Подпишись и читай
самые интересные
статьи первым!

Интервальный вариационный ряд методом группировок. Интервальный вариационный ряд

Во многих случаях, кота статистическая совокупность включает большое или тем более бесконечное число вариант, что чаще всего встречается при непрерывной вариации, практически невозможно и нецелесообразно формировать группу единиц для каждой варианты. В таких случаях объединение статистических единиц в группы возможно лишь на базе интервала, т.е. такой группы, которая имеет определенные пределы значений варьирующего признака. Эти пределы обозначаются двумя числами, указывающими верхнюю и нижнюю границы каждой группы. Применение интервалов приводит к формированию интервального ряда распределения.

Интервальный рад - это вариационный ряд, варианты которого представлены в виде интервалов.

Интервальный ряд может формироваться с равными инеравными ин­тервалами, при этом выбор принципа построения этого ряда зависит главным образом от степени представительности и удобности статистической совокупности. Если совокупность достаточно велика (представительна) по числу единиц и вполне однородна по своему составу, то в основу формирования интервального ряда целесообразно положить равенства интервалов. Обычно по этому принципу образуют интервальный ряд по тем совокупностям, где размах вариации сравнительно невелик, т.е. максимальная и минимальная варианты различаются между собой обычно в несколько раз. При этом величина равных интервалов рассчитывается отношением размаха вариации признака к заданному числу образуемых интервалов. Для определения равного и нтервала может быть ииспользована формула Стерджесса (обычно при небольшой вариации интервальных признаков и большом числе единиц в статистической совокупности):

где х i - величина равного интервала; X max, X min- максимальная и минимальная варианты в статистической совокупности; n. - число единиц в совокупности.

Пример . Целесообразно рассчитать размер равного интервала по плотности радиоактивного загрязнения цезием – 137 в 100 населенных пунктах Краснопольского района Могилевской области, если известно, что начальная (минимальная) варианта равна I км/км 2 , конечная (максимальная) - 65 ки/км 2 . Воспользовавшись формулой 5.1. получим:

Следовательно, чтобы сформировать интервальный ряд с равными интервалами по плотности загрязнения цезием - 137 населенных пунктов Краснопольского района, размер равного интервала может составить 8 ки/км 2 .

В условиях неравномерного распределения т.е. когда максимальная иминимальная варианты сотни раз, при формировании интервального ряда можно применить принцип неравных интервалов. Неравные интервалы обычно увеличиваются по мере перехода к большим значениям признака.

По форме интервалы могут быть закрытыми и открытыми. Закрытыми принято называть интервалы, у которых обозначены как нижняя, так и верхняя границы. Открытые интервалы имеют только одну границу: в первом интервале – верхняя, в последнем - нижняя граница.

Оценку интервальных рядов, особенно с неравным интервалами, целесообразно проводить с учетом плотности распределения , простейшим способом расчета которого является отношение локальной частоты (или частости) к размеру интервала.

Для практического формирования интервального ряда можно воспользоваться макетом табл. 5.3.

Т а б л и ц а 5.3. Порядок формирования интервального ряда населённых пунктов Краснопольского района по плотности радиоактивного загрязнения цезием –137

Основное преимущество интервального ряда - его предельная компактность. в то же время в интервальном ряду распределения индивидуальные варианты признака скрыты в соответствующих интервалах

При графическом изображении интервального ряда в системе прямоугольных координат на оси абсцисс откладывают верхние границы интервалов, на ос ординат - локальные частоты ряда. Графическое построение интервального ряда отличается от построения полигона распределения тем, что каждый интервал имеет нижнюю и верхнею границы, а одному какому- либо значению ординаты соответствуют две абсциссы. Поэтому на графике интервального ряда отмечается не точка, как в полигоне, а линия, соединяющая две точку. Эти горизонтальные линии соединяются друг с другом вертикальными линиями и получается фигура ступенчатого многоугольника, который принято называть гистограммой распределения (рис.5.3).

При графическом построении интервального ряда по достаточно большой статистической совокупности гистограмма приближается к симметричной форме распределения. В тех же случаях, где статистическая совокупность невелика, как правило, формируется асимметричная гистограмма.

В некоторых случаях имеется целесообразность в формировании ряда накопленных частот, т.е. кумулятивного ряда. Кумулятивный ряд можно образовать на основе дискретного либо интервального ряда распределения. При графическом изображении кумулятивного ряда в системе прямоугольных координат на оси абсцисс откладывают вариан­ты, на оси ординат - накопленные частоты (частости). Полученную при этом кривую линию принято называть кумулятой распределения (рис.5.4).

Формирование и графическое изображение различных видов вариационных рядов способствует упрощенному расчету основных статистических характеристик, которые подробно рассматриваются в теме 6, помогает лучше понять сущность законов распределения статистической совокупности. Анализ вариационного ряда приобретает особенное значение в тех случаях, когда необходимо выявить и проследить зависимость между вариантами и частотами (частостями). Эта зависимость проявляется в том, что число случаев, приходящихся на каждую варианту, определенным образом связано с величиной этой варианты, т.е. с возрастанием значений варьирующего признака частоты (частости) этих значений испытывают определенные, систематические изменения. Это означает, что числа в столбце частот (частостей) подвержены не хаотическим колебаниям, а изменяются в определенном направлении, в определенном порядке и последовательности.

Если частоты в своих изменениях обнаруживают определенную систематичность, то это означает, что мы находимся на пути к выявлению закономерности. Система, порядок, последовательность в изменении частот - это отражение общих причин, общих условий, характерных для всей совокупности.

Не следует считать, что закономерность распределения всегда дается в готовом виде. Встречается довольно много вариационных рядов, в которых частоты причудливо скачут, то возрастая, то уменьшаясь. В таких случаях целесообразно выяснить, с каким распределением имеет дело исследователь: то ли этому распределению вовсе не присущи закономерности, то его характер еще не выявлен: Первый случай встречается редко, второй же, второй же случай - явление довольно частое и весьма распространенное.

Так, при формировании интервального ряда общее число статистических единиц может быть небольшим, и в каждый интервал попадает малое число вариант (например, 1-3 единицы). В таких случаях рассчитывать на проявление какой-либо закономерности не приходится. Для того чтобы на основе случайных наблюдений получился закономерный результат, необходимо вступление в силу закона больших чисел, т.е. чтобы на каждый интервал приходилось бы не несколько, а десятки и сотни статистических единиц. С этой целью надо стараться, по возможности увеличивать число наблюдений. Это самый верный способ обнаружения закономерности в массовых процессах. Если же не представляется реальная возможность увеличить число наблюдений, то выявление закономерности может быть достигнуто уменьшением числа интервалов в ряду распределения. Уменьшая число интервалов в вариационном ряду, тем самым увеличивается численность частот в каждом интервале. Это означает, что случайные колебания каждой статистической единицы накладываются друг на друга, "сглаживается", превращаясь в закономерность.

Формирование и построение вариационных рядов позволяет получить лишь общую, приближенную картину распределения статистической совокупности. Например, гистограмма лишь в грубой форме выражает зависимость между значениями признака и его частотами (частостями) Поэтому вариационные ряды по существу являются лишь основой для дальнейшего, углубленного изучения внутренней закономерности статического распределения.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ТЕМЕ 5

1. Что представляет собой вариация? Чем вызывается вариация признака в статистической совокупности?

2. Какие виды варьирующих признаков могут иметь место в статистике?

3. Что такое вариационный ряд? Какие могут быть виды вариационных рядов?

4. Что представляет собой ранжированный ряд? Какие его преимущества и недостатки?

5. Что такое дискретный ряд и какие его преимущества и недостатки?

6. Каков порядок формирования интервального ряда, какие его преимущества и недостатки?

7. Что представляет собой графическое изображение ранжированного, дискретного, интервального рядов распределения?

8. Что такое кумулята распределения и что она характеризует?

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЗАДАЧА 1

Имеются следующие данные о заработной плате работников на предприятии:

Таблица 1.1

Размер заработной платы в усл. ден. ед.

Требуется построить интервальный ряд распределения, по которому найти;

1) среднюю заработную плату;

2) среднее линейное отклонение;

4) среднее квадратическое отклонение;

5) размах вариации;

6) коэффициент осцилляции;

7) линейный коэффициент вариации;

8) простой коэффициент вариации;

10) медиану;

11) коэффициент асимметрии;

12) показатель асимметрии Пирсона;

13) коэффициент эксцесса.

Решение

Как известно, варианты (значения признано) расположены в порядке возрастания образуют дискретный вариационный ряд. При большом числе вариант (больше 10) даже в случае дискретной вариации строятся интервальные ряды.

Если составляется интервальный ряд с ровными интервалами, то размах вариации делится на указанное число интервалов. При этом, если полученное значение целое и однозначное (что бывает редко), то длина интервала принимается равной этому числу. В остальных случаях производится округление обязательно в сторону увеличения, так чтобы последняя оставляемая цифра была чётной. Очевидно, с увеличением длины интервала расширяется размах вариации на величину, равной произведению числа интервалов: на разность расчетной и первоначальной длины интервала

а) Если величина расширения размаха вариации незначительна, то ее либо прибавляют к наибольшему либо вычитают из наименьшего значения признака;

б) Если величина расширения размаха вариации ощутима, то, чтобы не произошло смешения центра размаха, ее примерно делят пополам одновременно прибавляя к наибольшему и вычитая из наименьшего значений признака.

Если составляется интервальный ряд с неравными интервалами, то процесс упрощается, но по-прежнему длина интервалов должна выражаться числом с последней чётной цифрой, что значительно упрощает последующие расчёты числовых характеристик.

30 - объем выборки.

Составим интервальный ряд распределения, используя формулу Стерджеса:

K = 1 + 3.32*lg n,

K - число групп;

K = 1 + 3.32*lg 30 = 5,91=6

Находим размах признака - заработная плата работников на предприятии - (х) по формуле

R= xmaх - xmin и делим на 6; R= 195-112=83

Тогда длина интервала будет l пер=83:6=13.83

Началом первого интервала будет 112. Прибавляя к 112 l рас=13,83, получим его конечное значение 125,83, которое одновременно является началом второго интервала и т.д. конец пятого интервала - 195.

При нахождении частот следует руководствоваться правилом: «если значение признака совпадает с границей внутреннего интервала, то его следует относить к предыдущему интервалу».

Получим интервальный ряд частот и накопительных частот.

Таблица 1.2

Следовательно, 3 работника имеют зар. плату от 112 до 125,83 усл.ден.ед. Наибольшая зар. плата от 181,15 до 195 усл.ден.ед. только у 6-ті работников.

Для расчёта числовых характеристик интервальный ряд преобразуем в дискретный, взяв в качестве вариант середины интервалов:

Таблица 1.3

14131,83

По формуле взвешенного среднего арифметического

усл.ден.ед.

Среднее линейное отклонение:

где xi - значение изучаемого признака у i-той единицы совокупности,

Средняя величина изучаемого признака.

Размещено на http://www.allbest.ru/

LРазмещено на http://www.allbest.ru/

Усл.ден.ед.

Среднее квадратическое отклонение:

Дисперсия:

Относительный размах вариации (коэффициент осцилляции): с= R:,

Относительное линейное отклонение: q = L:

Коэффициент вариации: V = у:

Коэффициент осцилляции показывает относительную колеблемость крайних значений признака около среднего арифметического, а коэффициент вариации характеризует степень и однородности совокупности.

с= R: = 83 / 159,485*100% = 52,043%

Таким образом, разница между крайними значениями на 5,16% (=94,84%-100%) меньше среднего значения заработной платы работников на предприятии.

q = L: = 17,765/ 159,485*100% =11,139 %

V = у: = 21,704/ 159,485*100% = 13,609%

Коэффициент вариации меньше 33%, что говорит о слабой вариации заработной платы работников на предприятии, т.е. о том, что средняя величина является типической характеристикой заработной плате работников (совокупность однородная).

В интервальных рядах распределения мода определяется по формуле -

Частота модального интервала, т. е. интервала, содержащего наибольшее число вариант;

Частота интервала, предшествующего модальному;

Частота интервала, следующего за модальным;

Длина модального интервала;

Нижняя граница модального интервала.

Для определения медианы в интервальном ряду воспользуемся формулой

где - кумулятивная (накопленная) частота интервала, предшествующего медианному;

Нижняя граница медианного интервала;

Частота медианного интервала;

Длина медианного интервала.

Медианный интервал - интервал, накопленная частота которого (=3+3+5+7) превышает половину суммы частот - (153,49; 167,32).

Рассчитаем асимметрию и эксцесс для чего составим новую рабочую таблицу:

Таблица 1.4

Фактические данные

Расчетные данные

Рассчитаем момент третьего порядка

Следовательно, асимметрия равна

Так как 0,3553 0,25, то асимметрия признается значительной.

Рассчитаем момент четвертого порядка

Следовательно, эксцесс равен

Так как < 0, то эксцесс является плосковершинным.

Степень асимметрии может быть определена с помощью коэффициента асимметрии Пирсона (Аs): осцилляция выборка стоимость товарооборот

где -- средняя арифметическая ряда распределения; -- мода; -- среднее квадратическое отклонение.

При симметричном (нормальном) распределении = Мо, следовательно, коэффициент асимметрии равен нулю. Если Аs > 0, то больше моды, следовательно, имеется правосторонняя асимметрия.

Если As < 0, то меньше моды, следовательно, имеется левосторонняя асимметрия. Коэффициент асимметрии может изменяться от -3 до +3.

Распределение не является симметричным, а имеет левостороннюю асимметрию.

ЗАДАЧА 2

Какова должна быть численность выборки, чтобы с вероятностью 0,954 ошибка выборки не превышала 0,04, если на основе предыдущих обследований известно, что дисперсия равна 0,24?

Решение

Объем выборки при бесповторном отборе рассчитывается по формуле:

t - коэффициент доверия (при вероятности 0,954 он равен 2,0; определяется по таблицам интегралов вероятности),

у2=0,24 - среднее квадратическое отклонение;

10000 чел. - численность выборки;

Дх =0,04 - предельная ошибка выборочной средней.

С вероятностью 95,4% можно утверждать, что численность выборки, обеспечивающая относительную погрешность не более 0,04, должна составлять не менее 566 семей.

ЗАДАЧА 3

Имеются следующие данные о доходах от основной деятельности предприятия, млн. руб.

Для анализа ряда динамики определите следующие показатели:

1) цепные и базисные:

Абсолютные приросты;

Темпы роста;

Темпы прироста;

2) средний

Уровень ряда динамики;

Абсолютный прирост;

Темп роста;

Темп прироста;

3) абсолютное значение 1% прироста.

Решение

1. Абсолютный прирост (Д у) - это разность между последующим уровнем ряда и предыдущим (или базисным):

цепной: Ду = уi - yi-1,

базисный: Ду = уi - y0,

уi - уровень ряда,

i - номер уровня ряда,

y0 - уровень базисного года.

2. Темп роста (Ту) - это отношение последующего уровня ряда и предыдущего (или базисного 2001 г.):

цепной: Ту = ;

базисный: Ту =

3. Темп прироста (Т Д ) - это отношение абсолютного прироста к предыдущему уровню, выраженное в %.

цепной: Ту = ;

базисный: Ту =

4. Абсолютное значение 1% прироста (А) - это отношение цепного абсолютного прироста к темпу прироста, выраженному в %.

А =

Средний уровень ряда рассчитывается по формуле средней арифметической.

Средний уровень доходов от основной деятельности за 4 года:

Средний абсолютный прирост рассчитывается по формуле:

где n - число уровней ряда.

В среднем за год доходы от основной деятельности выросли на 3,333 млн. руб.

Среднегодовой темп роста рассчитывается по формуле средней геометрической:

уn - конечный уровень ряда,

у0 - начальный уровень ряда.

Ту = 100% = 102,174 %

Среднегодовой темп прироста рассчитывается по формуле:

Т? = Ту - 100% = 102,74% - 100% = 2,74%.

Таким образом, в среднем за год доходы от основной деятельности предприятия увеличивались на 2,74%.

ЗАДАЧ А 4

Вычислить:

1. Индивидуальные индексы цен;

2. Общий индекс товарооборота;

3. Агрегатный индекс цен;

4. Агрегатный индекс физического объема продажи товаров;

5. Абсолютный прирост стоимости товарооборота и разложите по факторам (за счет изменения цен и количества проданных товаров);

6. Сделать краткие выводы по всем полученным показателям.

Решение

1. По условию, индивидуальные индексы цен по изделиям А, Б, В составили -

iрA=1.20; iрБ=1,15; iрВ=1.00.

2. Общий индекс товарооборота рассчитаем по формуле:

I w = = 1470/1045*100% = 140,67 %

Товарооборот вырос на 40,67 % (140,67%-100%).

В среднем цены на товары выросли на 10,24%.

Сумма дополнительных расходов покупателей от роста цен:

w(p) = ? p1q1 - ? p0q1 = 1470 - 1333,478= 136,522 млн. руб.

В результате роста цен покупателям пришлось дополнительно израсходовать 136,522 млн. руб.

4. Общий индекс физического объема товарооборота:

Физический объем товарооборота вырос на 27,61 %.

5. Определим общее изменение товарооборота во втором периоде по сравнению с первым периодом:

w = 1470- 1045 = 425 млн.руб.

за счет изменения цен:

W(р) = 1470 - 1333,478 = 136,522 млн. руб.

за счет изменения физического объема:

w(q) = 1333,478 - 1045= 288,478 млн. руб.

Товарооборот товаров увеличился на 40,67%. Цены в среднем по 3-м товарам выросли на 10,24%. Физический объем товарооборота увеличился на 27,61%.

В целом объем реализации увеличился на 425 млн.руб., в том числе за счет роста цен он вырос на 136,522 млн. руб., а за счет увеличения объемов продаж - на 288,478 млн. руб.

ЗАДАЧА 5

По 10 заводам одной отрасли имеются следующие данные.

№ завода

Выпуск продукции, тыс. шт. (Х)

На основе приведенных данных:

I) для подтверждения положений логического анализа о наличии корреляционной прямолинейной зависимости между факторным признаком (объемом выпуска продукции) и результативным признаком (расходом электроэнергии) нанесите исходные данные на график корреляционного поля и сделайте выводы о форме связи, укажите ее формулу;

2) определите параметры уравнения связи и нанесите полученную при этом теоретическую линию на график корреляционного поля;

3) исчислите линейный коэффициент корреляции,

4) поясните значения показателей, полученных в пунктах 2) и 3);

5) используя полученную модель, сделайте прогноз о возможном расходе электроэнергии на заводе с объемом производства 4,5 тыс. шт.

Решение

Данные признака - объем выпуска продукции (фактор), обозначим через хi; признака - расход электроэнергии (результат) через уi; точки с координатами (х, у) наносим на корреляционное поле ОХУ.

Точки корреляционного поля расположены вдоль некоторой прямой. Следовательно, связь - линейная, будем искать уравнение регрессии в виде прямой Уx=ax+b. Для его нахождения воспользуемся системой нормальных уравнений:

Составим расчетную таблицу.

По найденным средним составляем систему и решаем её относительно параметров а и b:

Итак, получим уравнение регрессии у на х: = 3,57692 х + 3,19231

Строим линию регрессии на корреляционном поле.

Подставляя в уравнение регрессии значения х из столбца 2, получим расчетные (столбец 7) и сравниваем их с данными у, что отражено в столбце 8. Кстати, правильность расчетов подтверждается и совпадением средних значений у и.

Коэффициент линейной корреляции оценивает тесноту зависимости между признаками х и у и рассчитывается по формуле

Угловой коэффициент прямой регрессии а (при х) характеризует направление выявленной зависимости признаков: при а>0 одинаковы, при а<0- противоположны. Его абсолютная величина - мера изменения результативного признака при изменении факторного на единицу измерения.

Свободный член прямой регрессии выявляет направление, а его абсолютное значение - количественную меру влияния на результативный признак всех прочих факторов.

Если < 0, то ресурс факторного признака отдельного объекта используется с меньшей, а при >0 с большей результативностью, чем в среднем по всему множеству объектов.

Проведём послерегрессионный анализ.

Коэффициент при х прямой регрессии равен 3,57692 >0, следовательно, с увеличением (уменьшением) выпуска продукции растёт (падает) расход электроэнергии. Увеличение выпуска продукции на 1 тыс. шт. даёт в среднем рост расход электроэнергии на 3,57692 тыс. кВт.ч.

2. Свободный член прямой регрессии равен 3,19231,следовательно, влияние прочих факторов увеличивает силу воздействия выпуска продукции на расход электроэнергии в абсолютном измерении на 3,19231 тыс. кВт.ч.

3. Коэффициент корреляции 0,8235 выявляет весьма тесную зависимость расхода электроэнергии от выпуска продукции.

По уравнению регрессионной модели легко делать прогнозы. Для этого в уравнение регрессии подставляют значения х - объем выпуска продукции и прогнозируют расход электроэнергии. При этом значения х можно брать не только в пределах заданного размаха, но и вне его.

Сделаем прогноз о возможном расходе электроэнергии на заводе с объемом производства 4,5 тыс. шт.

3,57692*4,5 + 3,19231= 19,288 45 тыс. кВт.ч.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Захаренков С.Н. Социально-экономическая статистика: Учеб.-практ пособие. -Мн.: БГЭУ, 2002.

2. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики. - М.: ИНФРА - М., 2000.

3. Елисеева И.И. Статистика. - М.: Проспект, 2002.

4. Общая теория статистики / Под общ. ред. О.Э. Башиной, А.А. Спирина. - М.: Финансы и статистика, 2000.

5. Социально-экономическая статистика: Учеб.-практ. пособие / Захаренков С.Н. и др. - Мн.: ЕГУ, 2004.

6. Социально-экономическая статистика: Учеб. пособие. / Под ред. Нестерович С.Р. - Мн.: БГЭУ, 2003.

7. Теслюк И.Е., Тарловская В.А., Терлиженко Н. Статистика.- Минск, 2000.

8. Харченко Л.П. Статистика. - М.: ИНФРА - М, 2002.

9. Харченко Л.П., Долженкова В.Г., Ионин В.Г. Статистика. - М.: ИНФРА - М, 1999.

10. Экономическая статистика / Под ред. Ю.Н. Иванова - М., 2000.

Размещено на Allbest.ru

...

Подобные документы

    Расчет средней арифметической для интервального ряда распределения. Определение общего индекса физического объема товарооборота. Анализ абсолютного изменения общей стоимости продукции за счет изменения физического объема. Расчет коэффициента вариации.

    контрольная работа , добавлен 19.07.2010

    Сущность оптового, розничного и общественного товарооборота. Формулы расчета индивидуальных, агрегатных индексов товарооборота. Расчет характеристик интервального ряда распределения - среднего арифметического, моды и медианы, коэффициента вариации.

    курсовая работа , добавлен 10.05.2013

    Расчет планового и фактического объема продаж, процента выполнения плана, абсолютного изменения товарооборота. Определение абсолютного прироста, средних темпов роста и прироста денежных доходов. Расчет структурных средних: моды, медианы, квартиля.

    контрольная работа , добавлен 24.02.2012

    Интервальный ряд распределения банков по объему прибыли. Нахождение моды и медианы полученного интервального ряда распределения графическим методом и путем расчетов. Расчет характеристик интервального ряда распределения. Вычисление средней арифметической.

    контрольная работа , добавлен 15.12.2010

    Формулы определения средних величин интервального ряда - моды, медианы, дисперсии. Расчет аналитических показателей рядов динамики по цепной и базисной схемам, темпов роста и прироста. Понятие сводного индекса себестоимости, цен, затрат и товарооборота.

    курсовая работа , добавлен 27.02.2011

    Понятие и назначение, порядок и правила построения вариационного ряда. Анализ однородности данных в группах. Показатели вариации (колеблемости) признака. Определение среднего линейного и квадратического отклонения, коэффициента осцилляции и вариации.

    контрольная работа , добавлен 26.04.2010

    Понятие моды и медианы как типичных характеристик, порядок и критерии их определения. Нахождение моды и медианы в дискретном и интервальном вариационном ряду. Квартили и децили как дополнительные характеристики вариационного статистического ряда.

    контрольная работа , добавлен 11.09.2010

    Построение интервального ряда распределения по группировочному признаку. Характеристика отклонения распределения частот от симметричной формы, расчет показателей эксцесса и ассиметрии. Анализ показателей бухгалтерского баланса или отчёта о прибылях.

    контрольная работа , добавлен 19.10.2014

    Преобразование эмпирического ряда в дискретный и интервальный. Определение средней величины по дискретному ряду с использованием ее свойств. Расчет по дискретному ряду моды, медианы, показателей вариации (дисперсия, отклонение, коэффициент осцилляции).

    контрольная работа , добавлен 17.04.2011

    Построение статистического ряда распределения организаций. Графическое определение значения моды и медианы. Теснота корреляционной связи с использованием коэффициента детерминации. Определение ошибки выборки среднесписочной численности работников.

Что такое группировка статистических данных, и как она связана с рядами распределения, было рассмотрено этой лекции, там же можно узнать, о том что такое дискретный и вариационный ряд распределения.

Ряды распределения одна из разновидностей статистических рядов (кроме них в статистике используются ряды динамики), используются для анализа данных о явлениях общественной жизни. Построение вариационных рядов вполне посильная задача для каждого. Однако есть правила, которые необходимо помнить.

Как построить дискретный вариационный ряд распределения

Пример 1. Имеются данные о количестве детей в 20 обследованных семьях. Построить дискретный вариационный ряд распределения семей по числу детей .

0 1 2 3 1
2 1 2 1 0
4 3 2 1 1
1 0 1 0 2

Решение:

  1. Начнем с макета таблицы, в которую затем мы внесем данные. Так как ряды распределения имеют два элемента, то таблица состоять будет из двух колонок. Первая колонка это всегда варианта – то, что мы изучаем – ее название берем из задания (конец предложения с заданием в условиях) — по числу детей – значит наша варианта это число детей.

Вторая колонка это частота – как часто встречается наша варианта в исследуемом явление – название колонки так же берем из задания — распределения семей – значит наша частота это число семей с соответствующим количеством детей.

  1. Теперь из исходных данных выберем те значения, которые встречаются хотя бы один раз. В нашем случае это

И расставим эти данные в первой колонке нашей таблицы в логическом порядке, в данном случае возрастающем от 0 до 4. Получаем

И в заключение подсчитаем, сколько же раз встречается каждое значение варианты.

0 1 2 3 1

2 1 2 1 0

4 3 2 1 1

1 0 1 0 2

В результате получаем законченную табличку или требуемый ряд распределения семей по количеству детей.

Задание . Имеются данные о тарифных разрядах 30 рабочих предприятия. Построить дискретный вариационный ряд распределения рабочих по тарифному разряду. 2 3 2 4 4 5 5 4 6 3

1 4 4 5 5 6 4 3 2 3

4 5 4 5 5 6 6 3 3 4

Как построить интервальный вариационный ряд распределения

Построим интервальный ряд распределения, и посмотрим чем же его построение отличается от дискретного ряда.

Пример 2. Имеются данные о величине полученной прибыли 16 предприятий, млн. руб. — 23 48 57 12 118 9 16 22 27 48 56 87 45 98 88 63. Построить интервальный вариационный ряд распределения предприятий по объему прибыли, выделив 3 группы с равными интервалами.

Общий принцип построения ряда, конечно же, сохраниться, те же две колонки, те же варианта и частота, но в здесь варианта будет располагаться в интервале и подсчет частот будет вестись иначе.

Решение:

  1. Начнем аналогично предыдущей задачи с построения макета таблицы, в которую затем мы внесем данные. Так как ряды распределения имеют два элемента, то таблица состоять будет из двух колонок. Первая колонка это всегда варианта – то, что мы изучаем – ее название берем из задания (конец предложения с заданием в условиях) — по объему прибыли – значит, наша варианта это объем полученной прибыли.

Вторая колонка это частота – как часто встречается наша варианта в исследуемом явление – название колонки так же берем из задания — распределения предприятий – значит наша частота это число предприятий с соответствующей прибылью, в данном случае попадающие в интервал.

В итоге макет нашей таблицы будет выглядеть так:

где i – величина или длинна интервала,

Хmax и Xmin – максимальное и минимальное значение признака,

n – требуемое число групп по условию задачи.

Рассчитаем величину интервала для нашего примера. Для этого среди исходных данных найдем самое большое и самое маленькое

23 48 57 12 118 9 16 22 27 48 56 87 45 98 88 63 – максимальное значение 118 млн. руб., и минимальное 9 млн. руб. Проведем расчет по формуле.

В расчете получили число 36,(3) три в периоде, в таких ситуациях величину интервала нужно округлить до большего, чтобы после подсчетов не потерялось максимальное данное, именно поэтому в расчете величина интервала 36,4 млн. руб.

  1. Теперь построим интервалы – наши варианты в данной задаче. Первый интервал начинают строить от минимального значения к нему добавляется величина интервала и получается верхняя граница первого интервала. Затем верхняя граница первого интервала становится нижней границей второго интервала, к ней добавляется величина интервала и получается второй интервал. И так далее столько раз сколько требуется построить интервалов по условию.

Обратим внимание если бы мы не округлили величину интервала до 36,4, а оставили бы ее 36,3, то последнее значение у нас бы получилось 117,9. Именно для того чтобы не было потери данных необходимо округлять величину интервала до большего значения.

  1. Проведем подсчет количества предприятий попавших в каждый конкретный интервал. При обработке данных необходимо помнить, что верхнее значение интервала в данном интервале не учитывается (не включается в этот интервал), а учитывается в следующем интервале (нижняя граница интервала включается в данный интервал, а верхняя не включается), за исключением последнего интервала.

При проведении обработки данных лучше всего отобранные данные обозначить условными значками или цветом, для упрощения обработки.

23 48 57 12 118 9 16 22

27 48 56 87 45 98 88 63

Первый интервал обозначим желтым цветом – и определим сколько данных попадает в интервал от 9 до 45,4, при этом данное 45,4 будет учитываться во втором интервале (при условии что оно есть в данных) – в итоге получаем 7 предприятий в первом интервале. И так дальше по всем интервалам.

  1. (дополнительное действие ) Проведем подсчет общего объема прибыли полученного предприятиями по каждому интервалу и в целом. Для этого сложим данные отмеченные разными цветами и получим суммарное значение прибыли.

По первому интервалу — 23 + 12 + 9 + 16 + 22 + 27 + 45 = 154 млн. руб.

По второму интервалу — 48 + 57 + 48 + 56 + 63 = 272 млн. руб.

По третьему интервалу — 118 + 87 + 98 + 88 = 391 млн. руб.

Задание . Имеются данные о величине вклада в банке 30 вкладчиков, тыс. руб. 150, 120, 300, 650, 1500, 900, 450, 500, 380, 440,

600, 80, 150, 180, 250, 350, 90, 470, 1100, 800,

500, 520, 480, 630, 650, 670, 220, 140, 680, 320

Построить интервальный вариационный ряд распределения вкладчиков, по размеру вклада выделив 4 группы с равными интервалами. По каждой группе подсчитать общий размер вкладов.

При обработке больших массивов информации, что особенно актуально при проведении современных научных разработок, перед исследователем стоит серьезная задача правильной группировки исходных данных. Если данные имеют дискретный характер, то проблем, как мы видели, не возникает – необходимо просто подсчитать частотукаждого признака. Если же исследуемый признак имеет непрерывный характер (что имеет большее распространение на практике), то выбор оптимального числа интервалов группировки признака является отнюдь не тривиальной задачей.

Для группировки непрерывных случайных величин весь вариационный размах признакаразбивают на некоторое количество интервалов к.

Сгруппированным интервальным (непрерывным ) вариационным рядом называют ранжированные по значению признака интервалы (), гдеуказанные вместе с соответствующими частотами () числа наблюдений, попавших в г"-й интервал, или относительными частотами ():

Интервалы значений признака

Частота mi

Гистограмма и кумулята {огива), уже подробно рассмотренные нами, являются прекрасным средством визуализации данных, позволяющим получить первичное представление о структуре данных. Такие графики (рис. 1.15) строятся для непрерывных данных так же, как и для дискретных, только с учетом того, что непрерывные данные сплошь заполняют область своих возможных значений, принимая любые значения.

Рис. 1.15.

Поэтому столбцы на гистограмме и кумуляте должны соприкасаться, не иметь участков, куда не попадают значения признака в пределах всех возможных (т.е. гистограмма и кумулята не должны иметь "дырок" по оси абсцисс, в которые не попадают значения изучаемой переменной, как на рис. 1.16). Высота столбика соответствует частоте– числу наблюдений, попавших в данный интервал, или относительной частоте– доле наблюдений. Интервалы не должны пересекаться и имеют, как правило, одинаковую ширину.

Рис. 1.16.

Гистограмма и полигон являются аппроксимациями кривой плотности вероятности (дифференциальной функции) f(x) теоретического распределения, рассматриваемой в курсе теории вероятностей . Поэтому их построение имеет такое важное значение при первичной статистической обработке количественных непрерывных данных – по их виду можно судить о гипотетическом законе распределения.

Кумулята – кривая накопленных частот (частостей) интервального вариационного ряда. С кумулятой сопоставляется график интегральной функции распределения F(x) , также рассматриваемой в курсе теории вероятностей.

В основном понятия гистограммы и кумуляты связывают именно с непрерывными данными и их интервальными вариационными рядами, так как их графики являются эмпирическими оценками функции плотности вероятности и функции распределения соответственно.

Построение интервального вариационного ряда начинают с определения числа интервалов k. И эта задача, пожалуй, является самой сложной, важной и неоднозначной в изучаемом вопросе.

Число интервалов не должно быть слишком малым, так как при этом гистограмма получается слишком сглаженной (oversmoothed), теряет все особенности изменчивости исходных данных – на рис. 1.17 можно увидеть, как те же данные, по которым построены графики рис. 1.15, использованы для построения гистограммы с меньшим числом интервалов (левый график).

В то же время число интервалов не должно быть слишком велико – иначе мы не сможем оценить плотность распределения изучаемых данных по числовой оси: гистограмма получится недосглажепная (undersmoothed), с незаполненными интервалами, неравномерная (см. рис. 1.17, правый график).

Рис. 1.17.

Как же определить наиболее предпочтительное число интервалов?

Еще в 1926 г. Герберт Стерджес (Herbert Sturges) предложил формулу для вычисления количества интервалов, на которые необходимо разбить исходное множество значений изучаемого признака . Эта формула поистине стала сверхпопулярной – большинство статистических учебников предлагают именно ее, по умолчанию ее используют и множество статистических пакетов. Насколько это оправдано и во всех ли случаях – является весьма серьезным вопросом.

Итак, на чем основана формула Стерджеса?

Рассмотрим биномиальное распределение , верхняя граница которого включает последнее число ранжированного ряда.

Строим интервальный ряд (табл. 2.3).

Интервальный ряд распределения фирм но среднесписочной численности менеджеров в одном из регионов РФ в I квартале отчетного года

Вывод. Наиболее многочисленной группой фирм является группа со среднесписочной численностью менеджеров 25- 30 человек, которая включает 8 фирм (27%); в самую малочисленную группу со среднесписочной численностью менеджеров 40-45 человек входит всего одна фирма (3%).

Используя исходные данные табл. 2.1, а также интервальный ряд распределения фирм по численности менеджеров (табл. 2.3), требуется построить аналитическую группировку зависимости между численностью менеджеров и объемом продаж фирм и на основании ее сделать вывод о наличии (или отсутствии) связи между указанными признаками.

Решение:

Аналитическая группировка строится по факторному признаку. В нашей задаче факторным признаком (х) является численность менеджеров, а результативным признаком (у) - объем продаж (табл. 2.4).

Построим теперь аналитическую группировку (табл. 2.5).

Вывод. На основании данных построенной аналитической группировки можно сказать, что с увеличением численности менеджеров по продажам средний в группе объем продаж фирмы также увеличивается, что свидетельствует о наличии прямой связи между указанными признаками.

Таблица 2.4

Вспомогательная таблица для построения аналитической группировки

Численность менеджеров, чел.,

Номер фирмы

Объем продаж, млн руб., у

» = 59 f = 9,97

Я-™ 4 - Ю.22

74 ’25 1ПЙ1

У4 = 7 = 10,61

у = ’ =10,31 30

Таблица 2.5

Зависимость объемов продаж от численности менеджеров фирм в одном из регионов РФ в I квартале отчетного года

КОНТРОЛЬНЫЕ ВОПРОСЫ
  • 1. В чем суть статистического наблюдения?
  • 2. Назовите этапы статистического наблюдения.
  • 3. Каковы организационные формы статистического наблюдения?
  • 4. Назовите виды статистического наблюдения.
  • 5. Что такое статистическая сводка?
  • 6. Назовите виды статистических сводок.
  • 7. Что такое статистическая группировка?
  • 8. Назовите виды статистических группировок.
  • 9. Что такое ряд распределения?
  • 10. Назовите конструктивные элементы ряда распределения.
  • 11. Каков порядок построения ряда распределения?
Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари