Подпишись и читай
самые интересные
статьи первым!

По заданному значению дискретной случайной величины. Закон распределения дискретной случайной величины

На этой странице мы собрали примеры решения учебных задач о дискретных случайных величинах . Это довольно обширный раздел: изучаются разные законы распределения (биномиальный, геометрический, гипергеометрический, Пуассона и другие), свойства и числовые характеристики, для каждого ряда распределения можно строить графические представления: полигон (многоугольник) вероятностей, функцию распределения.

Ниже вы найдете примеры решений о дискретных случайных величинах, в которых требуется применить знания из предыдущих разделов теории вероятностей для составления закона распределения, а затем вычислить математическое ожидание, дисперсию, среднее квадратическое отклонение, построить функцию распределения, дать ответы на вопросы о ДСВ и т.п.

Примеры для популярных законов распределения вероятностей:


Калькуляторы на характеристики ДСВ

  • Вычисление математического ожидания, дисперсии и среднего квадратического отклонения ДСВ .

Решенные задачи о ДСВ

Распределения, близкие к геометрическому

Задача 1. На пути движения автомашины 4 светофора, каждый из которых запрещает дальнейшее движение автомашины с вероятностью 0,5. Найти ряд распределения числа светофоров, пройденных машиной до первой остановки. Чему равны математическое ожидание и дисперсия этой случайной величины?

Задача 2. Охотник стреляет по дичи до первого попадания, но успевает сделать не более четырех выстрелов. Составить закон распределения числа промахов, если вероятность попадания в цель при одном выстреле равна 0,7. Найти дисперсию этой случайной величины.

Задача 3. Стрелок, имея 3 патрона, стреляет в цель до первого попадания. Вероятности попадания при первом, втором и третьем выстрелах соответственно 0,6, 0,5, 0,4. С.В. $\xi$ - число оставшихся патронов. Составить ряд распределения случайной величины, найти математическое ожидание, дисперсию, среднее квадратичное отклонение с.в., построить функцию распределения с.в., найти $P(|\xi-m| \le \sigma$.

Задача 4. В ящике содержится 7 стандартных и 3 бракованных детали. Вынимают детали последовательно до появления стандартной, не возвращая их обратно. $\xi$ - число извлеченных бракованных деталей.
Составить закон распределения дискретной случайной величины $\xi$, вычислить ее математическое ожидание, дисперсию, среднее квадратическое отклонение, начертить многоугольник распределения и график функции распределения.

Задачи с независимыми событиями

Задача 5. На переэкзаменовку по теории вероятностей явились 3 студента. Вероятность того, что первый сдаст экзамен, равна 0,8, второй - 0,7, третий - 0,9. Найдите ряд распределения случайной величины $\xi$ числа студентов, сдавших экзамен, постройте график функции распределения, найдите $М(\xi), D(\xi)$.

Задача 6. Вероятность попадания в цель при одном выстреле равна 0,8 и уменьшается с каждым выстрелом на 0,1. Составить закон распределения числа попаданий в цель, если сделано три выстрела. Найти математическое ожидание, дисперсию и С.К.О. этой случайной величины. Построить график функции распределения.

Задача 7. По цели производится 4 выстрела. Вероятность попадания при этом растет так: 0,2, 0,4, 0,6, 0,7. Найти закон распределения случайной величины $X$ - числа попаданий. Найти вероятность того, что $X \ge 1$.

Задача 8. Подбрасываются две симметричные монеты, подсчитывается число гербов на обеих верхних сторонах монет. Рассматривается дискретная случайная величина $X$- число выпадений гербов на обеих монетах. Записать закон распределения случайной величины $X$, найти ее математическое ожидание.

Другие задачи и законы распределения ДСВ

Задача 9. Два баскетболиста делают по три броска в корзину. Вероятность попадания для первого баскетболиста равна 0,6, для второго – 0,7. Пусть $X$ - разность между числом удачных бросков первого и второго баскетболистов. Найти ряд распределения, моду и функцию распределения случайной величины $X$. Построить многоугольник распределения и график функции распределения. Вычислить математическое ожидание, дисперсию и среднее квадратичное отклонение. Найти вероятность события $(-2 \lt X \le 1)$.

Задача 10. Число иногородних судов, прибывающих ежедневно под погрузку в определенный порт – случайная величина $X$, заданная так:
0 1 2 3 4 5
0,1 0,2 0,4 0,1 0,1 0,1
А) убедитесь, что задан ряд распределения,
Б) найдите функцию распределения случайной величины $X$,
В) если в заданный день прибывает больше трех судов, то порт берет на себя ответственность за издержки вследствие необходимости нанимать дополнительных водителей и грузчиков. Чему равна вероятность того, что порт понесет дополнительные расходы?
Г) найдите математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины $X$.

Задача 11. Бросают 4 игральные кости. Найти математическое ожидание суммы числа очков, которые выпадут на всех гранях.

Задача 12. Двое поочередно бросают монету до первого появления герба. Игрок, у которого выпал герб, получает от другого игрока 1 рубль. Найти математическое ожидание выигрыша каждого игрока.


X задана законом распределения вероятностей: Тогда ее среднее квадратическое отклонение равно … 0,80

Решение:
Среднее квадратическое отклонение случайной величины Х определяется как , где дисперсию дискретной случайной величины можно вычислить по формуле .Тогда , а


Решение:
A (вынутый наудачу шар – черный) применим формулу полной вероятности: .Здесь вероятность того, что из первой урны переложили во вторую урну белый шар; – вероятность того, что из первой урны переложили во вторую урну черный шар; – условная вероятность того, что вынутый шар черный, если из первой урны во вторую был переложен белый шар; – условная вероятность того, что вынутый шар черный, если из первой урны во вторую был переложен черный шар.


Дискретная случайная величина Х задана законом распределения вероятностей: Тогда вероятность равна …

Решение:
Дисперсию дискретной случайной величины можно вычислить по формуле . Тогда

Или . Решив последнее уравнение, получаем два корня и

Тема: Определение вероятности
В партии из 12 деталей имеется 5 бракованных. Наудачу отобраны три детали. Тогда вероятность того, что среди отобранных деталей нет годных, равна …



Решение:
Для вычисления события А (среди отобранных деталей нет годных) воспользуемся формулой где n m – число элементарных исходов, благоприятствующих появлению события А. нашем случае общее число возможных элементарных исходов равно числу способов, которыми можно извлечь три детали из 12 имеющих, то есть .

А общее число благоприятствующих исходов равно числу способов, которыми можно извлечь три бракованные детали из пяти, то есть .


Банк выдает 44% всех кредитов юридическим лицам, а 56% – физическим лицам. Вероятность того, что юридическое лицо не погасит в срок кредит, равна 0,2; а для физического лица эта вероятность составляет 0,1. Тогда вероятность того, что очередной кредит будет погашен в срок, равна …

0,856

Решение:
Для вычисления вероятности события A (выданный кредит будет погашен в срок) применим формулу полной вероятности: . Здесь – вероятность того, что кредит был выдан юридическому лицу; – вероятность того, что кредит был выдан физическому лицу; – условная вероятность того, что кредит будет погашен в срок, если он был выдан юридическому лицу; – условная вероятность того, что кредит будет погашен в срок, если он был выдан физическому лицу. Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Для дискретной случайной величины Х

0,655

Тема: Определение вероятности
Игральная кость бросается два раза. Тогда вероятность того, что сумма выпавших очков не меньше девяти, равна …

Решение:
Для вычисления события (сумма выпавших очков будет не меньше девяти) воспользуемся формулой , где – общее число возможных элементарных исходов испытания, а m – число элементарных исходов, благоприятствующих появлению события A . В нашем случае возможны элементарных исходов испытания, из которых благоприятствующими являются исходы вида , , , , , , , и , то есть . Следовательно,

Тема: Законы распределения вероятностей дискретных случайных величин

функция распределения вероятностей имеет вид:

Тогда значение параметра может быть равно …

0,7
0,85
0,6

Решение:
По определению . Следовательно, и . Этим условиям удовлетворяет, например, значение

Тема: Числовые характеристики случайных величин
Непрерывная случайная величина задана функцией распределения вероятностей:

Тогда ее дисперсия равна …

Решение:
Эта случайная величина распределена равномерно в интервале . Тогда ее дисперсию можно вычислить по формуле . То есть

Тема: Полная вероятность. Формулы Байеса
В первой урне 6 черных шаров и 4 белых шара. Во второй урне 2 белых и 8 черных шаров. Из наудачу взятой урны вынули один шар, который оказался белым. Тогда вероятность того, что этот шар вынули из первой урны, равна …

Решение:
A (вынутый наудачу шар – белый) по формуле полной вероятности: . Здесь – вероятность того, что шар извлечен из первой урны; – вероятность того, что шар извлечен из второй урны; – условная вероятность того, что вынутый шар белый, если он извлечен из первой урны; – условная вероятность того, что вынутый шар белый, если он извлечен из второй урны.
Тогда .
Теперь вычислим условную вероятность того, что этот шар был извлечен из первой урны, по формуле Байеса:

Тема: Числовые характеристики случайных величин
Дискретная случайная величина X задана законом распределения вероятностей:

Тогда ее дисперсия равна …

7,56
3,2
3,36
6,0

Решение:
Дисперсию дискретной случайной величины можно вычислить по формуле

Тема: Законы распределения вероятностей дискретных случайных величин

Решение:
По определению . Тогда
а) при , ,
б) при , ,
в) при , ,
г) при , ,
д) при , .
Следовательно,

Тема: Определение вероятности
Внутрь круга радиуса 4 наудачу брошена точка. Тогда вероятность того, что точка окажется вне вписанного в круг квадрата, равна …

Тема: Определение вероятности
В партии из 12 деталей имеется 5 бракованных. Наудачу отобраны три детали. Тогда вероятность того, что среди отобранных деталей нет бракованных, равна …

Решение:
Для вычисления события (среди отобранных деталей нет бракованных) воспользуемся формулой , где n – общее число возможных элементарных исходов испытания, а m – число элементарных исходов, благоприятствующих появлению события . В нашем случае общее число возможных элементарных исходов равно числу способов, которыми можно извлечь три детали из 12 имеющих, то есть . А общее число благоприятствующих исходов равно числу способов, которыми можно извлечь три небракованные детали из семи, то есть . Следовательно,

Тема: Полная вероятность. Формулы Байеса

0,57
0,43
0,55
0,53

Решение:
Для вычисления вероятности события A
Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда вероятность равна …

Решение:
Воспользуемся формулой . Тогда

Тема: Полная вероятность. Формулы Байеса

0,875
0,125
0,105
0,375

Решение:
Предварительно вычислим вероятность события A
.
.

Тема: Числовые характеристики случайных величин

Тогда ее математическое ожидание равно …

Решение:
Воспользуемся формулой . Тогда .

Тема: Определение вероятности

Решение:

Тема: Числовые характеристики случайных величин
Непрерывная случайная величина задана плотностью распределения вероятностей . Тогда математическое ожидание a и среднее квадратическое отклонение этой случайной величины равны …

Решение:
Плотность распределения вероятностей нормально распределенной случайной величины имеет вид , где , . Поэтому .

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда значения a и b могут быть равны …

Решение:
Так как сумма вероятностей возможных значений равна 1, то . Этому условию удовлетворяет ответ: .

Тема: Определение вероятности
В круг радиуса 8 помещен меньший круг радиуса 5. Тогда вероятность того, что точка, наудачу брошенная в больший круг, попадет также и в меньший круг, равна …

Решение:
Для вычисления вероятности искомого события воспользуемся формулой , где – площадь меньшего круга, а – площадь большего круга. Следовательно, .

Тема: Полная вероятность. Формулы Байеса
В первой урне 3 черных шара и 7 белых шаров. Во второй урне 4 белых шара и 5 черных шаров. Из первой урны переложили один шар во вторую урну. Тогда вероятность того, что шар, вынутый наудачу из второй урны, будет белым, равна …

0,47
0,55
0,35
0,50

Решение:
Для вычисления вероятности события A (вынутый наудачу шар – белый) применим формулу полной вероятности: . Здесь – вероятность того, что из первой урны переложили во вторую урну белый шар; – вероятность того, что из первой урны переложили во вторую урну черный шар; – условная вероятность того, что вынутый шар белый, если из первой урны во вторую был переложен белый шар; – условная вероятность того, что вынутый шар белый, если из первой урны во вторую был переложен черный шар.
Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Для дискретной случайной величины :

функция распределения вероятностей имеет вид:

Тогда значение параметра может быть равно …

0,7
0,85
0,6

ЗАДАНИЕ N 10 сообщить об ошибке
Тема: Полная вероятность. Формулы Байеса
Банк выдает 70% всех кредитов юридическим лицам, а 30% – физическим лицам. Вероятность того, что юридическое лицо не погасит в срок кредит, равна 0,15; а для физического лица эта вероятность составляет 0,05. Получено сообщение о невозврате кредита. Тогда вероятность того, что этот кредит не погасило юридическое лицо, равна …

0,875
0,125
0,105
0,375

Решение:
Предварительно вычислим вероятность события A (выданный кредит не будет погашен в срок) по формуле полной вероятности: . Здесь – вероятность того, что кредит был выдан юридическому лицу; – вероятность того, что кредит был выдан физическому лицу; – условная вероятность того, что кредит не будет погашен в срок, если он был выдан юридическому лицу; – условная вероятность того, что кредит не будет погашен в срок, если он был выдан физическому лицу. Тогда
.
Теперь вычислим условную вероятность того, что этот кредит не погасило юридическое лицо, по формуле Байеса:
.

ЗАДАНИЕ N 11 сообщить об ошибке
Тема: Определение вероятности
В партии из 12 деталей имеется 5 бракованных. Наудачу отобраны три детали. Тогда вероятность того, что среди отобранных деталей нет годных, равна …

Решение:
Для вычисления события (среди отобранных деталей нет годных) воспользуемся формулой , где n – общее число возможных элементарных исходов испытания, а m – число элементарных исходов, благоприятствующих появлению события . В нашем случае общее число возможных элементарных исходов равно числу способов, которыми можно извлечь три детали из 12 имеющих, то есть . А общее число благоприятствующих исходов равно числу способов, которыми можно извлечь три бракованные детали из пяти, то есть . Следовательно,

ЗАДАНИЕ N 12 сообщить об ошибке
Тема: Числовые характеристики случайных величин
Непрерывная случайная величина задана плотностью распределения вероятностей:

Тогда ее дисперсия равна …

Решение:
Дисперсию непрерывной случайной величины можно вычислить по формуле

Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда ее функция распределения вероятностей имеет вид …

Решение:
По определению . Тогда
а) при , ,
б) при , ,
в) при , ,
г) при , ,
д) при , .
Следовательно,

Тема: Полная вероятность. Формулы Байеса
Имеются три урны, содержащие по 5 белых и 5 черных шаров, и семь урн, содержащих по 6 белых и 4 черных шара. Из наудачу взятой урны вытаскивается один шар. Тогда вероятность того, что этот шар белый, равна …

0,57
0,43
0,55
0,53

Решение:
Для вычисления вероятности события A (вынутый наудачу шар – белый) применим формулу полной вероятности: . Здесь – вероятность того, что шар извлечен из первой серии урн; – вероятность того, что шар извлечен из второй серии урн; – условная вероятность того, что вынутый шар белый, если из он извлечен из первой серии урн; – условная вероятность того, что вынутый шар белый, если из он извлечен из второй серии урн.
Тогда .

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда вероятность равна …

Тема: Определение вероятности
Игральная кость бросается два раза. Тогда вероятность того, что сумма выпавших очков – десять, равна …

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и в свою очередь, случайная величина называется дискретной , если множество её значений конечно или счётно.

Кроме дискретных случайных величин существуют также непрерывные случайные величины.

Рассмотрим более подробно понятие случайной величины. На практике часто встречаются величины, которые могут принимать некоторые значения, но нельзя достоверно предсказать, какое именно значение каждая из них примет в рассматриваемом опыте, явлении, наблюдении. Например, число мальчиков, которые родятся в Москве в ближайший день, может быть различным. Оно может быть равным нулю (не родится ни одного мальчика: родятся все девочки или вообще не будет новорождённых), одному, двум и так далее до некоторого конечного числа n . К подобным величинам относятся: масса корнеплода сахарной свеклы на участке, дальность полёта артиллерийского снаряда, количество бракованных деталей в партии и так далее. Такие величины будем называть случайными. Они характеризуют все возможные результаты опыта или наблюдения с количественной стороны.

Примерами дискретных случайных величин с конечным числом значений могут служить число родившихся детей в течение дня в населённом пункте, число пассажиров автобуса, число пассажиров, перевезённых московским метро за сутки и т. п.

Число значений дискретной случайной величины может быть и бесконечным, но счётным множеством. Но в любом случае их можно в каком-то порядке пронумеровать, или, более точно - установить взаимно-однозначное соответствие между значениями случайной величины и натуральными числами 1, 2, 3, ..., n .

Внимание: новое, очень важное понятие теории вероятностей - закон распределения . Пусть X может принимать n значений: . Будем считать, что они все различны (в противном случае одинаковые должны быть объединены) и расположены в возрастающем порядке. Для полной характеристики дискретной случайной величины должны быть заданы не только все её значения, но и верояности , с которыми случайная величина принимает каждое из значений, т. е. .

Законом распределения дискретной случайной величины называется любое правило (функция, таблица) p (x ), позволяющее находить вероятности всевозможных событий, связанных со случайной величиной (например, вероятность того, что она пример какое-то значение или попадёт в какой-то интервал).

Наиболее просто и удобно закон распределения дискретной случайной величины задавать в виде следующей таблицы:

Значение ...
Вероятность ...

Такая таблица называется рядом распределения дискретной случайной величины . В верхней строке ряда распределения перечислены в порядке возрастания все возможные значения дискретной случайной величины (иксы), а в нижней - вероятности этих значений (p ).

События являются несовместимыми и единственно возможными: они образуют полную систему событий. Поэтому сумма их вероятностей равна единице:

.

Пример 1. В студенческой группе организована лотерея. Разыгрывается две вещи стоимостью по 1000 руб. и одна стоимостью по 3000 руб. Составить закон распределения суммы чистого выигрыша для студента, который приобрёл один билет за 100 руб. Всего продано 50 билетов.

Решение. Интересующая нас случайная величина X может принимать три значения: - 100 руб. (если студент не выиграет, а фактически проиграет 100 руб., уплаченные им за билет), 900 руб. и 2900 руб. (фактический выигрыш уменьшается на 100 руб. - на стоимость билета). Первому результату благоприятствуют 47 случаев из 50, второму - 2, а третьему - один. Поэтому их вероятности таковы: P (X =-100)=47/50=0,94 , P (X =900)=2/50=0,04 , P (X =2900)=1/50=0,02 .

Закон распределения дискретной случайной величины X имеет вид

Сумма выигрыша -100 900 2900
Вероятность 0,94 0,04 0,02

Функция распределения дискретной случайной величины: построение

Ряд распределения может быть построен только для дискретной случайной величины (для недискретной он не может быть построен хотя бы потому, что множество возможных значений такой случайной величины несчётно, их нельзя перечислить в верхней строке таблицы).

Наиболее общей формой закона распределения, пригодной для всех случайных величин (как дискретных, так и недискретных), является функция распределения.

Функцией распределения дискретной случайной величины или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Функция распределения любой дискретной случайной величины есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятностям этих значений.

Пример 2. Дискретная случайная величина X - число очков, выпавших при бросании игральной кости. Постоить её функцию распределения.

Решение. Ряд распределения дискретной случайной величины X имеет вид:

Значение 1 2 3 4 5 6
Вероятность 1/6 1/6 1/6 1/6 1/6 1/6

Функция распределения F (x ) имеет 6 скачков, равных по величине 1/6 (на рисунке внизу).

Пример 3. В урне 6 белых шаров и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров - дискретная случайная величина X . Составить соответствующий ей закон распределения.

X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности проще всего вычислисть по правилу умножения вероятностей . Получаем следующий закон распределения дискретной случайной величины:

Значение 0 1 2 3
Вероятность 1/30 3/10 1/2 1/6

Пример 4. Составить закон распределения дискретной случайной величины - числа попаданий в цель при четырёх выстрелах, если вероятность попадания при одном выстреле равна 0,1.

Решение. Дискретная случайная величина X может принимать пять различных значений: 1, 2, 3, 4, 5. Соответствующие им вероятности найдём по формуле Бернулли . При

n = 4 ,

p = 1,1 ,

q = 1 - p = 0,9 ,

m = 0, 1, 2, 3, 4

получаем

Следовательно, закон распределения дискретной случайной величины X имеет вид

Если вероятности значений дискретной случайной величины можно определить по формуле Бернулли, то случайная величина имеет биномиальное распределение .

Если число испытаний достаточно велико, то вероятность того, что в этих испытаниях интересующее событие наступит именно m раз, подчиняется закону распределения Пуассона .

Функция распределения дискретной случайной величины: вычисление

Чтобы вычислить функцию распределения дискретной случайной величины F (х ), требуется сложить вероятности всех тех значений, которые меньше или равны граничному значению х .

Пример 5. В таблице данные о зависимости числа расторгнутых в течение года браков от длительности брака. Найти вероятность того, что очередной расторгнутый брак имел длительность менее или равную 5 годам.

Длительность брака (лет) Число Вероятность F (x )
0 10 0,002 0,002
1 80 0,013 0,015
2 177 0,029 0,044
3 209 0,035 0,079
4 307 0,051 0,130
5 335 0,056 0,186
6 358 0,060 0,246
7 413 0,069 0,314
8 432 0,072 0,386
9 402 0,067 0,453
10 и более 3287 0,547 1,000
Всего 6010 1

Решение. Вероятности вычислены путём деления числа соответствующих расторгнутых браков на общее число 6010. Вероятность того, что очередной расторгнутый брак был длительностью в 5 лет, равна 0,056. Вероятность, что длительность очередного расторгнутого брака меньше или равна 5 годам, равна 0,186. Мы получили её, прибавив к значению F (x ) для браков с длительностью по 4 года включительно вероятность для браков с длительностью в 5 лет.

Связь закона распределения дискретной случайной величины с математическим ожиданием и дисперсией

Часто не все значения дискретной случайной величины известны, но известны некоторые значения или вероятности из ряда, а также математическое ожидание и (или) дисперсия случайной величины , которым посвящён отдельный урок.

Приведём здесь некоторые формулы из этого урока, которые могут выручить при составлении закона распределения дискретной случайной величины и разберём примеры решения таких задач.

Математическое ожидание дискретной случайной величины - сумма произведений всех возможных её значений на вероятности этих значений:

(1)

Формула дсперсии дискретной случайной величины по определению:

Часто для вычислений более удобна следующая формула дисперсии:

, (2)

где .

Пример 6. Дискретная случайная величина X может принимать только два значения. Меньшее значение она принимает с вероятностью p = 0,6 . Найти закон распределения дискретной случайной величины X , если известно, что её математическое ожидание и дисперсия .

Решение. Вероятность того, что случайная величина примет бОльшее значение x 2 , равна 1 − 0,6 = 4 . Используя формулу (1) математического ожидания, составим уравнение, в котором неизвестные - значения нашей дискретной случайной величины:

Используя формулу (2) дисперсии, составим другое уравнение, в котором неизвестные - также значения дискретной случайной величины:

Систему из двух полученных уравнений

решаем методом подстановки. Из первого уравнения получаем

Подставив это выражение во второе уравнение, после несложных преобразований получим квадратное уравнение

,

которое имеет два корня: 7/5 и −1 . Первый корень не отвечает условиям задачи, так как x 2 < x 1 . Таким образом, значения, которые может принимать дискретная случайная величина X по условиям нашего примера, равны x 1 = −1 и x 2 = 2 .

Определение 2.3. Случайная величина, обозначаемая X, называется дискретной, если она принимает конечное либо счетное множество значений, т.е. множество – конечное либо счетное множество.

Рассмотрим примеры дискретных случайных величин.

1. Однократно бросают две монеты. Число выпадений гербов в этом эксперименте – случайная величина Х . Ее возможные значения 0,1,2, т. е. – конечное множество.

2. Регистрируется число вызовов "Скорой помощи" в течение некоторого заданного промежутка времени. Случайная величина Х – число вызовов. Ее возможные значения 0, 1, 2, 3, ...,т.е. ={0,1,2,3,...}– счетное множество.

3. В группе 25 студентов. В какой-то день регистрируется число студентов, пришедших на занятия, – случайная величина Х . Ее возможные значения: 0, 1, 2, 3, ...,25 т.е. ={0, 1, 2, 3, ..., 25}.

Хотя все 25 человек в примере 3 пропустить занятия не могут, но случайная величина Х принимать это значение может. Это означает, что значения случайной величины обладают различной вероятностью.

Рассмотрим математическую модель дискретной случайной величины.

Пусть проводится случайный эксперимент, которому соответствует конечное или счетное пространство элементарных событий . Рассмотрим отображение этого пространства на множество действительных чисел, т. е. каждому элементарному событию поставим в соответствие некоторое действительное число , . Множество чисел при этом может быть конечным или счетным, т. е. или

Система подмножеств, в которую входит любое подмножество , в том числе одноточечное, образует -алгебру числового множества ( – конечно или счетно).

Поскольку любому элементарному событию поставлены в соответствие определенные вероятности р i (в случае конечного все ), причем , то и каждому значению случайной величины можем поставить в соответствие определенную вероятность р i , такую, что .

Пусть х – произвольное действительное число. Обозначим Р Х (х) вероятность того, что случайная величина Х приняла значение, равное х , т.е. Р Х (х)=Р(Х=х) . Тогда функция Р Х (х) может принимать положительные значения лишь при тех значениях х , которые принадлежат конечному либо счетному множеству , а при всех остальных значениях вероятность этого значения Р Х (х)=0.

Итак, мы определили множество значений , -алгебру как систему любых подмножеств и каждому событию {X = х } сопоставили вероятность дпя любых , т.е. построили вероятностное пространство .

Например, пространство элементарных событий эксперимента, состоящего в двукратном подбрасывании симметричной монеты, состоит из четырех элементарных событий: , где



При двукратном подбрасывании монеты выпали две решетки ; при двукратном подбрасывании монеты выпали два герба ;

При первом подбрасывании монеты выпала решетка, а при втором – герб ;

При первом подбрасывании монеты выпал герб, а при втором – решетка .

Пусть случайная величина Х – число выпадений решетки. Она определена на и множество ее значений . Все возможные подмножества , в том числе и одноточечные, образуют - алгебру, т.е. ={Ø, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}}.

Вероятность события {Х=х i }, і = 1,2,3 , определим как вероятность появления события, являющегося его прообразом:

Таким образом, на элементарных событиях {X = х i } задали числовую функцию Р Х , так, что .

Определение 2.4. Законом распределения дискретной случайной величины называется совокупность пар чисел (х i , р i), где х i – возможные значения случайной величины, а р i – вероятности, с которыми она принимает эти значения, причем .

Простейшей формой задания закона распределения дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующиеим вероятности:

Такая таблица называется рядом распределения. Чтобы придать ряду распределения более наглядный вид, его изображают графически: на оси Ох наносят точки х i и проводят из них перпендикуляры длиной р i . Полученные точки соединяют и получают многоугольник, который является однойиз форм закона распределения (рис. 2.1).

Таким образом, для задания дискретной случайной величины нужно задать ее значения и соответствующиеим вероятности.

Пример 2.2. Денежный приемник автомата срабатывает при каждом опускании монеты с вероятностью р . Как только он сработал, монеты не опускают. Пусть Х – число монет, которые надо опустить до срабатывания денежного приемника автомата. Построить ряд распределения дискретной случайной величины Х .



Решение. Возможные значения случайной величины Х : х 1 = 1, х 2 = 2,..., х к =к, … Найдем вероятности этих значений: р 1 – вероятность того, что денежный приемник сработает при первом опускании, и р 1 =р; р 2 – вероятность того, что будут произведены две попытки. Для этого нужно, чтобы: 1) при первой попытке денежный приемник не сработал; 2) при второй попытке – сработал. Вероятность этого события равна (1–р)р . Аналогично и так далее, . Ряд распределения Х примет вид

1 2 3 к
р qp q 2 p q r -1 p

Заметим, что вероятности р к образуют геометрическую прогрессию со знаменателем: 1–p=q , q<1, поэтому такое распределение вероятностей называется геометрическим .

ІІредположим далее, что построена математическая модель эксперимента, описываемого дискретной случайной величиной Х , и рассмотрим вычисление вероятностей наступления произвольных событий .

Пусть произвольное событие содержит конечное либо счетное множество значений х i : A= {х 1 , х 2 ,..., х i , ... } .Событие А можно представить в виде объединения несовместных событий вида : . Тогда, применяя аксиому Колмогорова 3, получаем

так как вероятности наступления событий мы определили равными вероятностям появления событий, являющихся их прообразами. Это значит, что и вероятность любого события , , можно вычислить по формуле , так как это событие представимо в виде, объединения событий , где .

Тогда и функция распределения F(х) = Р(– <Х<х) находится по формуле . Отсюда следует, что функция распределения дискретной случайной величины Х разрывна и возрастает скачками, т. е. является ступенчатой функцией (рис. 2.2):

Если множество конечно, то число слагаемых в формуле конечно, если же счётно, то и число слагаемых счетно.

Пример 2.3. Техническое устройство состоит из двух элементов, работающих независимо друг от друга. Вероятность выходаиз строя первого элемента за время Т равна 0,2, а вероятность выхода второго элемента – 0,1. Случайная величина Х – число отказавших элементов за время Т. Найти функцию распределения случайнойвеличины и построить ее график.

Решение. Пространство элементарных событий эксперимента, состоящего в исследовании надежности двух элементов технического устройства, определяется четырьмя элементарными событиями , , , : – оба элемента исправны; – первый элемент исправен, второй неисправен; – первый элемент неисправен, второй исправен; – оба элемента неисправны. Каждоеиз элементарных событий можно выразить через элементарные события пространств и , где – первый элемент исправен; – первый элемент вышел из строя; – второй элемент исправен; – второй элемент вышел из строя. Тогда , и таккак элементы технического устройства работают независимо друг от друга, то

8. Чему равна вероятность того, что значения дискретной случайной величины принадлежат промежутку ?

ЗАКОН РАСПРЕДЕЛЕНИЯ И ХАРАКТЕРИСТИКИ

СЛУЧАЙНЫХ ВЕЛИЧИН

Случайные величины, их классификация и способы описания.

Случайной называется величина, которая в результате опыта может принимать то или иное значение, но какое именно заранее не известно. Для случайной величины, таким образом, можно указать только значения, одно из которых она обязательно примет в результате опыта. Эти значения в дальнейшем будем называть возможными значениями случайной величины. Так как случайная величина количественно характеризует случайный результат опыта, она может рассматриваться как количественная характеристика случайного события.

Случайные величины обычно обозначаются заглавными буквами латинского алфавита, например, X..Y..Z, а их возможные значения- соответствующими малыми буквами.

Различают три типа случайных величин:

Дискретные; Непрерывные; Смешанные.

Дискретной называется такая случайная величина, число возможных значений которой образует счетное множество. В свою очередь, счетным называется множество, элементы которого можно пронумеровать. Слово «дискретный» происходит от латинского discretus , что означает «прерывистый, состоящий из отдельных частей» .

Пример 1. Дискретной случайной величиной является число бракованных деталей Х в партии из nтук. Действительно, возможными значениями этой случайной величины является ряд целых чисел от 0 до n.

Пример 2. Дискретной случайной величиной является число выстрелов до первого попадания в цель. Здесь, как и в примере 1, возможные значения можно пронумеровать, хотя в предельном случае возможное значение является бесконечно большим числом.

Непрерывной называется случайная величина, возможные значения которой непрерывно заполняют некоторый интервал числовой оси, называемый иногда интервалом существования этой случайной величины. Таким образом, на любом конечном интервале существования число возможных значений непрерывной случайной величины бесконечно велико.

Пример 3. Непрерывной случайной величиной является расход электроэнергии на предприятии за месяц.

Пример 4. Непрерывной случайной величиной является ошибка измерения высоты с помощью высотомера. Пусть из принципа работы высотомера известно, что ошибка лежит в пределах от 0 до 2 м. Поэтому интервалом существования данной случайной величины является интервал от 0 до 2 м.

Закон распределения случайных величин.

Случайная величина считается полностью заданной, если на числовой оси указаны ее возможные значения и установлен закон распределения.

Законом распределения случайной величины называется соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими вероятностями.

Про случайную величину говорят, что она распределена по данному закону, или подчинена данному закону распределения. В качестве законов распределения используются ряд вероятностей, функция распределения, плотность вероятности, характеристическая функция.

Закон распределения дает полное вероятное описание случайной величины. По закону распределения можно судить до опыта о том какие возможные значения случайной величины будут появляться чаще, а какие – реже.

Для дискретной случайной величины закон распределения может быть задан в виде таблицы, аналитически (в виде формулы) и графически.

Простейшей формой задания закона распределения дискретной случайной величины является таблица (матрица), в которой перечислены в порядке возрастания все возможные значения случайной величины и соответствующие их вероятности, т.е.

Такая таблица называется рядом распределения дискретной случайной величины. 1

События Х 1 , Х 2 ,..., Х n , состоящие в том, что в результате испытания случайная величина X примет соответственно значения х 1 , x 2 ,...х n являются несовместными и единственно возможными (ибо в таблице перечислены все возможные значения случайной величины), т.е. образуют полную группу. Следовательно, сумма их вероятностей равна 1. Таким образом, для любой дискретной случайной величины

(Эта единица как-то распределена между значениями случайной величины, отсюда и термин «распределение»).

Ряд распределения может быть изображен графически, если по оси абсцисс откладывать значения случайной величины, а по оси ординат - соответствующие их вероятности. Соединение полученных точек образует ломаную, называемую многоугольником или полигоном распределения вероятностей (рис. 1).

Пример В лотерее разыгрывается: автомобиль стоимостью 5000 ден. ед., 4 телевизора стоимостью 250 ден. ед., 5 видеомагнитофонов стоимостью 200 ден. ед. Всего продается 1000 билетов по 7 ден. ед. Составить закон распределения чистого выигрыша, полученного участником лотереи, купившим один билет.

Решение . Возможные значения случайной величины X - чистого выигрыша на один билет - равны 0-7 = -7 ден. ед. (если билет не выиграл), 200-7 = 193, 250-7 = 243, 5000-7 = 4993 ден. ед. (если на билет выпал выигрыш соответственно видеомагнитофона, телевизора или автомобиля). Учитывая, что из 1000 билетов число невыигравших составляет 990, а указанных выигрышей соответственно 5, 4 и 1, и используя классическое определение вероятности, получим.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари