Подпишись и читай
самые интересные
статьи первым!

Принцип действия тепловых насосов. Тепловой насос своими руками — принцип устройства

За последний год тепловые насосы заняли свою нишу на российском климатическом рынке в числе других популярных технологий. Обсуждение достоинств и недостатков теплонасосных установок (ТНУ) проходило как на страницах отраслевой прессы, так и на тематических конференциях и круглых столах. О тепловых насосах в последнее время появилось много информации - как в русскоязычном Интернет, так и в специализированных СМИ. Тем не менее, по-прежнему крайне мало публикаций об интегрированных теплонасосных системах. Цель данной статьи - несколько восполнить этот пробел, обобщить некоторые из вопросов, возникающих у специалистов при первом знакомстве с кольцевыми теплонаносными системами, и коротко ответить на них.

Итак, про тепловые насосы известно, что это климатическое оборудование, способное утилизировать тепло окружающей среды, с помощью компрессора поднимать температуру теплоносителя до нужного уровня и передавать это тепло туда, где оно необходимо.

Извлечь из окружающей среды тепло можно почти всегда. Ведь "холодная вода" - понятие субъективное, основанное на наших ощущениях. Даже самая холодная речная вода содержит некоторое количество теплоты. Но известно, что тепло переходит только от более нагретого тела к более холодному. Тепло можно принудительно направить от холодного тела к теплому, тогда холодное тело еще больше остынет, а теплое нагреется. Используя тепловой насос, который "выкачивает" тепло из воздуха, речной воды или земли, еще более понижая их температуру, можно обогреть здание. В классическом случае считается, что, затрачивая на работу 1 кВт электроэнергии, ТНУ может произвести от 3 до 6 кВт тепловой энергии. На практике это означает, что мощностью двух-трех бытовых лампочек в зимний период можно обогреть жилую комнату средних размеров. Летом, работая в обратном режиме, тепловой насос может охлаждать воздух в помещениях здания. Тепло из здания будет удаляться, поглощаясь атмосферой, рекой или землей.

В настоящее время имеется огромное разнообразие теплонасосных установок, что позволяет широко применять их в промышленности, сельском хозяйстве, в ЖКХ. В качестве примера применения ТНУ, в конце статьи мы рассмотрим два проекта - один из них проект масштабной кольцевой системы, внедренной в Краснодарском крае, второй — объект малого строительства в Подмосковье.

Какие тепловые насосы бывают?

Тепловые насосы бывают разной тепловой мощности - от нескольких киловатт до сотен мегаватт. Они могут работать с различными источниками тепла, находящимися в разных агрегатных состояниях. В связи с этим, их можно разделить на следующие типы: вода-вода, вода-воздух, воздух-вода, воздух-воздух. Выпускаются ТНУ, предназначенные для работы с источниками низкопотенциального тепла самых разных температур, вплоть до отрицательной. Они могут использоваться в качестве приемника высокопотенциального тепла, требующего различной температуры, даже выше 1000С. В зависимости от этого тепловые насосы можно разделить на низкотемпературные, среднетемпературные и высокотемпературные.

Тепловые насосы различаются также по техническому устройству. В этом плане можно выделить два направления: парокомпрессионные и абсорбционные ТНУ. Тепловые насосы для своей работы могут использовать и другие виды энергии, кроме электрической, например, они могут работать на различных видах топлива.

Различные комбинации видов источников низкопотенциального тепла и приемников высокопотенциального тепла дают большое разнообразие типов тепловых насосов. Вот некоторые примеры:

  • ТНУ, использующий тепло грунтовых вод для отопления;
  • ТНУ, использующий тепло естественного водоема для горячего водоснабжения;
  • ТНУ-кондиционер воздуха, использующий морскую воду в качестве источника и приемника тепла;
  • ТНУ-кондиционер воздуха, использующий наружный воздух в качестве источника и приемника тепла;
  • ТНУ для нагрева воды плавательного бассейна, использующий тепло наружного воздуха;
  • ТНУ, утилизирующий тепло сточных вод в системе теплоснабжения;
  • ТНУ, утилизирующий тепло инженерно-технического оборудования в системе теплоснабжения;
  • ТНУ для охлаждения молока и одновременно нагрева воды для горячего водоснабжения на молочных фермах;
  • ТНУ для утилизации тепла от технологических процессов в первичном подогреве приточного воздуха.

Большое разнообразие теплонасосной техники выпускается серийно, но тепловые насосы могут изготавливаться и по специальным проектам. Имеются экспериментальные установки, опытно-промышленные образцы, а также много теоретических разработок.

В случае, если на объекте предусматривается применение нескольких тепловых насосов, которые будут предназначены для производства как тепла, так и холода, эффективность их работы многократно возрастет, если они будут объединены в единую систему. Это так называемые кольцевые теплонасосные системы (КТНС). Такие системы целесообразно использовать на средних и крупных объектах.

Кольцевые системы кондиционирования воздуха

Основу этих систем составляют ТНУ типа вода-воздух, выполняющие функции кондиционирования воздуха в помещениях. В помещении, где предусматривается кондиционирование воздуха (или рядом с ним) устанавливается тепловой насос, мощность которого подбирается в соответствии с параметрами помещения, его назначением, характеристиками необходимой приточно-вытяжной вентиляции, возможным количеством присутствующих людей, установленным в нем оборудованием и другими критериями. Все ТНУ реверсивные, то есть предназначены и для охлаждения, и для нагрева воздуха. Все они связаны общим водяным контуром - трубами, в которых циркулирует вода. Вода является одновременно и источником, и приемником тепла для всех ТНУ. Температура в контуре может изменяться в пределах от 18 до 320С. Между тепловыми насосами, которые нагревают воздух, и теми, которые охлаждают его, происходит обмен теплом посредством водяного контура. В зависимости от особенностей помещений, а также от времени года и времени суток - в разных помещениях может требоваться либо нагрев, либо охлаждение воздуха. При одновременной работе в одном здании ТНУ, производящих тепло и холод, происходит перенос тепла из помещений, где его избыток, в помещения, где его не хватает. Таким образом, происходит обмен теплом между зонами, объединенными в единое кольцо.

Помимо ТНУ, выполняющих функцию кондиционирования воздуха, в состав КТНС могут входить и ТНУ другого назначения. Если на объекте имеются достаточные потребности в тепле, через кольцевую систему при помощи ТНУ можно эффективно утилизировать бросовое тепло. Например, при наличии интенсивного потока сточных вод имеет смысл установить ТНУ вода-вода, который позволит утилизировать тепло сбросов посредством КТНС. Такой тепловой насос сможет извлекать тепло из сточных вод, передавать его с помощью кольцевого контура, а затем использовать для обогрева помещений.

Воздух, удаляемый из здания вытяжной вентиляцией, также содержит большое количество тепла. При отсутствии в вытяжном воздухе большого количества примесей, затрудняющих работу ТНУ, можно утилизировать тепло удаляемого воздуха, установив ТНУ воздух-вода. Через КТНС это тепло может быть использовано всеми потребителями в здании, чего трудно добиться, применяя традиционные регенераторы и рекуператоры. Кроме того, процесс утилизации в данном случае может происходить эффективнее, так как не зависит от температуры наружного воздуха, забираемого приточной вентиляцией, и от устанавливаемой температуры нагрева воздуха, нагнетаемого в помещения.

Кроме того, при работе реверсивных тепловых насосов и на сточных водах и в вытяжной вентиляции, их можно использовать для удаления излишков тепла из водяного контура в теплое время года, и тем самым снижать необходимую мощность градирни.

В теплое время года при помощи тепловых насосов излишки тепла в водяном контуре утилизируются через потребителей, имеющихся на объекте. Например, к кольцевой системе может быть подключен ТНУ вода-вода, передающий избыточное тепло в систему горячего водоснабжения (ГВС). На объекте с небольшими потребностями в горячей воде такого теплового насоса может быть достаточно для того, чтобы полностью их удовлетворить.

Если на объекте имеется один или несколько плавательных бассейнов, например, в оздоровительных учреждениях, в домах отдыха, в развлекательных комплексах и в гостиницах, нагрев воды бассейнов можно также реализовать при помощи ТНУ вода-вода, подключив его к КТНС.

Сочетание кольцевых систем с другими системами

Систему вентиляции в зданиях с использованием кольцевой теплонасосной системы необходимо разрабатывать с учетом особенности работы ТНУ, кондиционирующих воздух. Обязательной является рециркуляция воздуха в том объеме, который необходим для стабильной работы этих ТНУ, поддержания заданной температуры в помещении и эффективной утилизации тепла (исключением являются те случаи, где рециркуляция нежелательна, например, залы плавательных бассейнов, местные кухонные вытяжки). Существуют и некоторые другие особенности при разработке вентиляции с КТНС.

Однако, вместе с тем, кольцевая система предусматривает более простые системы вентиляции, чем при других способах кондиционирования. Тепловые насосы осуществляют кондиционирование воздуха непосредственно на месте, в самом помещении, что избавляет от необходимости транспортировки готового воздуха по протяженным теплоизолированным воздуховодам, как это происходит, допустим, при центральном кондиционировании.

Кольцевая система может полностью взять на себя функции отопления, но не исключается и совместное применение с системой отопления. В этом случае применяется менее мощная и более простая с технической точки зрения система отопления. Такая бивалентная система более пригодна в северных широтах, где необходимо больше тепла для отопления, и его придется подводить в большем количестве от высокопотенциального источника. Если в здании установлены отдельные системы кондиционирования и отопления, то эти системы, зачастую, буквально мешают друг другу, особенно в переходные периоды. Использование же кольцевой системы совместно с системой отопления не порождает подобных проблем, так как ее работа полностью зависит от фактического состояния микроклимата в каждой отдельной зоне.

На предприятиях кольцевые теплонасосные системы могут участвовать в нагреве или охлаждении воды или воздуха в технологических целях, причем эти процессы будут включены в баланс общего теплоснабжения предприятия.

Говоря о традиционных системах теплоснабжения, трудно согласиться с их ограниченной экономичностью. Тепло используется частично, быстро рассеивается в атмосферу (при работе отопления и вентиляции), удаляется со сточными водами (через ГВС, технологические процессы) и другими путями. Хорошо еще, если для обеспечения некоторой экономичности установлены теплообменники типа воздух-воздух в системе вентиляции, или типа вода-вода для утилизации тепла, например, холодильных агрегатов, или какие-то другие местные устройства вторичного использования тепла. КТНС же решает данную задачу комплексно, во многих случаях позволяя сделать утилизацию тепла более эффективной.

Автоматизированное управление кольцевыми системами

К разочарованию многих производителей дорогостоящих систем автоматизации, теплонасосные системы не требуют сложных средств автоматизированного управления. Все регулирование здесь сводится лишь к поддержанию определенного значения температуры воды в контуре. Чтобы не допустить охлаждения воды ниже заданного предела, необходимо вовремя включать дополнительный нагреватель. И наоборот, чтобы не превысить верхний предел, надо своевременно включать градирню. Автоматическое управление этим несложным процессом можно реализовать при помощи нескольких термостатов. Поскольку температура воды в контуре КТНС может изменяться в довольно широком диапазоне (обычно от 18 до 320С), то нет также необходимости в использовании точной регулирующей арматуры.

Что касается процесса поступления тепла от теплового насоса к потребителю, то он контролируется за счет автоматики, встроенной в каждый тепловой насос. Например, ТНУ для кондиционирования воздуха имеют датчик температуры (термостат), устанавливаемый непосредственно в помещении. Этого обычного термостата вполне достаточно для управления работой ТН.

Тепловой насос полностью обеспечивает необходимые температурные параметры воздуха в помещениях, что позволяет отказаться от регулирующих заслонок в системе вентиляции и регулирующей арматуры в системе отопления (при бивалентной системе). Все эти обстоятельства способствуют снижению стоимости и повышению надежности инженерных систем в целом.

На крупных объектах, где кольцевая система включает в себя большое количество тепловых насосов и где установлены разнотипные ТНУ (для кондиционирования, утилизации тепла и для обеспечения технологических процессов), часто имеет смысл реализовывать более сложную систему автоматизированного управления, которая позволяет оптимизировать работу всей системы.

На работу кольцевой теплонасосной системы влияют следующие факторы:

  • во-первых, температура воды в контуре. От нее зависит коэффициент преобразования теплоты (СОР), то есть, отношение количества выдаваемого потребителю тепла к количеству потребляемой тепловым насосом энергии;
  • во-вторых, температура наружного воздуха;
  • в-третьих, параметры работы градирни. Для одного и того же количества удаленного тепла при разных условиях может быть затрачено разное количество энергии, потребляемой градирней. Это, в свою очередь, также зависит от температуры наружного воздуха, его влажности, наличия ветра и прочих условий;
  • в-четвертых, от количества работающих в данный момент в системе тепловых насосов. Здесь значение имеет суммарная мощность ТНУ, забирающих тепло из водяного контура, по сравнению с мощностью всех ТНУ, отдающих тепло в контур, то есть количество тепла, поступающего в контур или удаляемого из него.

Хорошо детям, хорошо бюджету

Перейдем к описанию проектов с использованием кольцевых теплонасосных систем.

Первый проект - это реконструкция обычной общеобразовательной школы на юге России. Летом прошлого года администрация Краснодарского края реализовала этот проект в г. Усть-Лабинск (городская школа №2). При реконструкции были выдержаны самые высокие стандарты в обеспечении санитарных требований и комфортного пребывания детей в школе. В частности, в здании была установлена полноценная климатическая система, обеспечивающая позонный контроль за температурой, притоком свежего воздуха и влажностью.

Инженерам при реализации данного проекта, во-первых, хотелось обеспечить должный уровень комфорта, индивидуальный контроль в каждом классе. Во-вторых, предполагалось, что кольцевая система позволит значительно снизить затраты на отопление школы и решить проблему низкой температуры воды в теплоцентрали на участке школы. Система состоит из более чем пятидесяти тепловых насосов производства фирмы Climatemaster (США) и градирни. Она получает дополнительное тепло от теплоцентрали города. Климатическая система находится под автоматизированным управлением и способна самостоятельно поддерживать наиболее комфортные для человека и одновременно экономичные режимы работы.

Эксплуатация описанной системы в зимние месяцы дала следующие результаты:

  • до модернизации (до установки тепловых насосов), ежемесячные затраты на обогрев 2500 м2 составляли 18440 руб.;
  • после модернизации здания отапливаемая площадь увеличилась до 3000 м2, а ежемесячные затраты на отопление снизились до 9800 руб.

Таким образом, использование тепловых насосов позволило более чем вдвое сократить затраты на отопление здания, отапливаемая площадь которого увеличилась почти на 20%.

Автономное тепло

Проблемы коттеджного строительства в Подмосковье сегодня связаны с тем, что инфраструктура (электрические сети, водопроводы), часто не позволяет расти новым поселкам. Существующие трансформаторные подстанции не справляются с возросшими нагрузками. Постоянные перебои с подачей электроэнергии (аварии на старых подстанциях, обрывы ветхих проводов) заставляют потребителей искать пути автономного энергоснабжения.

В описываемом проекте перед инженерами стояла задача обеспечить многокомнатный двухэтажный коттедж с мансардой теплом и электричеством. Общая отапливаемая площадь дома составила 200 м2. Из подведенных коммуникаций - артезианская вода и электричество.

Поскольку во главу угла было положено требование энергоэффективности, было решено установить солнечные батареи. Были закуплены и смонтированы прямо на участке за домом солнечные фотоэлектрические модули на 3,5 кВт. По расчетам инженеров, этого должно было хватить на подпитку аккумуляторных батарей, которые бы, в свою очередь, бесперебойно питали дом и систему отопления. Общая стоимость системы составила порядка 27?000 долларов США. Если учесть, что получен источник бесплатного электричества, и эта статья будет вычеркнута из семейного бюджета, то получается, что затраты на установку солнечной батареи окупятся менее, чем за 10 лет. А если учесть, что в другом случае пришлось бы строить подстанцию или жить с постоянными перебоями электроснабжения, то затраты уже можно считать окупившимися.

Для отопления было решено использовать геотермальную теплонасосную систему. Был закуплен американский тепловой насос типа "вода-вода". Данный тип тепловых насосов с помощью теплообменников производит горячую воду, которая может быть использована для горячего водоснабжения и отопления с помощью радиаторных батарей. Сам контур, поставляющий к тепловому насосу низкопотенциальное тепло, был проложен прямо на участке, прилегающем к коттеджу, на глубине 2 м. Контур представляет собой полиэтиленовую трубу, диаметром 32 мм и протяженностью 800 м. Установка теплового насоса с монтажом, поставкой оборудования и комплектующих обошлась в 10?000 долларов США.

Таким образом, затратив на организацию собственной автономной энергосистемы порядка 40?000 долларов США, хозяин коттеджа исключил затраты на теплоснабжение из своего бюджета, и обеспечил надежное автономное отопление.

Возможности применения кольцевых систем

Из вышеизложенного следует, что возможности применения кольцевой теплонасосной системы необычайно широки. Их можно использовать на самых разных объектах. Это административные, общественные здания, медицинские и оздоровительные учреждения, дома отдыха, развлекательные и спортивные комплексы, различные промышленные предприятия. Системы настолько гибкие, что их применение возможно в самых разных случаях и в очень большом количестве вариантов.

При разработке такой системы, прежде всего, нужно оценить потребности в тепле и холоде проектируемого объекта, изучить все возможные источники тепла внутри здания и все предполагаемые приемники тепла, определить теплопритоки и теплопотери. Наиболее пригодные из источников тепла могут быть использованы в кольцевой системе в том случае, если это тепло будет востребовано. Общая мощность утилизирующих тепловых насосов не должна быть бесполезно избыточной. При определенных условиях самым выгодным вариантом, возможно, будет установка ТНУ, использующих внешнюю среду в качестве источника и приемника тепла. Система должна быть сбалансирована по теплу, но это вовсе не означает, что общие мощности источников и потребителей тепла должны быть равны, они могут разниться, так как их соотношение может значительно изменяться при изменении условий работы системы.

Таким образом, кольцевая теплонасосная система выполняет функции и отопления, и кондиционирования воздуха, и эффективной утилизации тепла. Использование одной системы вместо нескольких всегда более выгодно с точки зрения капитальных и эксплутационных затрат.

Статья предоставлена компанией "АЭРОКЛИМАТ"

За последний год тепловые насосы заняли свою нишу на российском климатическом рынке в числе других популярных технологий. Обсуждение достоинств и недостатков теплонасосных установок (ТНУ) проходило как на страницах отраслевой прессы, так и на тематических конференциях и круглых столах. О тепловых насосах в последнее время появилось много информации - как в русскоязычном Интернет, так и в специализированных СМИ. Тем не менее, по–прежнему крайне мало публикаций об интегрированных теплонасосных системах. Цель данной статьи - несколько восполнить этот пробел, обобщить некоторые из вопросов, возникающих у специалистов при первом знакомстве с кольцевыми теплонаносными системами, и коротко ответить на них.

Итак, про тепловые насосы известно, что это климатическое оборудование, способное утилизировать тепло окружающей среды, с помощью компрессора поднимать температуру теплоносителя до нужного уровня и передавать это тепло туда, где оно необходимо.

Извлечь из окружающей среды тепло можно почти всегда. Ведь "холодная вода" - понятие субъективное, основанное на наших ощущениях. Даже самая холодная речная вода содержит некоторое количество теплоты. Но известно, что тепло переходит только от более нагретого тела к более холодному. Тепло можно принудительно направить от холодного тела к теплому, тогда холодное тело еще больше остынет, а теплое нагреется. Используя тепловой насос, который "выкачивает" тепло из воздуха, речной воды или земли, еще более понижая их температуру, можно обогреть здание. В классическом случае считается, что, затрачивая на работу 1 кВт электроэнергии, ТНУ может произвести от 3 до 6 кВт тепловой энергии. На практике это означает, что мощностью двух–трех бытовых лампочек в зимний период можно обогреть жилую комнату средних размеров. Летом, работая в обратном режиме, тепловой насос может охлаждать воздух в помещениях здания. Тепло из здания будет удаляться, поглощаясь атмосферой, рекой или землей.

В настоящее время имеется огромное разнообразие теплонасосных установок, что позволяет широко применять их в промышленности, сельском хозяйстве, в ЖКХ. В качестве примера применения ТНУ, в конце статьи мы рассмотрим два проекта - один из них проект масштабной кольцевой системы, внедренной в Краснодарском крае, второй – объект малого строительства в Подмосковье.

Какие тепловые насосы бывают?

Тепловые насосы бывают разной тепловой мощности - от нескольких киловатт до сотен мегаватт. Они могут работать с различными источниками тепла, находящимися в разных агрегатных состояниях. В связи с этим, их можно разделить на следующие типы: вода–вода, вода–воздух, воздух–вода, воздух–воздух. Выпускаются ТНУ, предназначенные для работы с источниками низкопотенциального тепла самых разных температур, вплоть до отрицательной. Они могут использоваться в качестве приемника высокопотенциального тепла, требующего различной температуры, даже выше 1000С. В зависимости от этого тепловые насосы можно разделить на низкотемпературные, среднетемпературные и высокотемпературные.

Тепловые насосы различаются также по техническому устройству. В этом плане можно выделить два направления: парокомпрессионные и абсорбционные ТНУ. Тепловые насосы для своей работы могут использовать и другие виды энергии, кроме электрической, например, они могут работать на различных видах топлива.

Различные комбинации видов источников низкопотенциального тепла и приемников высокопотенциального тепла дают большое разнообразие типов тепловых насосов. Вот некоторые примеры:

  • ТНУ, использующий тепло грунтовых вод для отопления;
  • ТНУ, использующий тепло естественного водоема для горячего водоснабжения;
  • ТНУ–кондиционер воздуха, использующий морскую воду в качестве источника и приемника тепла;
  • ТНУ–кондиционер воздуха, использующий наружный воздух в качестве источника и приемника тепла;
  • ТНУ для нагрева воды плавательного бассейна, использующий тепло наружного воздуха;
  • ТНУ, утилизирующий тепло сточных вод в системе теплоснабжения;
  • ТНУ, утилизирующий тепло инженерно–технического оборудования в системе теплоснабжения;
  • ТНУ для охлаждения молока и одновременно нагрева воды для горячего водоснабжения на молочных фермах;
  • ТНУ для утилизации тепла от технологических процессов в первичном подогреве приточного воздуха.

Большое разнообразие теплонасосной техники выпускается серийно, но тепловые насосы могут изготавливаться и по специальным проектам. Имеются экспериментальные установки, опытно–промышленные образцы, а также много теоретических разработок.

В случае, если на объекте предусматривается применение нескольких тепловых насосов, которые будут предназначены для производства как тепла, так и холода, эффективность их работы многократно возрастет, если они будут объединены в единую систему. Это так называемые кольцевые теплонасосные системы (КТНС). Такие системы целесообразно использовать на средних и крупных объектах.

Кольцевые системы кондиционирования воздуха

Основу этих систем составляют ТНУ типа вода–воздух, выполняющие функции кондиционирования воздуха в помещениях. В помещении, где предусматривается кондиционирование воздуха (или рядом с ним) устанавливается тепловой насос, мощность которого подбирается в соответствии с параметрами помещения, его назначением, характеристиками необходимой приточно–вытяжной вентиляции, возможным количеством присутствующих людей, установленным в нем оборудованием и другими критериями. Все ТНУ реверсивные, то есть предназначены и для охлаждения, и для нагрева воздуха. Все они связаны общим водяным контуром - трубами, в которых циркулирует вода. Вода является одновременно и источником, и приемником тепла для всех ТНУ. Температура в контуре может изменяться в пределах от 18 до 320С. Между тепловыми насосами, которые нагревают воздух, и теми, которые охлаждают его, происходит обмен теплом посредством водяного контура. В зависимости от особенностей помещений, а также от времени года и времени суток - в разных помещениях может требоваться либо нагрев, либо охлаждение воздуха. При одновременной работе в одном здании ТНУ, производящих тепло и холод, происходит перенос тепла из помещений, где его избыток, в помещения, где его не хватает. Таким образом, происходит обмен теплом между зонами, объединенными в единое кольцо.

Помимо ТНУ, выполняющих функцию кондиционирования воздуха, в состав КТНС могут входить и ТНУ другого назначения. Если на объекте имеются достаточные потребности в тепле, через кольцевую систему при помощи ТНУ можно эффективно утилизировать бросовое тепло. Например, при наличии интенсивного потока сточных вод имеет смысл установить ТНУ вода–вода, который позволит утилизировать тепло сбросов посредством КТНС. Такой тепловой насос сможет извлекать тепло из сточных вод, передавать его с помощью кольцевого контура, а затем использовать для обогрева помещений.

Воздух, удаляемый из здания вытяжной вентиляцией, также содержит большое количество тепла. При отсутствии в вытяжном воздухе большого количества примесей, затрудняющих работу ТНУ, можно утилизировать тепло удаляемого воздуха, установив ТНУ воздух–вода. Через КТНС это тепло может быть использовано всеми потребителями в здании, чего трудно добиться, применяя традиционные регенераторы и рекуператоры. Кроме того, процесс утилизации в данном случае может происходить эффективнее, так как не зависит от температуры наружного воздуха, забираемого приточной вентиляцией, и от устанавливаемой температуры нагрева воздуха, нагнетаемого в помещения.

Кроме того, при работе реверсивных тепловых насосов и на сточных водах и в вытяжной вентиляции, их можно использовать для удаления излишков тепла из водяного контура в теплое время года, и тем самым снижать необходимую мощность градирни.

В теплое время года при помощи тепловых насосов излишки тепла в водяном контуре утилизируются через потребителей, имеющихся на объекте. Например, к кольцевой системе может быть подключен ТНУ вода–вода, передающий избыточное тепло в систему горячего водоснабжения (ГВС). На объекте с небольшими потребностями в горячей воде такого теплового насоса может быть достаточно для того, чтобы полностью их удовлетворить.

Если на объекте имеется один или несколько плавательных бассейнов, например, в оздоровительных учреждениях, в домах отдыха, в развлекательных комплексах и в гостиницах, нагрев воды бассейнов можно также реализовать при помощи ТНУ вода–вода, подключив его к КТНС.

Сочетание кольцевых систем с другими системами

Систему вентиляции в зданиях с использованием кольцевой теплонасосной системы необходимо разрабатывать с учетом особенности работы ТНУ, кондиционирующих воздух. Обязательной является рециркуляция воздуха в том объеме, который необходим для стабильной работы этих ТНУ, поддержания заданной температуры в помещении и эффективной утилизации тепла (исключением являются те случаи, где рециркуляция нежелательна, например, залы плавательных бассейнов, местные кухонные вытяжки). Существуют и некоторые другие особенности при разработке вентиляции с КТНС.

Однако, вместе с тем, кольцевая система предусматривает более простые системы вентиляции, чем при других способах кондиционирования. Тепловые насосы осуществляют кондиционирование воздуха непосредственно на месте, в самом помещении, что избавляет от необходимости транспортировки готового воздуха по протяженным теплоизолированным воздуховодам, как это происходит, допустим, при центральном кондиционировании.

Кольцевая система может полностью взять на себя функции отопления, но не исключается и совместное применение с системой отопления. В этом случае применяется менее мощная и более простая с технической точки зрения система отопления. Такая бивалентная система более пригодна в северных широтах, где необходимо больше тепла для отопления, и его придется подводить в большем количестве от высокопотенциального источника. Если в здании установлены отдельные системы кондиционирования и отопления, то эти системы, зачастую, буквально мешают друг другу, особенно в переходные периоды. Использование же кольцевой системы совместно с системой отопления не порождает подобных проблем, так как ее работа полностью зависит от фактического состояния микроклимата в каждой отдельной зоне.

На предприятиях кольцевые теплонасосные системы могут участвовать в нагреве или охлаждении воды или воздуха в технологических целях, причем эти процессы будут включены в баланс общего теплоснабжения предприятия.

Говоря о традиционных системах теплоснабжения, трудно согласиться с их ограниченной экономичностью. Тепло используется частично, быстро рассеивается в атмосферу (при работе отопления и вентиляции), удаляется со сточными водами (через ГВС, технологические процессы) и другими путями. Хорошо еще, если для обеспечения некоторой экономичности установлены теплообменники типа воздух–воздух в системе вентиляции, или типа вода–вода для утилизации тепла, например, холодильных агрегатов, или какие–то другие местные устройства вторичного использования тепла. КТНС же решает данную задачу комплексно, во многих случаях позволяя сделать утилизацию тепла более эффективной.

Автоматизированное управление кольцевыми системами

К разочарованию многих производителей дорогостоящих систем автоматизации, теплонасосные системы не требуют сложных средств автоматизированного управления. Все регулирование здесь сводится лишь к поддержанию определенного значения температуры воды в контуре. Чтобы не допустить охлаждения воды ниже заданного предела, необходимо вовремя включать дополнительный нагреватель. И наоборот, чтобы не превысить верхний предел, надо своевременно включать градирню. Автоматическое управление этим несложным процессом можно реализовать при помощи нескольких термостатов. Поскольку температура воды в контуре КТНС может изменяться в довольно широком диапазоне (обычно от 18 до 320С), то нет также необходимости в использовании точной регулирующей арматуры.

Что касается процесса поступления тепла от теплового насоса к потребителю, то он контролируется за счет автоматики, встроенной в каждый тепловой насос. Например, ТНУ для кондиционирования воздуха имеют датчик температуры (термостат), устанавливаемый непосредственно в помещении. Этого обычного термостата вполне достаточно для управления работой ТН.

Тепловой насос полностью обеспечивает необходимые температурные параметры воздуха в помещениях, что позволяет отказаться от регулирующих заслонок в системе вентиляции и регулирующей арматуры в системе отопления (при бивалентной системе). Все эти обстоятельства способствуют снижению стоимости и повышению надежности инженерных систем в целом.

На крупных объектах, где кольцевая система включает в себя большое количество тепловых насосов и где установлены разнотипные ТНУ (для кондиционирования, утилизации тепла и для обеспечения технологических процессов), часто имеет смысл реализовывать более сложную систему автоматизированного управления, которая позволяет оптимизировать работу всей системы.

На работу кольцевой теплонасосной системы влияют следующие факторы:

  • во-первых, температура воды в контуре. От нее зависит коэффициент преобразования теплоты (СОР), то есть, отношение количества выдаваемого потребителю тепла к количеству потребляемой тепловым насосом энергии;
  • во-вторых, температура наружного воздуха;
  • в­третьих, параметры работы градирни. Для одного и того же количества удаленного тепла при разных условиях может быть затрачено разное количество энергии, потребляемой градирней. Это, в свою очередь, также зависит от температуры наружного воздуха, его влажности, наличия ветра и прочих условий;
  • в­четвертых, от количества работающих в данный момент в системе тепловых насосов. Здесь значение имеет суммарная мощность ТНУ, забирающих тепло из водяного контура, по сравнению с мощностью всех ТНУ, отдающих тепло в контур, то есть количество тепла, поступающего в контур или удаляемого из него.

Хорошо детям, хорошо бюджету

Перейдем к описанию проектов с использованием кольцевых теплонасосных систем.

Первый проект - это реконструкция обычной общеобразовательной школы на юге России. Летом прошлого года администрация Краснодарского края реализовала этот проект в г. Усть–Лабинск (городская школа №2). При реконструкции были выдержаны самые высокие стандарты в обеспечении санитарных требований и комфортного пребывания детей в школе. В частности, в здании была установлена полноценная климатическая система, обеспечивающая позонный контроль за температурой, притоком свежего воздуха и влажностью.

Инженерам при реализации данного проекта, во–первых, хотелось обеспечить должный уровень комфорта, индивидуальный контроль в каждом классе. Во–вторых, предполагалось, что кольцевая система позволит значительно снизить затраты на отопление школы и решить проблему низкой температуры воды в теплоцентрали на участке школы. Система состоит из более чем пятидесяти тепловых насосов производства фирмы Climatemaster (США) и градирни. Она получает дополнительное тепло от теплоцентрали города. Климатическая система находится под автоматизированным управлением и способна самостоятельно поддерживать наиболее комфортные для человека и одновременно экономичные режимы работы.

Эксплуатация описанной системы в зимние месяцы дала следующие результаты:

  • до модернизации (до установки тепловых насосов), ежемесячные затраты на обогрев 2500 м2 составляли 18440 руб.;
  • после модернизации здания отапливаемая площадь увеличилась до 3000 м2, а ежемесячные затраты на отопление снизились до 9800 руб.

Таким образом, использование тепловых насосов позволило более чем вдвое сократить затраты на отопление здания, отапливаемая площадь которого увеличилась почти на 20%.

Автономное тепло

Проблемы коттеджного строительства в Подмосковье сегодня связаны с тем, что инфраструктура (электрические сети, водопроводы), часто не позволяет расти новым поселкам. Существующие трансформаторные подстанции не справляются с возросшими нагрузками. Постоянные перебои с подачей электроэнергии (аварии на старых подстанциях, обрывы ветхих проводов) заставляют потребителей искать пути автономного энергоснабжения.

В описываемом проекте перед инженерами стояла задача обеспечить многокомнатный двухэтажный коттедж с мансардой теплом и электричеством. Общая отапливаемая площадь дома составила 200 м2. Из подведенных коммуникаций - артезианская вода и электричество.

Поскольку во главу угла было положено требование энергоэффективности, было решено установить солнечные батареи. Были закуплены и смонтированы прямо на участке за домом солнечные фотоэлектрические модули на 3,5 кВт. По расчетам инженеров, этого должно было хватить на подпитку аккумуляторных батарей, которые бы, в свою очередь, бесперебойно питали дом и систему отопления. Общая стоимость системы составила порядка 27?000 долларов США. Если учесть, что получен источник бесплатного электричества, и эта статья будет вычеркнута из семейного бюджета, то получается, что затраты на установку солнечной батареи окупятся менее, чем за 10 лет. А если учесть, что в другом случае пришлось бы строить подстанцию или жить с постоянными перебоями электроснабжения, то затраты уже можно считать окупившимися.

Для отопления было решено использовать геотермальную теплонасосную систему. Был закуплен американский тепловой насос типа "вода–вода". Данный тип тепловых насосов с помощью теплообменников производит горячую воду, которая может быть использована для горячего водоснабжения и отопления с помощью радиаторных батарей. Сам контур, поставляющий к тепловому насосу низкопотенциальное тепло, был проложен прямо на участке, прилегающем к коттеджу, на глубине 2 м. Контур представляет собой полиэтиленовую трубу, диаметром 32 мм и протяженностью 800 м. Установка теплового насоса с монтажом, поставкой оборудования и комплектующих обошлась в 10?000 долларов США.

Таким образом, затратив на организацию собственной автономной энергосистемы порядка 40?000 долларов США, хозяин коттеджа исключил затраты на теплоснабжение из своего бюджета, и обеспечил надежное автономное отопление.

Возможности применения кольцевых систем

Из вышеизложенного следует, что возможности применения кольцевой теплонасосной системы необычайно широки. Их можно использовать на самых разных объектах. Это административные, общественные здания, медицинские и оздоровительные учреждения, дома отдыха, развлекательные и спортивные комплексы, различные промышленные предприятия. Системы настолько гибкие, что их применение возможно в самых разных случаях и в очень большом количестве вариантов.

При разработке такой системы, прежде всего, нужно оценить потребности в тепле и холоде проектируемого объекта, изучить все возможные источники тепла внутри здания и все предполагаемые приемники тепла, определить теплопритоки и теплопотери. Наиболее пригодные из источников тепла могут быть использованы в кольцевой системе в том случае, если это тепло будет востребовано. Общая мощность утилизирующих тепловых насосов не должна быть бесполезно избыточной. При определенных условиях самым выгодным вариантом, возможно, будет установка ТНУ, использующих внешнюю среду в качестве источника и приемника тепла. Система должна быть сбалансирована по теплу, но это вовсе не означает, что общие мощности источников и потребителей тепла должны быть равны, они могут разниться, так как их соотношение может значительно изменяться при изменении условий работы системы.

Как противостоять опасности возгорания воздуховодов

За последнее время резко увеличилось количество пожаров и даже взрывов внутри воздуховодов систем вентиляции и кондиционирования. Несмотря на то, что подобные пожары происходили всегда, изменения, произошедшие в последние время, стали причиной возникновения куда более крупных возгораний с участием большего числа людей.

Анализ перспективных систем теплоснабжения

В этом докладе рассмотрены вопросы, связанные с переходом систем централизованного теплоснабжения на децентрализованное. Рассмотрены положительные и отрицательные стороны обеих систем. Представлены результаты проведенного сопоставления этих систем.

Теплонасосные агрегаты и установки следует рассматривать как устройства, осуществляющие полный цикл циркуляции хладагента и приборы регулирования, включающих в себя привод. Причем в теплонасосных агрегатов относятся компактные, готовые к работе блоки, а в теплонасосных установок - комплексы, состоящие из нескольких отдельных устройств или блоков. В зависимости от вида нагрузки со стороны источника и приемника тепловые насосы можно классифицировать в соответствии с табл. 1.2.

Установлено, что благодаря одинаковому термодинамическому круговом цикла холодильных установок и тепловых насосов и незначительном расхождении температурных интервалов оборудования тепловые насосы следует подбирать непосредственно из ассортимента, который применяется для холодильного оборудования с некоторыми модификациями, и только в некоторых случаях требуется разработка специальных узлов.

Таблица 1.2.

Термоэлектрические тепловые насосы не получили до сих пор распространение через низкий коэффициент преобразования.

Компрессионные теплонасосные установки

К ТН малой мощности относятся небольшие водоподогреватели и и оконные кондиционеры, включающих в себя тепловые насосы. В целом тепловые насосы, предназначенные преимущественно для производства тепла при мощности 2 ... 3 кВт, не могут конкурировать с простыми электронагревательными устройствами (с нагревателем электроопору) через высокие удельные расходы. Только агрегаты, предназначенные в основном для производства холода и выработки теплоты, благодаря возможности простого переключения имеют практическое значение. Это, в частности, оконные кондиционеры с переключением (рис. 1.29).

Такие агрегаты, как правило, состоят из холодильной машины с герметичным корпусом, испарителя и конденсатора с принудительной циркуляцией воздуха. С помощью четырехходовой вентиля они могут переключаться на режим теплового насоса, то есть осуществлять отопление помещений. Каждый вентилятор имеет устройство для переключения работы испарителя на конденсатор, и на перемещение внутреннего и наружного воздуха.

Рис. 1.29. А - схема коммуникаций; б - схема включения кондиционера; в - схема включения теплового насоса; / -конденсатор; // - Дроссель; Ш компрессор; IV- испаритель

Тепловая мощность составляет 1,5 ... 4,5 кВт. Коэффициент преобразования при температуре помещения 21 ° С и внешней 7,5 ° С редко превышает 2.

Часть кондиционеров большой мощности, предназначенных для общих промышленных зданий, также выполняется с переключением на работу по схеме теплового насоса.

Компрессионные тепловые насосы также могут работать с приводом от тепловых двигателей. В этом случае весь агрегат состоит из компрессионного теплового насоса и теплового двигателя. Преобразования химической энергии топлива в теплоту происходит непосредственно внутри теплового двигателя (например, двигателя Стирлинга). В двигателе согласно термодинамического кругового цикла часть теплоты переходит в механическую энергию, которая приводит в действие собственный компрессионный тепловой насос, благодаря чему увеличивается полезный температурный уровень низкотемпературного окружающей среды или отработанной теплоты. Отработанная теплота двигателя также может быть использована. Теплообменник отработанной теплоты в зависимости от температурных условий подключается параллельно или последовательно конденсатора компрессионного теплового насоса или тепло подводится к специальным потребителей.

Как приводы в принципе могут быть использованы тепловые двигатели всех типов, однако наиболее удобные газовые и дизельные двигатели, потому что они работают на природном газе и нефти - высококачественных носителях первичной энергии, применяемых для отопления. Полученная теплота с помощью такой системы отопления с двигателем может сократить расход первичной энергии примерно вдвое по сравнению с обычным способом получения тепла при сжигании топлива.

Можно достичь коэффициента преобразования, равного 1,8 ... 1,9.

Абсорбционные теплонасосные установки

По степени агрегатирования АПТ разделяются на агрегатирован (с конструктивным объединением всех элементов в один или несколько блоков) и неагрегатировани (с отдельно выполненным элементами АПТ). К агрегатирован относятся бромистолитиеви АПТ.

В зависимости от схемы включения АПТ в технологические процессы различных производств их можно разделить на автономные, не зависящие от схемы технологического процесса, и встроенные - с объединением части цикла АПТ с технологическим процессом.

Число абсорбционных тепловых насосов, выпускаемых до сих пор, небогатое, но уже достигнуты высокие коэффициенты трансформации. При этом абсорбционные тепловые насосы могут более полно отвечать специальным условиям источников тепла и приводной энергии, чем компрессионные.

В Германии, например, выпускаются абсорбционные тепловые насосы с тепловой мощностью 1 ... 3 МВт. Коэффициент трансформации зависит от рабочей температуры и температуры испарения. Для малых установок нельзя достичь высоких показателей (С, < 1,5). В разных странах проводятся работы по совершенствованию малых абсорбционных тепловых насосов.

Использование: в установках для отопления и охлаждения помещений с постоянно действующей вентиляцией. Сущность изобретения теплонасосная установка содержит теплообменник 1, испаритель 4, инжектор-абсорбер 6, напорно-разделительный бачок 9 и жидкостной насос 7. Испаритель 4 и инжектор-абсорбер 6 соединены по меньшей мере одним капилляром 5. Испаритель 4 выполнен из трех полостей и заполнен пористым телом 16. 5 з.п. ф-лы, 2 ил.

Изобретение относится к теплонасосным установкам, базирующимся на абсорбционных агрегатах, в частности к установкам для отопления и охлаждения помещений с постоянно действующей вентиляцией. В основу работы всех тепловых насосов заложены термодинамическое состояние и параметры, определяющие это состояние: температура, давление, удельный объем, энтальпия и энтропия. Работа всех тепловых насосов заключается в том, что тепло изотермически подводится при низкой температуре и изометрически отводится при высокой температуре. Сжатие и расширение производится при постоянной энтропии, а работа производится от внешнего двигателя. Тепловой насос можно охарактеризовать как умножитель тепла, использующий низкопотенциальное тепло различных тепловыделяющих сред, таких как окружающий воздух, грунт, грунтовые и сточные воды и т.п. В настоящее время известно множество различных тепловых насосов с различными рабочими телами. Такое разнообразие вызвано существующими ограничениями использования того или иного вида теплового насоса, которые накладываются не только техническими проблемами, но также законами природы. Наиболее распространенными являются насосы с механической компрессией пара, затем насосы с абсорбционным циклом и двойным циклом Ренкина. Насосы с механической компрессией не находят широкого использования в виду необходимости наличия сухого пара, что вызвано особенностями механики большинства компрессоров. Попадание жидкости вместе с паром на вход компрессора может повредить его клапаны, а поступление большого количества жидкости в компрессор может вообще вывести его из строя. Наиболее широко используются насосы абсорбционного типа. Процесс работы абсорбционных установок основан на последовательном осуществлении термохимических реакций поглощения рабочего агента абсорбентом, а затем освобождения (десорбции) абсорбента от рабочего агента. Как правило, рабочим агентом в абсорбционных установках служит вода либо иные растворы, способные поглощаться абсорбентом, в качестве абсорбентов могут быть использованы соединения и растворы, легко поглощающие рабочее тело: аммиак (NH 3), серный ангидрит (SO 2), двуокись углерода (CO 2), едкий натр (NaOH), едкий калий (KOH), хлористый кальций (CACl 2) и т.д. Известна, например, теплонасосная установка (авт. св. СССР N 1270499, кл. F 25 B 15/02, 29/00, 1986), содержащая абсорбционный холодильный агрегат с контуром хладагента, конденсатор, переохлодитель, испаритель, дефлегматор и регенеративный теплообменник, а также контур отопительной воды, проходящей через конденсатор, линию вентиляционного воздуха, проходящую последовательно через абсорбер и переохладитель, контур отопительной воды выполнен замкнутым и в него дополнительно включен дефлегматор. Установка дополнительно содержит двухполостной теплообменник -переохладитель, который одной полостью включен в контур хладагента между переохладителем и испарителем, а другой- в линию вентиляционного воздуха перед абсорбером. Описанная установка громоздка и металлоемка, так как имеет узлы и системы, работающие при повышенном давлении. Кроме того, достижения высоких энергетических показателей в известной установке используют в качестве теплоносителя аммиак и его водные растворы, которые являются ядовитыми и коррозионно агрессивными. Наиболее эффективны теплонасосные установки абсорбционно-инжекторного типа. Известна тепловая установка (авт. св. СССР N 87623, кл. F 25 B 15/04, 1949), включающая генератор аммиачного пара (испаритель), заполненного высококонцентрированным водоаммиачным раствором, с расположенным внутри него змеевиком из стальных труб, в который подается пар низкого давления, служащий для испарения аммиака, абсорберы высокого давления (инжекторы), насосы, трубчатую систему тепла, генератор высокого пара, подогреватель конденсата пара низкого давления, охладитель, служащий одновременно подогревателем. Описанная установка позволяет повысить давление пара при высоком значении термического коэффициента полезного действия за счет того, что абсорбер установки имеет инжекторы, служащие для повышения давления, полученного в генераторе аммиачного пара, с помощью подаваемого насосом из генератора обедненного раствора. Однако в описанной установке используют агрессивные среды, что требует использования специальных материалов высокой коррозионной стойкости. Это значительно удорожает установку. Целью изобретения является создание упрощенной, экологически безвредной, экономичной установки, имеющей высокие энергетические характеристики. Эта задача решается тем, что теплонасосная установка, содержащая теплообменник, испаритель, инжектор-абсорбер, жидкостной насос, напорно-разделительный бачок, испаритель и инжектор-абсорбер, которые согласно изобретению, соединены между собой по меньшей мере одним капилляром, а испаритель выполнен трехполостным, одна полость которого соединена с теплообменником линией вентиляционного воздуха, другая заполнена теплоносителем, разделенные полостью вакуума, подключенной к инжектору-абсорберу, причем испаритель содержит пористое тело, размещенное одновременно во всех указанных полостях. Исполнение в установке связи между испарителем и инжектором-абсорбером в виде термодинамически прерывной системы, соединенной по меньшей мере одним капилляром, позволяет вести процесс получения тепла в области, далекой от термодинамического равновесия, что значительно интенсифицирует тепломассообмен в рассматриваемой системе. Можно соединить испаритель и инжектор-абсорбер несколькими капиллярами. Это усилит эффект тепломассообмена в рассматриваемой системе. Исполнение испарителя с тремя независимыми, разделенными полостями и с пористым телом, размещенным одновременно во всех трех полостях, позволяет образовывать развитую поверхность массообмена между теплоносителем и воздухом (примерно 100-10000 см 2 в 1 см 3), за счет чего внутри пористого тела происходит интенсивное испарение теплоносителя и насыщение им воздуха, сопровождающееся большим поглощением тепла, поступающего из тепловыделяющей среды. Целесообразно, чтобы капилляр имел диаметр, равный длине свободного пробега молекул теплоносителя в паровой фазе при остаточном давлении, создаваемым инжектором-абсорбером, и температуре, равной температуре жидкого теплоносителя, и длину, равную 10-10 5 диаметров капилляра. Это обеспечивает интенсивный массоперенос теплоносителя в направлении только от испарителя к инжектору-абсорберу. Пористое тело целесообразно выполнить из пор двух видов, поверхность одних из которых смачивается, а других не смачивается теплоносителем. В этом случае пористое тело проницаемо одновременно для жидкости и воздуха и позволит образовывать более развитую поверхность массообмена между теплоносителем и воздухом внутри пористого тела. Это значительно интенсифицирует процесс испарения. Скорость испарения в испарителе описанной выше конструкции с пористым телом достигает величины, приближенной к скорости испарения в абсолютном вакууме. Целесообразно к испарителю подвести по меньшей мере одну тепловую трубу, один конец которой разместить в пористом теле, а другой в тепловыделяющей среде, например в грунте. Это позволит интенсифицировать теплообмен между испарителем и тепловыделяющей средой. Патрубок отвода газо-паровой смеси напорно-разделительного бачка можно соединить с теплообменником, который является одновременно в описанной установке и конденсатором. Это обеспечит подогрев, а следовательно, и понижение влажности вентиляционного воздуха, засасываемого в испаритель из окружающей среды, тем самым интенсифицируя процесс испарения теплоносителя в испарителе. Напорно-разделительный бачок целесообразно соединить с теплообменником, который является одновременно в описанной установке и конденсатором. Это обеспечит подогрев, а следовательно, и понижение влажности вентиляционного воздуха, засасываемого в испаритель из окружающей среды, тем самым интенсифицируя процесс испарителя теплоносителя в испарителе. Полость испарителя, заполненную теплоносителем, можно соединить с теплообменником линией конденсата теплоносителя. Это позволит избежать потерь теплоносителя с парогазовой смесью, отделенной в напорно-разделительном бачке, и обеспечит постоянное восполнение теплоносителя в испарителе. На фиг.1 изображена схема предлагаемой теплонососной установки; на фиг.2 испаритель с размещенным в нем пористым телом и тепловой трубой. Заявляемая теплонасосная установка содержит теплообменник 1 (фиг.1) с патрубками 2, 3 соответственно подачи вентиляционного воздуха и воздушно-паровой смеси, испаритель 4, соединенный с теплообменником 1 газожидкостной линией 5, представляющей собой две раздельные трубы, и с инжектором-абсорбером с капилляром 7, подключенным к всасывающей линии инжектора-абсорбера. Капилляр должен иметь диаметр, равный длине свободного пробега молекул теплоносителя в паровой фазе при остаточном давлении, созданном в инжекторе-абсорбере 6, и температуре, равной температуре жидкого теплоносителя. Длина капиллярной линии должна иметь 10-10 5 диаметра капилляра. Инжектор-абсорбер 6 установлен на напорной линии жидкостного насоса 8 и соединен с напорно-разделительным бачком 9, заполненным на 2/3 его объема жидким теплоносителем. Напорно-разделительный бачок соединен линией 10 с теплообменником 1 через патрубок 3 и линией 2, предназначенной для отвода жидкого теплоносителя, с нагревательными приборами 12, которые подключены к всасывающей линии жидкостного насоса 7. Испаритель 4 выполнен из трех независимых полостей 13, 14 и 15 (фиг.2). Полость 13 соединена с трубой подачи воздуха из теплообменника. Полость 15 заполнена жидким теплоносителем и соединена с трубой подачи конденсата теплоносителя из теплообменника 1, являющегося и конденсатором пара теплоносителя. Это позволяет избежать потерь теплоносителя с газо-паровой смесью, которая отделяется от жидкого теплоносителя в напорно-разделительном бачке 9. Полость 14 соединена посредством капиллярной линии 7 с всасывающей линией инжектора-абсорбера 6, внутри испарителя 4 размещено пористое тело 16, выполненное в виде толстостенного цилиндра, содержащего два вида пор - поверхность одного вида пор хорошо смачивается теплоносителем, поверхность другого вида пор не смачивается теплоносителем, но является проницаемой для воздуха. Материал для пористого тела подбирают в зависимости от теплоносителя, которым может быть любая неагрессивная жидкость с температурой кипения при давлении 1 атм не выше 150 o C, например вода, спирты, эфиры, углеводороды и их смеси, состоящие из двух, трех и более компонентов, взаимно растворимых. Теплоноситель выбирают в зависимости от того, какое помещение требуется обогревать установкой, от климатических условий и других факторов. Пористое тело 16 размещено внутри испарителя таким образом, что его поверхности соприкасаются со всеми тремя указанными полостями. К испарителю 4 подведена тепловая труба 17, один конец которой размещен в пористом теле 16, а другой в тепловыделяющей среде, например грунте. Тепловых труб может быть несколько, что усилит подвод тепла из теплосодержащей среды к испарителю и усилит тем самым процесс испарения теплоносителя. Теплонасосная установка работает следующим образом. Воздух из атмосферы через патрубок 3 подачи воздуха за счет разрежения, созданного инжектором-абсорбером в испарителе 4, засасывает в теплообменник 1 и посредством газожидкостной линии 5 по трубе воздуха поступает в камеру 13 испарителя 4. Внутри пористого тела 16 происходит интенсивное испарение теплоносителя и насыщение его парами воздуха. При этом поглощается тепло тепловыделяющей среды, например грунта, которое подводится в испаритель посредством тепловых труб 17. Скорость испарения теплоносителя внутри пористого тела достигает величины, сравнимой со скоростью испарения в абсолютном вакууме 0,3 г/см 3 c, что соответствует тепловому потоку 0,75 Вт/см 2 пористого тела. Воздух, насыщенный парами теплоносителя, по капилляру 7 засасывается в инжектор-абсорбер 6, сюда же жидкостным насосом 8 из нагревательных приборов 12 под напором подается теплоноситель и смешивается с паро-воздушной смесью, образуя эмульсию, представляющую собой пузырьки воздуха и теплоносителя. При этом происходит поглощение парообразной влаги жидкостью с выделением тепла, эквивалентного поглощенному в испарителе теплу. Выделенное тепло расходуется на нагрев теплоносителя. Образованная в инжекторе-абсорбере 6 эмульсия поступает в напорно-разделительный бачок 9, где происходит разделение ее на воздухо-паровую смесь и жидкий теплоноситель. Из напорно-разделительного бачка 9 нагретый теплоноситель поступает самотеком в нагревательные приборы 12 и вновь на всасывающую линию жидкостного насоса 8, завершая таким образом цикл жидкого теплоносителя. Воздухо-паровая смесь из напорно-разделительного бачка 9 по линии 10 за счет небольшого избыточного давления, созданного в напорно-разделительном бачке 9, поступает в теплообменник 1 через патрубок 3. В теплообменнике 1 происходит нагрев засасываемого атмосферного воздуха и конденсация паров теплоносителя, которые раздельно поступают в испаритель 4. Таким образом, заявляемая теплонасосная установка отличается высокими энергетическими характеристиками, без использования агрессивных, экологически вредных теплоносителей, что делает ее безопасной в эксплуатации. В качестве теплоносителя может использоваться вода. Для обогрева помещений, зданий в суровых климатических условиях испаритель можно заполнять легкокипящим теплоносителем для более интенсивного испарения, а по отопительной системе можно пропускать воду. Для обогрева, например, гаражей, когда не требуется даже в зимнее время постоянного его обогрева, целесообразно использовать в качестве теплоносителя спирты или растворы, имеющие низкую температуру замерзания, что предотвратит размерзание системы во время отключения установки. Использование неагрессивных нагревательных теплоносителей исключает необходимость применения специальных материалов и сплавов при изготовлении установки. Часть узлов установки, такие как напорно-разделительный бачок, соединительные трубопроводы можно выполнять из пластмасс, резины и других неметаллических материалов, что позволит значительно снизить металлоемкость. Установка технически проста в исполнении и эксплуатации, не требует больших энергозатрат. Тепловыделяющий узел компактен и может быть размещен на небольшой площади и может быть использована как для отопления больших помещений, зданий, так и небольших построек, а также гаражей, а при работе в холодильном цикле для охлаждения подвалов в летнее время. Возможность широкого выбора вида теплоносителя позволяет использование установки в любых климатических условиях. Все это определяет дешевизну установки, безопасность ее эксплуатации и доступность для большого числа потребителей.

Формула изобретения

1. Теплонасосная установка, содержащая теплообменник, испаритель, инжектор-абсорбер, жидкостной насос, напорно-разделительный бачок, отличающаяся тем, что установка снабжена линией вентиляционного воздуха, по меньшей мере одним капилляром и пористым телом, а испаритель выполнен трехполостным, одна полость которого соединена с теплообменником линией вентиляционного воздуха, другая заполнена теплоносителем и третья вакуумированная полость подключена к инжектору -абсорберу, при этом пористое тело размещено во всех трех полостях, а испаритель и инжектор-абсорбер соединены между собой по меньшей мере одним капилляром. 2. Установка по п.1, отличающаяся тем, что капилляр имеет диаметр, равный длине свободного пробега молекул теплоносителя в паровой фазе при остаточном давлении, созданном в инжекторе-абсорбере, и температуре, равной температуре окружающей среды, а длина капилляра равна 10 10 5 его диаметра. 3. Установка по п.1, отличающаяся тем, что пористое тело образовано порами двух видов, поверхность одних из которых смачивается, а других не смачивается теплоносителем. 4. Установка по п.1, отличающаяся тем, что к испарителю подведена по меньшей мере одна тепловая труба, один конец которой размещен в пористом теле, а другой в тепловыделяющей среде. 5. Установка по п.1, отличающаяся тем, что напорно-разделительный бачок соединен с теплообменником. 6. Установка по п.1, отличающаяся тем, что снабжена линией конденсата теплоносителя, с помощью которой полость испарителя, заполненная теплоносителем, связана с теплообменником.

Одним из самых популярных видов оборудования на рынке климатической техники России и СНГ являются тепловые насосы. Их предпочитают использовать многие покупатели, желающие создать эффективную систему охлаждения и обогрева своих домов и офисов, однако очень немногие хорошо себе представляют принципы работы этой техники и зачастую даже не осведомлены, в каких ситуациях ее лучше использовать. А тем временем основных вопросов, касающихся работы теплонасосных установок, несколько, и разобраться в них будет несложно даже новичкам.

Что такое тепловые насосы?

К этой категории оборудования относится техника, которая способна утилизировать тепло, получаемое из окружающей среды, при помощи компрессора увеличивать до заданного уровня температуру теплоносителя и затем передавать тепло в определенное помещение. При этом тепловые насосы могут извлекать тепло из любых носителей, буквально «выкачивая» его из окружающей среды. Таким образом насосы способны работать с:

Понижая температуру теплоносителя, такое климатическое оборудование может эффективно обогревать любые здания.

Технические характеристики работы насоса

В целом, теплонасосная установка в отличие от других видов климатического оборудования затрачивает минимальное количество электроэнергии в процессе своей работы . В среднем ей нужно потратить только 1 кВт энергии, и этого будет достаточно для производства 3-6 кВт тепла. Другими словами, используя мощность 2-3 обычных лампочек, зимой можно эффективно обогреть жилое помещение средних размеров . Летом эта же мощность может расходоваться на то, чтобы помещение охладить: в этом случае тепловой насос будет поглощать теплоту из воздуха, находящегося в комнате, и выводить его в атмосферу, в землю или в воду, создавая прохладу в любой комнате.

Какими бывают тепловые насосы?

В продаже широко представлено оборудование, которое можно использовать в различных сферах , включая:

  • жилые помещения,
  • сельскохозяйственные предприятия,
  • промышленные предприятия,
  • жилищно-коммунальное хозяйство.

Разумеется, теплонасосные установки для разных помещений имеют разные характеристики и могут даже различаться габаритами. При этом насосы имеют различную тепловую мощность (от нескольких кВт и до сотен мегаВт), а также могут работать с разными источниками тепла, независимо от их агрегатных состояний (твердыми, жидкими или газообразными). Учитывая особенности работы такого оборудования, теплонасосные установки делятся на такие типы:

  • вода-вода,
  • воздух-вода,
  • вода-воздух,
  • воздух-воздух,
  • грунт-вода,
  • грунт-воздух.

Также на рынке представлены тепловые насосы, которые специально разработаны для работы с низкопотенциальным теплом . Источники такого тепла могут иметь даже отрицательную температуру, а тепловой насос в этом случае служит приемником высокопотенциального тепла, принимающего даже очень высокую температуру (более 1 тыс. градусов). В целом, по тому, с какой температурой установка работает, она подразделяется на:

  • низкотемпературную,
  • среднетемпературную,
  • высокотемпературную.

Еще один параметр, по которому различают теплонасосные установки, связан с их техническим устройством. По этому показателю оборудование делится на такие типы, как:

  • абсорбционный,
  • парокомпрессионный.


Как правило, все тепловые насосы, независимо от их разновидности, работают с электрической энергией, однако в определенных случаях их можно переключить и на другие виды энергии, используя разнообразное топливо.
По специфике этого топлива и работы самого оборудования теплонасосные установки подразделяются на такие разновидности:

  • прибор для отопления, использующий тепло от грунтовых вод,
  • насос для горячего водоснабжения, работающий с теплом, получаемым из естественных водоемов,
  • установка-кондиционер, работающая на морской воде,
  • установка-кондиционер, использующая наружный воздух,
  • насос для нагрева воды в плавательных бассейнах, работающая на наружном воздухе,
  • теплонасосная установка для системы теплоснабжения, утилизирующая тепло, выделяемое инженерно-техническим оборудованием,
  • прибор, работающий на молоке - он служит для охлаждения молока и последующего горячего водоснабжения и используется на молочных фермах,
  • установка для утилизации тепла, получаемого в результате технологических процессов, - служит для подогрева приточного воздуха.

Также встречаются и другие виды такого оборудования. При этом, как правило, тепловые насосы любого типа выпускаются серийно, однако отдельные уникальные установки могут изготавливаться по эксклюзивным проектам. Также можно найти экспериментальные тепловые насосы, множество еще не претворенных в жизнь чертежей и опытно-промышленные образцы такой техники, которые тоже могут быть использованы в каком-либо специальном помещении.

Все теплонасосные установки можно объединять в единую систему. Это необходимо, если на одном объекте работает несколько единиц такого оборудования, производящих как тепло, так и холод. Объединение их воедино только увеличит их эффективность, и на средних или крупных объектах рекомендуют сразу планировать создание подобного комплексного оборудования.

Что такое кольцевые системы кондиционирования?

Такая система комплектуется на основе тепловых насосов разных типов, хотя обычно для этих целей используется установка типа воздух-воздух. Тепловой насос в этом случае служит, как кондиционер: он устанавливается непосредственно в охлаждаемом помещении, а мощность такой техники подбирается в соответствии с рядом параметров. Среди них:

  • характеристики самой комнаты,
  • назначение помещения,
  • количество людей, которые в нем находятся,
  • оборудование, которое в нем установлено или будет устанавливаться.


Установки, предназначенные для кондиционирования воздуха, всегда являются реверсивными - они одновременно и охлаждают, и выделяют тепло. Связывает их общий водяной контур - трубопровод, по которому циркулирует вода, являясь как источником, так и приемником тепла. В итоге температура внутри контура может колебаться в пределах 18-32 градусов, и именно через него между тепловыми насосами, нагревающими воздух, и между оборудованием, охлаждающим его, происходит обмен теплом. Если в разных помещениях нужно создать климат с разными характеристиками, тепловые насосы просто переносят тепло из комнат, которые имеют его избыток, в помещения, где тепла не хватает. Это позволяет создать кольцевой обмен теплом между различными зонами, и такая система является очень эффективной и экономичной.

При этом кольцевые системы могут иметь в своем составе не только кондиционирующее оборудование, но и другие установки. В частности, такие приборы могут утилизировать бросовое тепло. Это требуется там, где имеются довольно большие потребности в тепле, например:

  • на объектах, где имеется интенсивный поток сточных вод : теплонасосная установка типа вода-вода сможет легко утилизировать тепло, исходящее от него, и направить его при помощи кольцевого контура на обогрев помещений;
  • на объектах с вытяжной вентиляцией, удаляющей воздух из здания (при условии, что в воздухе не будет слишком большого количества примесей, которые затруднили бы работу теплового насоса): в этом случае понадобится установка типа воздух-вода, которая будет утилизировать тепло из «ненужного» воздуха и передавать его для обогрева помещения или нагрева воды,
  • на объектах, где есть и сточные воды, и вытяжная вентиляция - на них кольцевые системы можно использовать для удаления лишнего тепла из водяного контура (обычно это делается только в теплое время года), что снизит мощность градирни.


В любой ситуации кольцевая система позволяет использовать тепло многократно и отправлять его на нужды абсолютно всех потребителей, находящих в здании, и именно в этом заключается ее уникальность, ведь традиционные рекуператоры и регенераторы на такое не способны . Более того, такая система более эффективно утилизирует тепло, поскольку ее работа никак не зависит от температуры воздуха, который забирается приточной вентиляцией, и от заданной температуры воздуха, который поступает в помещения.

Летом кольцевая система, работающая на основе теплонасосной установки типа вода-вода, способна эффективно удалять излишки тепла из водяного контура, утилизируя их через потребителей: избыточное тепло подается в систему горячего водоснабжения, и его обычно достаточно для того, чтобы удовлетворить все потребности обитателей любого помещения в горячей воде . Особенно эффективной такая система будет на объектах с несколькими плавательными бассейнами (дома отдыха, отели, оздоровительные центры) - с ее помощью нагревать воду в бассейнах можно будет очень быстро и без лишних затрат.

Сочетается ли кольцевая система с другими системами оборудования?

Безусловно, да, и прежде всего она должна быть согласована с системой вентиляции. Последнюю, в частности, нужно разрабатывать с учетом всех характеристик теплонасосного оборудования, которое будет кондиционировать воздух. В частности, вентиляционной системе необходимо обязательно обеспечить рециркуляцию воздуха в объемах, необходимых для стабильной работы насоса, эффективной утилизации тепла и поддержания в помещении заданной температуры. Этому правилу нужно следовать на всех объектах, за исключением некоторых, в которых рециркуляция нежелательна - например, в плавательных бассейнах или на кухнях.

При этом плюсом согласования кольцевой системы с системой вентиляции является то, что последняя в этом случае может быть построена по более простой схеме , которая обойдется потребителю дешевле. При этом тепловой насос будет охлаждать воздух непосредственно там, где это понадобится. Это избавит потребителя от необходимости транспортировать его по длинным теплоизолированным воздуховодам и будет выгодно отличать такую систему от распространенного ныне централизованного кондиционирования.

Кроме того, кольцевые системы могут координироваться с отопительными, а иногда даже полностью брать на себя их функции. В таких ситуациях система отопления, построенная на базе теплового насоса, становится менее мощной и более простой с точки зрения своего оборудования. Это делает ее особенно эффективной в холодном климате, где для отопления требуется больше тепла, получаемого из высокопотенциальных источников. Более того, кольцевая система способна серьезно оптимизировать работу всего оборудования в помещении . Работающие отдельно системы кондиционирования и отопления могут друг другу серьезно мешать, особенно тогда, когда не требуется и та, и другая. Кольцевая же система полностью исключает такую ситуацию, поскольку она всегда эффективно работает, основываясь на фактическом состоянии микроклимата, созданного в каждом конкретном помещении. При этом на предприятии такое оборудование может охлаждать и нагревать не только воздух, но еще и воду, и этот процесс не потребует лишних затрат энергии - он будет включен в баланс всего теплоснабжения в целом.

И, конечно же, в любой из этих ситуаций кольцевая система продемонстрирует великолепную экономичность. В традиционных системах тепло используется лишь частично и быстро уходит в атмосферу, если отопление работает параллельно с вентиляцией, однако кольцевая решает эту проблему комплексно, делая утилизацию тепла более эффективной и существенно сокращая его потери.

Как управлять теплонасосными системами?

Как правило, это оборудование не требует установки дорогостоящих средств автоматизированного управления, и это является еще одной «статьей» для экономии на нем . Удобная автоматизация здесь предельно проста и сводится только лишь к поддержанию заданной температуры воды, находящейся в контуре. Для этого система просто вовремя включает дополнительный нагреватель, чтобы вода не охладилась более, чем положено, или же задействует градирню, чтобы она не нагрелась сильнее, чем нужно. И этого обычно бывает достаточно для поддержания идеального климата.

Реализовать автоматическое управление в этой ситуации можно при помощи всего нескольких термостатов. Более того, для этого не понадобится даже точной регулирующей арматуры! Температура воды в контуре кольцевой системы может меняться в широком диапазоне, не требуя никаких дополнительных средств для этого.

Кроме того, отдельная система автоматики регулирует и процесс передачи тепла тепловым насосом к потребителю. Она встраивается в само оборудование, и одним из основных элементов системы можно считать термостат (датчик температуры), который устанавливается непосредственно в помещении. Его одного бывает достаточно, чтобы полноценно управлять работой теплонасосной установки. При этом сам насос способен обеспечить все необходимые характеристики температуры воздуха в помещении без установки в системе вентиляции регулирующих заслонок, а в системе отопления - регулирующей арматуры. Это позволяет еще сильнее уменьшить стоимость кольцевой системы и увеличить надежность всех инженерных коммуникаций здания в целом.

Вообще сложная система автоматизированного управления может понадобиться только на крупных объектах, где установлено множество тепловых насосов различных типов, предназначенных для кондиционирования воздуха, обеспечения технологических процессов и утилизации тепла. И в таких ситуациях монтаж этой системы имеет смысл, ведь она позволяет оптимизировать работу каждой единицы оборудования. Однако монтируя ее, следует учитывать, что на эксплуатацию кольцевой системы влияет целый ряд факторов, с которыми должна «считаться» даже автоматика. Среди них :

  • температура воды, находящейся в контуре , - она влияет на коэффициент преобразования тепла (соотношение количества тепла, выдаваемого потребителю, к количеству энергии, потребляемой тепловым насосом);
  • температура воздуха снаружи помещения ;
  • параметры работы градирни - она может затрачивать разное количество энергии для одного и того же количества тепла, и это зависит от внешних условий, включая температуру воздух, наличие ветра и другие факторы;
  • количество тепловых насосов, которые работают в системе, а также их суммарная мощность (соотношение мощности оборудования, забирающего тепло из водяного контура и мощности установок, отдающих его в контур).

Существуют ли успешные примеры использования кольцевых систем?

Таких примеров достаточно много, однако «хрестоматийными» можно считать следующие два.

Первый - реконструкция общеобразовательной школы № 2 в г. Усть-Лабинске. В этом здании были соблюдены все строжайшие санитарные требования, чтобы добиться максимального комфорта для детей, которые будут учиться в этом заведении . В соответствии с этими требованиями там была установлена особая климатическая система, которая способна посезонно контролировать температуру, влажность и приток свежего воздуха. При этом инженеры сделали все возможное, чтобы в каждом классе был индивидуальный контроль за микроклиматом, и справиться с обеспечением такого контроля могла только кольцевая система. Она позволила:

  • существенно снизить затраты на отопление всего здания,
  • решить проблему холодной воды в теплоцентрали, расположенной на школьном участке.

Система была собрана более чем из 50 тепловых насосов марки Climatemaster (США) и одной градирни . Дополнительное тепло она получает из теплоцентрали, а управляет ею автоматика, которая самостоятельно поддерживает комфортные условия для обучения детей и при этом работает максимально экономично. Именно благодаря ей эксплуатация кольцевой системы даже в самое суровое зимнее время позволила снизить ежемесячные затраты на отопление до 9,8 тыс. рублей: до модернизации системы каждый месяц школа тратила 18 тыс. 440 рублей на обогрев 2,5 тыс. кв. м. И это при том, что после модернизации дополнительно увеличилась отапливаемая площадь школы, которая составила 3 тыс. кв. м.

Второй проект был реализован в коттеджных поселках Подмосковья. Проблемы строительства таких поселков часто были обусловлены тем, что инфраструктура на этих территориях не позволяла строить новые дома, поскольку ни водопроводы, ни электрические сети, ни трансформаторные подстанции попросту не справлялись с выросшими нагрузками . При этом на старых подстанциях постоянно случались перебои с подачей энергии, обрывы старых проводов, различные аварии, поэтому в поселках, расположенных на таких территориях, нужно было сразу заботиться об автономном энергоснабжении.

Соответственно, инженерам нужно было создать проект, который позволял бы обеспечивать двухэтажный коттедж, имеющий несколько комнат электричеством и теплом. Стандартная площадь такого дома составила 200 кв. м, а подведены к нему были только электричество и артезианская вода, других коммуникаций не было.

Первый шаг инженеры сделали в направлении энергоэффективности - в коттедже были установлены солнечные батареи, а за домом были установлены фотоэлектрические модули, также работающие от энергии солнца и имеющие мощность в 3,5 кВт. Этой мощности было достаточно для подпитки аккумуляторных батарей, которые впоследствии питали сам дом и его систему отопления. Соответственно, электроэнергия для семьи, проживающей в таком коттедже, была бесплатной, а это значит, что из семейного бюджета расходы на нее можно было вычеркнуть. В итоге затраты на установку батарей должны окупиться менее, чем за 10 лет, и после этого никаких средств выделять будет не нужно.

Для отопления же коттеджа использовалась геотермальная теплонасосная установка, основанная на насосе типа вода-вода. Он был предназначен не только для обогрева помещений при помощи радиаторных батарей, но и для производства горячей воды. Контур, который поставляет к насосу низкопотенциальное тепло, - то есть обычную полиэтиленовую трубу длиной 800 м и диаметром 32 мм, - проложили на самом участке (на глубине 2 метра). На установку такой системы (электроснабжение + отопление) было затрачено 40 тыс. долларов, и, учитывая, что в будущем хозяину не придется тратиться на оплату коммунальных услуг, поставляемых централизовано, он от этого только выиграл.

Где можно применять кольцевые системы?

В целом, все примеры демонстрируют, что подобные теплонасосные установки могут быть смонтированы на самых разных объектах. Среди основных можно выделить:

  • административные здания,
  • медицинские и оздоровительные учреждения,
  • общественные здания,
  • учреждения образования,
  • дома отдыха и отели,
  • спортивные комплексы,
  • промышленные предприятия,
  • развлекательные учреждения.

При этом в любом варианте гибкая кольцевая система может быть легко подстроена под нужды конкретного помещения и смонтирована в величайшем многообразии вариантов.

Чтобы установить ее, инженерам понадобится учесть ряд нюансов:

  • потребности в холоде и тепле на конкретном объекте,
  • количество людей, которые находятся внутри помещений,
  • возможные источники тепла в здании,
  • возможные приемники тепла,
  • особенности теплопотерь и теплопритоков.

После этого самые лучшие источники тепла будут использованы в самой системе, а общая мощность тепловых насосов при этом должна быть настроена так, чтобы не быть избыточной.

В целом же, идеальным вариантом для любого объекта специалисты считают установку теплонасосного оборудования, которые используют окружающую среду и в качестве источника тепла, и в качестве его приемника. При этом всю систему следует сбалансировать по теплу, независимо от мощностей источников и приемников тепла - они могут быть разными, ведь их соотношение изменяется, когда меняются условия работы системы. Однако они должны быть согласованы друг с другом.

Если эти параметры учтены верно, кольцевая система будет эффективно работать и на обогрев, и на охлаждение, утилизируя все «лишнее» тепло. А использование одной такой системы вместо нескольких позволит не только создать идеальный климат в помещении, но и будет очень эффективным и выгодным и с точки зрения капитальных, и с точки зрения эксплуатационных затрат.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари