Подпишись и читай
самые интересные
статьи первым!

Динамические законы и теории. Механический детерминизм

На многообразиях и их подмножествах. Тесно связан с теорией дифференциальных уравнений , поскольку обыкновенное дифференциальное уравнение задает однопараметрическую группу диффеоморфизмов своего фазового пространства .

Эту область изучения часто называют просто «Динамические системы», «Теория систем», или длиннее как «Теория математических динамических систем».

Шаблон:Системы


Wikimedia Foundation . 2010 .

  • Теория групп Ли
  • Теория дифференциальных уравнений

Смотреть что такое "Теория динамических систем" в других словарях:

    МЕТРИЧЕСКАЯ ТЕОРИЯ ДИНАМИЧЕСКИХ СИСТЕМ - то же, что эргодическая теория … Математическая энциклопедия

    ЭНТРОПИЙНАЯ ТЕОРИЯ ДИНАМИЧЕСКИХ СИСТЕМ - раздел эргодической теории, тесно связанный с теорией вероятностен и теорией информации. Природа этой связи в общих чертах такова. Пусть {Tt} динамич. система (обычно измеримый поток или каскад)с фазовым пространством Wи инвариантной мерой Пусть … Математическая энциклопедия

    Кафедра нелинейных динамических систем и процессов управления ВМК МГУ - Кафедра Нелинейных Динамических Систем и Процессов Управления факультета Вычислительной математики и кибернетики МГУ им М. В. Ломоносова (НДСиПУ ВМК МГУ). Заведующий кафедрой (с 1989 года) – лауреат Ленинской, Государственных (СССР и РФ),… … Википедия

    Теория катастроф (математика) - Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Термины «катастрофа» и «теория катастроф» были введены Рене Томом (René Thom) и… … Википедия

    Теория бифуркаций - динамических систем это теория, которая изучает изменения качественной картины разбиения фазового пространства в зависимости от изменения параметра (или нескольких параметров). Содержание 1 Обзор 2 Бифуркация равновесий … Википедия

    Теория линейных стационарных систем - раздел теории динамических систем, изучающий поведение и динамические свойства линейных стационарных систем (ЛСС). Широко используется в процессе управления техническими системами, цифровой обработке сигналов и других областях инженерного дела.… … Википедия

    Теория случайных матриц - Теория случайных матриц раздел математической статистики, изучающий свойства ансамблей матриц, элементы которых распределены случайным образом. Как правило задаётся закон распределения элементов. При этом изучается статистика собственных… … Википедия

    Теория узлов - Теория узлов изучение вложений одномерных многообразий в трёхмерное евклидово пространство или в сферу. В более широком смысле предметом теории узлов являются вложения сфер в многообразия и вообще вложения многообразий. Содержание 1… … Википедия

    Теория Колмогорова - Теория Колмогорова Арнольда Мозера, или теория КАМ названная в честь её создателей, А. Н. Колмогорова, В. И. Арнольда и Ю. Мозера, ветвь теории динамических систем, изучающая малые возмущения почти… … Википедия

    Теория катастроф (значения) - Теория катастроф: Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Катастрофизм (теория катастроф) система… … Википедия

Книги

  • Синхронизация динамических систем , . В настоящей книге делается попытка систематического изложения фактов и результатов, относящихся к быстро развивающейся области науки и техники- синхронизации динамических систем. Книга… Купить за 735 руб
  • Теория динамических систем , Г. А. Степаньянц. Настоящая книга посвящена изложению основ общей теории динамических систем, созданной трудами ряда выдающихся отечественных и зарубежных математиков. Знакомствос этой теорией позволяет…

Динамические системы довольно популярны в экономическом моделировании.

Типы процессов, происходящих в экономических системах:

  • Детерминированные;
  • Стохастические;
  • Хаотические.

Для макроуровня, благодаря действиям объективных экономических законов и регуляторных воздействий государства, более характерные детерминированные процессы. Для микроуровня — стохастические (вероятностные).

При достаточно большом количестве наблюдений и обобщении исследуемого явления на более высоком уровне иерархии детерминированная компонента начинает превалировать, а стохастическая превращается в «шум».

При хаотичном характере исследуемой системы применения методов позволяет несколько облегчить изучение объекта за счет определения детерминированного механизма его поведения. Это, в свою очередь, позволяет уменьшить неопределенность познания системы.

Динамическая система — это такая система, параметры которой явно или неявно зависят от времени.

Итак, если для поведения системы заданные функциональные уравнения, то в них включены в явном виде переменные, относящиеся к разным моментам времени.

Важнейшие свойства сложных динамических систем

Рассмотрим самые важные свойства динамических систем.

1. Целостность (эмерджентность) динамических систем

В системе отдельные части функционируют совместно, составляя в совокупности процесс функционирования системы как целого. Совокупное функционирование разнородных взаимосвязанных элементов порождает качественно новые функциональные свойства целого, не имеющие аналогов в свойствах его элементов. Это означает принципиальную невозможность сведения свойств системы к сумме свойств ее элементов.

2. Взаимодействие динамической системы с внешней средой

Система реагирует на воздействие окружающей среды, эволюционирует под этим влиянием, но при этом сохраняет качественную определенность и свойства, отличающие ее от других систем.

3. Структура динамической системы

При исследовании системы структура выступает как способ описания ее организации. В зависимости от поставленной задачи исследования осуществляется декомпозиция системы на элементы и вводятся существенные для решаемой проблемы отношения и связи между ними. Декомпозиция системы на элементы и связи определяется внутренними свойствами данной системы. Структура динамична по природе, ее эволюция во времени и пространстве отражает процесс развития систем.

4. Бесконечность познания динамической системы

Под этим свойством понимается невозможность полного познания системы и всестороннего представления ее конечной множеством описаний, т.е. конечной количеством качественных и количественных характеристик. Поэтому система может быть представлена множеством структурных и функциональных вариантов, отражающих различные аспекты системы.

5. Иерархичность динамической системы

Каждый элемент в декомпозиции системы может рассматриваться как целостная система, элементы которой, в свою очередь, могут быть также представлены как системы. Но, с другой стороны, любая система — лишь компонент более широкой системы.

6. Элемент динамической системы

Под элементом понимается наименьшее звено в структуре системы, внутреннее строение которой не рассматривается на выбранном уровне анализа. Согласно свойства 5 любой элемент является системой, но на заданном уровне анализа эта система характеризуется только целостными характеристиками.

Целостность, структура, элемент, бесконечность и иерархичность составляют ядро системообразующих понятий общей теории систем и является основой системного представления объектов и формирования концепций системных исследований.

Для более подробного изучения свойств динамических экономических систем (ЭС) необходимо рассмотреть еще ряд дополнительных ее свойств характеристик.

  1. Состояние динамической системы . Состояние системы определяется состояниями ее элементов. Теоретически возможный набор состояний равно количеству возможных сочетаний всех состояний элементов. Однако взаимодействие составных частей приводит к ограничению количества реальных сочетаний. Изменение состояния элемента может происходить неявно, непрерывно и скачкообразно.
  2. Поведение динамических систем . Под поведением системы понимается закономерный переход из одного состояния в другое, обусловленный свойствами элементов и структурой.
  3. Непрерывность функционирования системы . Система существует, пока функционируют социально-экономические и иные процессы в обществе, которые не могут быть прерваны, иначе система перестанет функционировать. Все процессы в ЕС, как в живом организме, взаимосвязаны. Функционирования частей определяет характер функционирования целого, и наоборот. Функционирование системы связано с непрерывными изменениями, накопление которых приводит к развитию.
  4. Развитие динамической системы . Жизнедеятельность сложной системы является постоянным изменением фаз функционирования и развития, которая выражается в непрерывной функциональной и структурной перестройке системы, ее подсистем и элементов. Эволюция экономических систем обусловлена одной из важнейших свойств сложных систем — способностью к саморазвитию. Центральным источником саморазвития является непрерывный процесс возникновения и разрешения противоречий. Развитие, как правило, связан с усложнением системы, т.е. с увеличением ее внутреннего разнообразия.
  5. Динамичность системы . Экономическая система функционирует и развивается во времени, она имеет предысторию и будущее, характеризуется определенным жизненным циклом, в котором могут быть выделены определенные фазы: возникновение, рост, развитие, стабилизация, деградация, ликвидация или стимул к изменению.
  6. Сложность динамической системы . Экономическая система характеризуется большим количеством неоднородных элементов и связей, полифункциональностью, полиструктурностью, многокритериальностью, многовариантностью развития и свойствами сложных систем, поэтому она представляется, как сложная динамическая система .
  7. Гомеостатичность . Гомеостатичность отражает свойство системы к самосохранению, противодействие разрушающим воздействиям среды.
  8. Целеустремленность . Всем динамическим системам в экономике присуща целеустремленность, т.е. наличие определенных целей и стремление ее достижения. Развитие системы связан именно с изменением цели.
  9. Управляемость динамической системы . Осознанная организация целенаправленного функционирования системы и ее элементов называется управляемостью. В процессе жизнедеятельности система посредством целенаправленного управления решает постоянно возникающие в ней противоречия и реагирует на изменение внутренних и внешних условий своего существования. Согласно изменяющимся, она меняет свою структуру, корректирует цели развития и содержание деятельности элементов, т.е. происходит целенаправленная самоорганизация системы, которая на практике реализует способность к саморазвитию. Одной из основных функций самоорганизации является сохранение качественной уникальности системы в процессе ее эволюции.Свойства управляемости оказываются также в таких особенностях, как относительная автономность и функциональная управляемость.Относительная автономность функционирования экономических систем означает, что в результате действия обратной связи каждая из составляющих выходного сигнала может быть изменена за счет изменения входного сигнала, причем другие составляющие остаются не измененными. Функциональная управляемость экономической системы означает, что соответствующим выбором входного воздействия можно добиться любого выходного сигнала.
  10. Адаптивность динамической системы . Адаптивная экономической системы определяется двумя видами адаптации — пассивной и активной. Пассивная адаптация является внутренней характеристикой экономической системы, которая располагает определенными возможностями саморегулирования. Активная адаптация представляет механизм адаптивного управления экономической системой и организацию его эффективной реализации.
  11. Инерционность динамической системы . Инерционность экономической системы проявляется в возникновении запаздывания в системе, симптоматично реагирует на возмущения и управляющие воздействия.
  12. Устойчивость динамической системы . Система считается относительно устойчивой в определенно определенных пределах, если при достаточно малых изменениях условий функционирования его поведение существенно не меняется. В рамках теории систем исследуются структурная устойчивость и устойчивость траектории поведения системы. Устойчивость ЕС обеспечивается такими аспектами самоорганизации, как дифференциация и лабильность (чувствительность). Дифференциация — это стремление системы к структурной и функциональной разнообразия элементов, которая обеспечивает не только условия возникновения и разрешения противоречий, но и определяет способность системы быстро приспосабливаться к имеющимся условиям существования. Больше разнообразия — больше устойчивости, и наоборот. Лабильность означает подвижность функций элементов при сохранении устойчивости структуры системы в целом.
  13. Состояние равновесия динамической системы . Устойчивость системы связана с ее стремлением к состоянию равновесия, которое предполагает такое функционирование элементов системы, при котором обеспечивается повышенная эффективность движения к целям развития. В реальных условиях система не может полностью достичь состояния равновесия, хотя и стремится к нему. Элементы системы функционируют по-разному в разных условиях, и их динамическое взаимодействие постоянно влияет на движение системы. Система стремится к равновесию, на это направлены усилия управления, но, достигая его, она тут же от него уходит. Таким образом, устойчивая экономическая система постоянно находится в состоянии динамического равновесия, она непрерывно колеблется относительно положения равновесия, что является не только ее специфическим свойством, но и условием непрерывного возникновения противоречий как движущих сил эволюции.

История развития науки показывает, как первоначально возникшие динамические теории сменяются статистическими, описывающими тот же круг явлений в макроскопических системах, в которых не рассматривают поведение отдельных элементов этой системы (например, единичной молекулы в газе) и изменения их характеристик, а оперируют величинами, характеризующими систему в целом, т.е. макропараметрами (например, давление в газе, плотность газа и т.д.). таким образом, можно сказать, что динамические теории строятся на основании усреднения законов поведения громадного числа частиц в равновесных (или слаборавновесных) условиях, и не учитывают вариации, полученных на основании этих теорий, результатов, которые бы изменялись под влиянием на систему окружающей ее среды. В реальных процессах всегда происходят неизбежные отклонения – флуктуации .Флуктуации – это случайные отклонения параметров системы (или всей системы) от средних значений параметров (или среднего, т.е. наиболее вероятного состояния системы).

Когда флуктуации значительны, в сложных системах с большим числом элементов, которые к тому же зависят от постоянно меняющихся внешних условий, статистические законы глубже и точнее описывают исследуемые процессы.

Главное отличие статистических законов от динамических – в учете случайного (флуктуаций).

В современном естествознании законы динамического типа сочетаются с законами статистического типа. Законы динамического типа используются для систем и процессов, в которых допустимо пренебречь влиянием реально существующих случайных факторов. Если же этого сделать нельзя, то применяют статистические теории, которые дают более глубокое, детальное и точное описание реальности.

Резюмируем все вышесказанное.

Состояние системы в естественных науках может задаваться :

Значениями измеряемых величин, характеризующих эту систему, на данный момент времени

Вероятностями, с которыми та или иная величина, характеризующая систему, принимает заданные значения.

Динамические научные теории :

Описывают состояние системы значениями измеряемых величин, характеризующих систему

Не учитывают и не позволяют описывать флуктуации – случайные отклонения системы от наивероятнейшего состояния

Не используют аппарат теории вероятности.

Статистические научные теории :

Позволяют рассчитывать и предсказывать лишь вероятность того, что величина, характеризующая систему, примет то или иное значение

Описывают состояние системы на языке вероятностей, с которыми та или иная величина, характеризующая систему, принимает заданные значения

Учитывают случайные отклонения от нормы

Описывают вероятное поведение систем, состоящих из огромного числа элементов.

Соответствие между динамическими и статистическими законами :

Динамической теории соответствует более точный статистический аналог, который полнее и глубже описывает реальность

Статистическая теория всегда описывает более широкий класс явлений, чем ее динамический аналог

Статистические законы более полно и глубоко отражают объективные связи в природе, т.к они учитывают реально существующую в мире случайность

Классическая механика Ньютона (динамическая теория) является приближением квантовой механики (статистической теории) при описании движения макрообъектов

Все фундаментальные статистические теории содержат в качестве своего приближения соответствующие динамические теории при условии, что можно пренебречь случайностью.

Динамическими теориями являются :

Механика

Электродинамика

Термодинамика

Теория относительности

Статистическими теориями являются :

Молекулярно-кинетическая теория газов

Квантовая механика, другие квантовые теории

Эволюционная теория Дарвина

Основные понятия статистических теорий :

Случайность (непредсказуемость)

Вероятность (числовая мера случайности)

Среднее значение величины

Флуктуация – случайное отклонение системы от среднего (наиболее вероятного состояния).

Современные физические представления базируются на анализе всего предыдущего теоретического и экспериментального опыта физических исследований, единстве физических знаний, дифференциации и интеграции естественных наук и т.п., что позволяет подразделять законы физики на динамические и статистические. Соотношение этих законов дает возможность исследовать природу причинности и причинных отношений в физике.

Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин, что все природные, социальные и психические явления обладают причинно-следственными связями, беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерминизму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей - существенных, повторяющихся связей между предметами и явлениями - задача науки, так же как и формулирование их в виде законов науки. Но никакое научное знание, никакая научная теория не могут отразить окружающий мир, его отдельные фрагменты полностью, без упрощений и огрублений действительности. То же касается и законов науки. Они могут лишь в большей или меньшей степени приближаться к адекватному отображению объективных закономерностей, но искажения в ходе этого процесса неизбежны. Поэтому для науки очень важно, какую форму имеют ее законы, насколько они соответствуют природным закономерностям.

В этом отношении динамическая теория, представляющая собой совокупность динамических законов, отражает физические процессы без учета случайных взаимодействий. Динамический закон - это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Примерами динамических теорий являются классическая (ньютоновская) механика, релятивистская механика и классическая теория излучения.

Долгое время считалось, что никаких других законов, кроме динамических, не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики И. Ньютона. Если какие-то объективные процессы и закономерности не вписывались в предусмотренные динамическими законами рамки, считалось, что мы просто не знаем их причин, но с течением времени это знание будет получено.

Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и законов, называется механическим детерминизмом. Разработку этого требования обычно связывают с именем П. Лапласа. Он заявлял, что если бы нашелся достаточно обширный ум, которому были бы известны все силы, действующие на все тела Вселенной (от самых больших тел до мельчайших атомов), а также их местоположение, если бы он смог проанализировать эти данные в единой формуле движения, то не осталось бы ничего, что было бы недостоверным. Такому уму открылись бы как прошлое, так и будущее Вселенной.

В середине XIX в. в физике были сформулированы законы, предсказания которых являются не определенными, а только вероятными. Они получили название статистических законов. Так, в 1859 г. была доказана несостоятельность позиции механического детерминизма: Д. Максвелл при построении статистической механики использовал законы нового типа и ввел в физику понятие вероятности. Это понятие было выработано ранее математикой при анализе случайных явлений.

При броске игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при очередном броске, нельзя. Мы можем подсчитать лишь вероятность выпадения числа очков. В данном случае она будет равна "Д. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, какая- то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинно-следственная связь, как и та, что отражается динамическими законами, но она имеет другую форму, поскольку показывает вероятность, а не однозначность события.

Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл таких событий; в таком случае мы можем получить статистические средние значения. Если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 х *Д = 50 раз. При этом безразлично, бросать одну и ту же кость 300 раз или одновременно бросить 300 одинаковых костей.

Несомненно, что поведение газовых молекул в сосуде гораздо сложнее брошенной кости. Но и здесь можно обнаружить определенные количественные закономерности, позволяющие вычислить статистические средние значения. Д. Максвеллу удалось решить эту задачу и показать, что случайное поведение отдельных молекул подчинено определенному статистическому (вероятностному) закону. Статистический закон - закон, управляющий поведением большой совокупности объектов и их элементов, позволяющий давать вероятностные выводы об их поведении. Примерами статистических законов являются квантовая механика, квантовая электродинамика и релятивистская квантовая механика.

Статистические законы в отличие от динамических отражают однозначную связь не физических величин, а статистических распределений этих величин. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма; в отличие от жесткого классического детерминизма он может быть назван вероятностным (современным) детерминизмом. «Вероятностные» законы меньше огрубляют действительность, способны учитывать и отражать те случайности, которые происходят в мире.

К началу XX в. стало очевидно, что нельзя отрицать роль статистических законов в описании физических явлений. Появлялось все больше статистических теорий, а все теоретические расчеты, проведенные в рамках этих теорий, полностью подтверждались экспериментальными данными. Результатом стало выдвижение теории равноправия динамических и статистических законов. Те и другие законы рассматривались как равноправные, но относящиеся к различным явлениям. Считалось, что каждый тип закона имеет свою сферу применения и они дополняют друг друга, что индивидуальные объекты, простейшие формы движения должны описываться с помощью динамических законов, а большая совокупность этих же объектов, высшие, более сложные формы движения - статистическими законами. Соотношение теорий термодинамики и статистической механики, электродинамика Д. Максвелла и электронная теория X. Лоренца, казалось, подтверждали это.

Ситуация в науке кардинально изменилась после возникновения и развития квантовой теории. Она привела к пересмотру всех представлений о роли динамических и статистических законов в отображении закономерностей природы. Был обнаружен статистический характер поведения отдельных элементарных частиц, никаких динамических законов в квантовой механике открыть не удалось. Таким образом, сегодня большинство ученых рассматривают статистические законы как наиболее глубокую и общую форму описания всех физических закономерностей.

Создание квантовой механики дает полное основание утверждать, что динамические законы представляют собой первый, низший этап в познании окружающего нас мира. Статистические законы более полно отражают объективные связи в природе, являются более высокой ступенью познания. На протяжении всей истории развития науки мы видим, как первоначально возникшие динамические теории, охватывающие определенный круг явлений, сменяются по мере развития науки статистическими теориями, описывающими тот же круг вопросов, но с новой, более глубокой точки зрения. Только они способны отразить случайность, вероятность, играющую огромную роль в окружающем нас мире. Только они соответствуют современному (вероятностному) детерминизму.

Главной областью реального применения современной математики было и остается математическое моделирование. А то, что пытается моделировать математика в рамках развития физики, химии и инженерии, становится все более сложным и многоплановым. В частности, одним из самых важных моментов в становлении моделирования сложных процессов и система стало появления понятия и теории динамической системы.

Динамические системы в целом называют математическими абстракциями, которые предназначены для того, чтобы описывать эволюции определенных процессов во времени. Это модель некоторых объектов, явлений, процессов, которые разворачиваются во времени.

Часто динамические системы, изучаемые этой теорией, представляют как системы, которые обладают состоянием. В таком случае можно рассматривать динамическую систему как такую, которая описывает динамику какого-то процесса перехода системы от одного состояния к другому. Отсюда логически возникает определение фазового пространства системы, т.е. совокупности всех состояний, которые для нее являются допустимыми. В общем динамические системы в математической теории характеризуются двумя главными факторами: начальным состоянием системы и тем законом, по которому она переходит из этого состояния в следующие. Многие математические материалы сейчас находятся в электронном виде, они были переведы при помощи услуги сканирования и распознания текста.

Дальнейшее развитие теории привело к созданию различения систем, которые описываются так называемым дискретным временем и систем с непрерывным течением времени. Те, которые связаны с дискретным временем, получили названием каскадов, у них поведение систем может быть описано через последовательность состояний. Для систем непрерывного времени, которые еще называют потоками, их состояние может быть определено для каждого отдельного момента на комплексной или вещественной оси.

Таким образом, постепенно вследствие развития теория появились символическая и топологическая динамики, которые и изучают вышеописанные явления более подробно. С практической точки зрения динамические системы с любым типом времени чаще всего могут быть адекватно описаны с помощью автономных систем дифференциальных уравнений, которые задаются в некоторой области, и которые должны удовлетворять условиям теоремы существования и единственности для решения дифференциальных уравнений.

Теория динамических систем в целом занимается, фактически, исследованием кривых, которые образуются подобными дифференциальными уравнениями. В рамках таких исследований проводится разбиение фазового пространства системы на траектории и дальнейшее исследование возможного поведения этих траекторий, а также классификация возможных положений равновесия и выделения так называемых притягивающих и отталкивающих множеств, которые ими управляют (аттракторов и репеллеров).

Включайся в дискуссию
Читайте также
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари
Рулет с брусникой из дрожжевого теста