью электрической сварочной цепи, и на ней происходит падение напряжения. При сварке на постоян­ном токе электрод, подсоединенный к положительному полюсу источ­ника питания дуги, называют анодом, а к отрицательному — катодом. Если сварка ведется на переменном токе, каждый из электродов является попеременно то анодом, то катодом.

Промежуток между электродами называют областью дугового разряда или дуговым промежутком. Длину дугового промежутка на­зывают длиной дуги. В обычных условиях при низких температурах га­зы состоят из нейтральных атомов и молекул и не обладают электриче­ской проводимостью. Прохождение электрического тока через газ воз­можно только при наличии в нем заряженных частиц — электронов и ионов. Процесс образования заряженных частиц газа называют иониза­цией, а сам газ — ионизованным. Возникновение заряженных частиц в дуговом промежутке обусловливается эмиссией (испусканием) элек­тронов с поверхности отрицательного электрода (катода) и ионизацией находящихся в промежутке газов и паров. Дуга, горящая между элек­тродом и объектом сварки, является дугой прямого действия. Такую дугу принято называть свободной дугой в отличие от сжатой, попереч­ное сечение которой принудительно уменьшено за счет сопла горелки, потока газа, электромагнитного поля. Возбуждение дуги происходит следующим образом. При коротком замыкании электрода и детали в местах касания их поверхности разогреваются. При размыкании элек­тродов с нагретой поверхности катода происходит испускание электро­нов — электронная эмиссия. Выход электронов в первую очередь связы­вают с термическим эффектом (термоэлектронная эмиссия) и наличием у катода электрического поля высокой напряженности (автоэлектронная эмиссия). Наличие электронной эмиссии с поверхности катода является непременным условием существования дугового разряда.

По длине дугового промежутка дуга разделяется на три области (рис. 2.1): катодную, анодную и находящийся между ними столб дуги.

Катодная область включает в себя нагретую поверхность катода, называемую катодным пятном, и часть дугового промежутка, примы­кающую к ней. Протяженность катодной области мала, но она характе­ризуется повышенной напряженностью и протекающими в ней процес­сами получения электронов, являющимися необходимым условием для существования дугового разряда. Температура катодного пятна для стальных электродов достигает 2400-2700 °С. На нем выделяется до 38 % общей теплоты дуги. Основным физическим процессом в этой об­ласти является электронная эмиссия и разгон электронов. Падение на­пряжения в катодной области ик составляет порядка 12-17 В.

Анодная область состоит из анодного пятна на поверхности анода и части дугового промежутка, примыкающего к нему. Ток в анодной области определяется потоком электронов, идущих из столба дуги. Анодное пятно является местом входа и нейтрализации свободных электронов в материале анода. Оно имеет примерно такую же темпера­туру, как и катодное пятно, но в результате бомбардировки электронами на нем выделяется больше теплоты, чем на катоде. Анодная область также характеризуется повышенной напряженностью. Падение напря­жения в ней Ua составляет порядка 2-11 В. Протяженность этой области также мала.

Столб дуги занимает наибольшую протяженность дугового проме­жутка, расположенную между катодной и анодной областями. Основ­ным процессом образования заряженных частиц здесь является иониза­ция газа. Этот процесс происходит в результате соударения заряженных (в первую очередь электронов) и нейтральных частиц газа. При доста­точной энергии соударения из частиц газа происходит выбивание элек­тронов и образование положительных ионов. Такую ионизацию назы­вают ионизацией соударением. Соударение может произойти и без ио­низации, тогда энергия соударения выделяется в виде теплоты и идет на повышение температуры дугового столба. Образующиеся в столбе дуги заряженные частицы движутся к электродам: электроны — к аноду, ионы — к катоду. Часть положительных ионов достигает катодного пятна, другая же часть не достигает и, присоединяя к себе отрицательно заря­женные электроны, ионы становятся нейтральными атомами.

Такой процесс нейтрализации частиц называют рекомбинацией. В столбе дуги при всех условиях горения ее наблюдается устойчивое равновесие между процессами ионизации и рекомбинации. В целом столб дуги не имеет заряда. Он нейтрален, так как в каждом сечении его одновременно находятся равные количества противоположно заряжен­ных частиц. Температура столба дуги достигает 6000-8000 °С и более. Падение напряжения в нем (Uc) изменяется практически линейно по длине, увеличиваясь с увеличением длины столба. Падение напряжения зависит от состава газовой среды и уменьшается с введением в нее лег­ко ионизующихся компонентов. Такими компонентами являются ще­лочные и щелочно-земельные элементы (Са, Na, К и др.). Общее паде­ние напряжения в дуге Uд=Uк+Ua+Uc. Принимая падение напряжения в столбе дуги в виде линейной зависимости, его можно представить формулой Uc=Elc, где Е — напряженность по длине, lc — длина столба. Значения ик, Ua, E практически зависят лишь от материала электродов и состава среды дугового промежутка и при их неизменности остаются постоянными при разных условиях сварки. В связи с малой протяжен­ностью катодной и анодной областей можно считать практически 1с=1д. Тогда получается выражение

II}{ = а + Ы}{, (2.1)

показывающее, что напряжение дуги прямым образом зависит от ее длины, где а=ик+иа; b=E. Непременным условием получения качест­венного сварного соединения является устойчивое горение дуги (ее ста­бильность). Под этим понимают такой режим ее существования, при ко­тором дуга длительное время горит при заданных значениях силы тока и напряжения, не прерываясь и не переходя в другие виды разрядов. При устойчивом горении сварочной дуги основные ее параметры — сила тока и напряжение — находятся в определенной взаимозависимости. По­этому одной из основных характеристик дугового разряда является за­висимость ее напряжения от силы тока при постоянной длине дуги. Графическое изображение этой зависимости при работе в статическом режиме (в состоянии устойчивого горения дуги) называют статической вольтамперной характеристикой дуги (рис. 2.2).

С увеличением длины дуги ее напряжение возрастает и кривая ста­тической вольтамперной характеристики поднимается, выше с уменьше­нием длины дуги опускается ниже, качественно сохраняя при этом свою форму. Кривую статической характеристики можно разделить на три области: падающую, жесткую и возрастающую. В первой области уве­личение тока приводит к резкому падению напряжения дуги. Это обу­словлено тем, что с увеличением силы тока увеличивается площадь сечения столба дуги и его электропроводность. Горение дуги на режимах в этой области отличается малой устойчивостью. Во второй области увеличение силы тока не связано с изменением напряжения дуги. Это объясняется тем, что пло­щадь сечения столба дуги и активных пятен изменяется пропорциональ­но силе тока, в связи с чем плотность тока и падение напряжения в дуге сохраняются постоянными. Сварка дугой с жесткой статической харак­теристикой находит широкое применение в сварочной технологии, осо­бенно при ручной сварке . В третьей области с увеличением силы тока напряжение возрастает. Это связано с тем, что диаметр катодного пятна становится равным диаметру электрода и увеличиваться далее не может, при этом в дуге возрастает плотность тока и падает напряжение. Дуга с возрастающей статической характеристикой широко используется при автоматической и механизированной сварке под флюсом и в защитных газах с применением тонкой сварочной проволоки.

Рис. 2.3. Статистическая вольтамперная характеристика дуги при разных скоростях подачи электродной проволоки: а — малая скорость; б — средняя скорость, в — большая скорость

При механизированной сварке плавящимся электродом иногда применяют статическую вольтамперную характеристику дуги, снятую не при постоянной ее длине, а при постоянной скорости подачи элек­тродной проволоки (рис. 2.3).

Как видно из рисунка, каждой скорости подачи электродной про­волоки соответствует узкий диапазон токов с устойчивым горением ду­ги. Слишком малый сварочный ток может привести к короткому замы­канию электрода с изделием, а слишком большой — к резкому возраста­нию напряжения и ее обрыву.

Электрическая дуга и её свойства

Наибольшее распространение в машиностроении получила электродуговая сварка. Рассмотрим подробнее особенности электродуговой сварки.

Электрической дугой называется продолжительный разряд электрического тока между двумя электродами, происходящий в газовой среде. Электрическая дуга, используемая для сварки металлов, называется сварочной дугой. Такая дуга в большинстве случаев горит между электродом и изделием, т.е. является дугой прямого действия.

Дуга прямого действия постоянного тока, горящая между металлическим электродом (катодом) и свариваемым металлом (анодом), имеет несколько ясно различимых областей (рис.2.3). Электропроводный газовый канал, соединяющий электроды, имеет форму усеченного конуса или цилиндра. Его свойства на различных расстояниях от электродов неодинаковы. Тонкие слои газа, примыкающие к электродам, имеют сравнительно низкую температуру. В зависимости от полярности электрода, к которому они примыкают, эти слои называются катодной 2 и анодной 4 областями дуги.

Протяженность катодной области l k определяется длиной свободного пробега нейтральных атомов и составляет

̃порядка 10 -5 см. Протяженность анодной области l a определяется длиной свободного пробега электрона и составляет примерно 10 -3 см. Между приэлектродными областями располагается наиболее протяженная, высокотемпературная область разряда - столб дуги l c 3.

На поверхности катода и анода образуются пятна, называемые, соответственно, катодное 1 и анодное 5 пятно, являющиеся основаниями столба дуги, через которые проходит весь сварочный ток. Электродные пятна выделяются яркостью свечения при сравнительно невысокой их температуре (2600... 3200 К). Температура в столбе дуги достигается 6000...8000 К.

Общая длина сварочной дуги l д равна сумме длин всех трех её областей (l д =l a +l k) и для реальных условий составляет 2...6 мм.

Общее напряжение сварочной дуги, соответственно, слагается из суммы падений напряжений в отдельных областях дуги и находится в пределах от 20 до 40 В. Зависимость напряжения в сварочной дуге от её длины описывается уравнением , где а - сумма падений напряжений в катодной и анодной областях, В; l д - длина столба дуги, мм; b - удельное падение напряжения в дуге, т.е. отнесенное к 1 мм длины столба дуги, В/мм.

Одной из основных характеристик электрического дугового разряда является статическая вольт-амперная характеристика - зависимость напряжения дуги при постоянной ее длине от силы тока в ней (рис.2.4).

С увеличением длины дуги напряжение увеличивается и кривая статической вольтамперной характеристики дуги поднимается выше, примерно сохраняя при этом свою форму (кривые, а, б, в). На ней различают три области: падающую I, жесткую (почти горизонтальную) II и возрастающую III. В зависимости от условий горения дуги ей соответствует один из участков характеристики. При ручной дуговой сварке покрытыми электродами, сварке в защитных газах неплавящимся электродом и сварке под флюсом на сравнительно небольших плотностях тока характеристика дуги будет вначале падающей, а при увеличении тока полностью перейдет в жесткую. При этом с увеличением сварочного тока пропорционально увеличиваются поперечное сечение столба дуги и площади поперечного сечения анодного и катодного пятен. Плотность тока и напряжение дуги остаются постоянными.

При сварке под флюсом и в защитных газах тонкой электродной проволокой на больших плотностях тока характеристика дуги становится возрастающей. Это объясняется тем, что диаметры катодного и анодного пятен становятся равными диаметру электрода и больше увеличиваться не могут. В дуговом промежутке наступает полная ионизация газовых молекул и дальнейшее увеличение сварочного тока может происходить лишь за счет увеличения скорости движения электронов и ионов, т. е. за счет увеличения напряженности электрического поля. Поэтому для дальнейшего увеличения сварочного тока требуется увеличение напряжения дуги.

Сварочная дуга представляет собой мощный концентрированный источник теплоты. Почти вся электрическая энергия, потребляемая дугой, превращается в тепловую. Полная тепловая мощность дуги Q=I св U д (Дж/с) зависит от силы сварочного тока I св (А) и напряжения дуги U д (В).

Следует отметить, что не вся теплота дуги затрачивается на нагрев и плавление металла. Часть её бесполезно расходуется на нагрев окружающего воздуха или защитного газа, радиационное излучение и т.д. В связи с этим эффективная тепловая мощность дуги q эф (Дж/с) (та часть теплоты сварочной дуги, которая вводится непосредственно в изделие) определяется следующим соотношением: где η - коэффициент полезного действия (КПД) процесса нагрева изделия сварочной дугой, определяемый опытным путем.

Коэффициент η зависит от способа сварки, материала электрода, состава покрытия или флюса и ряда других факторов. Например, при сварке открытой дугой угольным или вольфрамовых электродом он составляет в среднем 0,6; при сварке покрытыми (качественными) электродами - около 0,75; при сварке под флюсом - 0,8 и более.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари