Подпишись и читай
самые интересные
статьи первым!

Химическое никелирование, серебрение и золочение. Способы выполнения никелирования в домашних условиях Никелированные изделия

Информация к действию
(технологические советы)
Ерлыкин Л.А. «Сделай Сам» 3-92

Перед кем из домашних умельцев не вставала необходимость отникелировать или отхромировать ту или иную деталь. Какой самоделыцик не мечтал установить в ответственном узле «несрабатывающуюся» втулку с твердой, износостойкой поверхностью, полученной путем насыщения ее бором. Но как сделать в домашних условиях то, что, как правило, осуществляется на специализированных предприятиях методами химико-термической и электрохимической обработки металлов. Не будешь же строить дома газовые и вакуумные печи, сооружать электролизные ванны. Но, оказывается, строить все это совсем и не надо. Достаточно иметь под рукой некоторые реактивы, эмалированную кастрюлю да и, пожалуй, паяльную лампу, а также знать рецепты «химической технологии», с помощью которой можно металлы также меднить, кадмировать, лудить, оксидировать и т.д.

Итак, начнем знакомиться с секретами химической технологии. Учтите, что содержание компонентов в приведенных растворах, как правило, даются в г/л. В случае, если применяются другие единицы, следует специальная оговорка.

Подготовительные операции

Перед нанесением на металлические поверхности красок, защитных и декоративных пленок, а также перед покрытием их другими металлами необходимо осуществить подготовительные операции, то есть удалить с этих поверхностей загрязнения различной природы. Учтите, от качества проведения подготовительных операций в сильной степени зависит конечный результат всех работ.

К подготовительным операциям относятся обезжиривание, очистка и травление.

Обезжиривание

Процесс обезжиривания поверхности металлических деталей проводят, как правило, когда эти детали только что обработаны (отшлифованы или отполированы) и на их поверхности нет ржавчины, окалины и других посторонних продуктов.

С помощью обезжиривания с поверхности деталей удаляют масляные и жировые пленки. Для этого применяют водные растворы некоторых химреактивов, хотя для этого можно использовать и органические растворители. Последние имеют то преимущество, что они не оказывают последующего коррозионного воздействия на поверхность деталей, но при этом они токсичны и огнеопасны.

Водные растворы. Обезжиривание металлических деталей в водных растворах проводят в эмалированной посуде. Заливают воду, растворяют в ней химреактивы и ставят на малый огонь. При достижении нужной температуры загружают в раствор детали. В процессе обработки раствор перемешивают. Ниже приводятся составы обезжиривающих растворов (г/л), а также рабочие температуры растворов и время обработки деталей.

Составы обезжиривающих растворов (г/л)

Для черных металлов (железо и железные сплавы)

Жидкое стекло (канцелярский силикатный клей) - 3...10, едкий натр (калий) - 20...30, тринатрийфосфат - 25...30. Температура раствора - 70...90° С, время обработки - 10...30 мин.

Жидкое стекло - 5...10, едкий натр - 100...150, кальцинированная сода - 30...60. Температура раствора - 70...80°С, время обработки - 5...10 мин.

Жидкое стекло - 35, тринатрийфосфат- 3...10. Температура раствора - 70...90°С, время обработки - 10...20 мин.

Жидкое стекло - 35, тринатрийфосфат - 15, препарат - эмульгатор ОП-7 (или ОП-10)-2. Температура раствора - 60-70°С, время обработки - 5...10 мин.

Жидкое стекло - 15, препарат ОП-7(или ОП-10)-1. Температура раствора - 70...80°С, время обработки- 10...15 мин.

Кальцинированная сода - 20, калиевый хромпик - 1. Температура раствора - 80...90°С, время обработки - 10...20 мин.

Кальцинированная сода - 5...10, тринатрийфосфат - 5...10, препарат ОП-7 (или ОП-10) - 3. Температура раствора - 60...80°С, время обработки - 5...10 мин.

Для меди и медных сплавов

Едкий натр - 35, кальцинированная сода - 60, тринатрийфосфат - 15, препарат ОП-7 (или ОП-10) - 5. Температура раствора - 60...70, время обработки - 10...20 мин.

Едкий натр (калий) - 75, жидкое стекло - 20 Температура раствора - 80...90°С, время обработки - 40...60 мин.

Жидкое стекло - 10...20, тринатрийфосфат- 100. Температура раствора - 65...80 С, время обработки - 10...60 мин.

Жидкое стекло - 5...10, кальцинированная сода - 20...25, препарат ОП-7 (или ОП-10)-5...10. Температура раствора - 60...70°С, время обработки - 5...10 мин.

Тринатрийфосфат - 80...100. Температура раствора - 80...90°С, время обработки - 30...40 мин.

Для алюминия и его сплавов

Жидкое стекло - 25...50, кальцинированная сода - 5...10, тринатрийфосфат-5...10, препарат ОП-7 (илиОП-10) - 15...20 мин.

Жидкое стекло - 20...30, кальцинированная сода - 50...60, тринатрийфосфат- 50…60. Температура раствора - 50…60°С, время обработки - 3...5 мин.

Кальцинированная сода - 20...25, тринатрийфосфат - 20...25, препарат ОП-7 (или ОП-10)-5...7. Температура - 70...80°С, время обработки - 10...20 мин.

Для серебра, никеля и их сплавов

Жидкое стекло - 50, кальцинированная сода - 20, тринатрийфосфат - 20, препарат ОП-7 (или ОП-10) - 2. Температура раствора - 70...80°С, время обработки - 5...10 мин.

Жидкое стекло - 25, кальцинированная сода - 5, тринатрийфосфат - 10. Температура раствора - 75...85°С, время обработки - 15...20 мин.

Для цинка

Жидкое стекло - 20...25, едкий натр - 20...25, кальцинированная сода - 20...25. Температура раствора - 65...75°С, время обработки - 5 мин.

Жидкое стекло - 30...50, кальцинированная сода - 30..,50, керосин - 30...50, препарат ОП-7 (или ОП-10) - 2...3. Температура раствора - 60-70°С, время обработки - 1...2 мин.

Органические растворители

Наиболее применяемыми из органических растворителей являются бензин Б-70 (или «бензин для Зажигалок») и ацетон. Однако они обладают существенным недостатком - легко воспламеняются. Поэтому в последнее время их заменяют негорючими растворителями, такими, как трихлорэтилен и перхлорэтилен. Растворяющая способность их значительно выше, чем у бензина и ацетона. Причем эти растворители можно безбоязненно нагревать, что намного ускоряет обезжиривание металлических деталей.

Обезжиривание поверхности металлических деталей с помощью органических растворителей проводят в такой последовательности. Детали загружают в посуду с растворителем и выдерживают 15...20 мин. Затем поверхность деталей протирают прямо в растворителе щеткой. После такой обработки поверхность каждой детали тщательно обрабатывают тампоном, смоченным 25%-ным аммиаком (работать необходимо в резиновых перчатках!).

Все работы по обезжириванию органическими растворителями проводят в хорошо проветриваемом помещении.

Очистка

В этом разделе в качестве примера будет рассмотрен процесс очистки от нагара двигателей внутреннего сгорания. Как известно, нагар представляет собой асфальтосмолистые вещества, образующие на рабочих поверхностях двигателей трудноудалимые пленки. Удаление нагара - задача довольно сложная, так как пленка нагара инертна и прочно сцеплена с поверхностью детали.

Составы очищающих растворов (г/л)

Для черных металлов

Жидкое стекло - 1,5, кальцинированная сода - 33, едкий натр - 25, хо-зяйственное мыло - 8,5. Температура раствора - 80...90°С, время обработки - Зч.

Едкий натр - 100, бихромат калия - 5. Температура раствора - 80...95°С, время обработки - до 3 ч.

Едкий натр - 25, жидкое стекло - 10, бихромат натрия - 5, хозяйственное мыло - 8, кальцинированная сода - 30. Температура раствора - 80...95°С, время обработки - до 3 ч.

Едкий натр - 25, жидкое стекло - 10, хозяйственное мыло - 10, поташ - 30. Температура раствора - 100°С, время обработки - до 6 ч.

Для алюминиевых (дюралюминиевых) сплавов

Жидкое стекло 8,5, хозяйственное мыло - 10, кальцинированная сода - 18,5. Температура раствора - 85...95 С, время обработки - до 3 ч.

Жидкое стекло - 8, бихромат калия - 5, хозяйственное мыло - 10, кальцинированная сода - 20. Температура раствора - 85...95°С, время обработки - до 3 ч.

Кальцинированная сода - 10, бихромат калия - 5, хозяйственное мыло - 10. Температура раствора - 80...95°С, время обработки - до 3 ч.

Травление

Травление (как подготовительная операция) позволяет удалить с металлических деталей прочно сцепленные с их поверхностью загрязнения (ржавчину, окалину и другие продукты коррозии).

Основная цель травления - снятие продуктов коррозии; при этом основной металл не должен травиться. Чтобы предотвратить травление металла, в растворы вводят специальные добавки. Хорошие результаты дает применение небольших количеств гексаметилентетрамина (уротропина). Во все растворы для травления черных металлов добавляют 1 таблетку (0,5 г) уротропина на 1 л раствора. При отсутствии уротропина его заменяют таким же количеством сухого спирта (продается в спортмагазинах как топливо для туристов).

Ввиду того что в рецептах для травления применяют неорганические кислоты, необходимо знать их исходную плотность (г/см 3): азотная кислота - 1,4, серная кислота - 1,84; соляная кислота - 1,19; ортофосфорная кислота - 1,7; уксусная кислота - 1,05.

Составы растворов для травления

Для черных металлов

Серная кислота - 90...130, соляная кислота - 80...100. Температура раствора - 30...40°С, время обработки - 0, 5...1,0 ч.

Серная кислота - 150...200. Температура раствора - 25...60°С, время обработки - 0,5...1 ,0 ч.

Соляная кислота - 200. Температура раствора - 30...35°С, время обработки - 15...20 мин.

Соляная кислота - 150...200, формалин- 40...50. Температура раствора 30...50°С, время обработки 15...25 мин.

Азотная кислота - 70...80, соляная кислота - 500...550. Температура раствора - 50°С, время обработки - 3...5 мин.

Азотная кислота - 100, серная кислота - 50, соляная кислота - 150. Температура раствора - 85°С, время обработки - 3...10 мин.

Соляная кислота - 150, ортофосфорная кислота - 100. Температура раствора - 50°С, время обработки - 10...20 мин.

Последний раствор (при обработке стальных деталей) кроме очистки поверхности еще и фосфатирует ее. А фосфатные пленки на поверхности стальных деталей позволяют окрашивать их любыми красками без грунта, так как эти пленки сами служат превосходным грунтом.

Приведем еще несколько рецептов травящих растворов, составы которых на этот раз приведены в % (по массе).

Ортофосфорная кислота - 10, бутиловый спирт - 83, вода - 7. Температура раствора - 50...70°С, время обработки - 20...30 мин.

Ортофосфорная кислота - 35, бутиловый спирт - 5, вода - 60. Температура раствора - 40...60°С, время обработки - 30...35 мин.

После травления черных металлов их промывают в 15%-ном растворе кальци-нированной (или питьевой) соды. Затем тщательно промывают водой.

Отметим, что ниже составы растворов опять приводятся в г/л.

Для меди и ее сплавов

Серная кислота - 25...40, хромовый ангидрид - 150...200. Температура раствора - 25°С, время обработки - 5...10 мин.

Серная кислота - 150, бихромат калия - 50. Температура раствора - 25,.35°С, время обработки - 5...15 мин.

Трилон Б- 100. Температура раствора - 18...25°С, время обработки - 5...10 мин.

Хромовый ангидрид - 350, хлористый натрий - 50. Температура раствора - 18...25°С, время обработки - 5…15 мин.

Для алюминия и его сплавов

Едкий натр -50...100. Температура раствора - 40...60°С, время обработки - 5...10 с.

Азотная кислота - 35...40. Температура раствора - 18...25°С, время обработки - 3...5 с.

Едкий натр - 25...35, кальцинированная сода - 20...30. Температура раствора - 40...60°С, время обработки - 0,5...2,0 мин.

Едкий натр - 150, хлористый натрий - 30. Температура раствора - 60°С, время обработки - 15…20 с.

Химическое полирование

Химическое полирование позволяет быстро и качественно обработать поверхности металлических деталей. Большое преимущество такой технологии заключается в том, что с помощью ее (и только ее!) удается отполировать в домашних условиях детали со сложным профилем.

Составы растворов для химического полирования

Для углеродистых сталей (содержание компонентов указывается в каждом конкретном случае в тех или иных единицах (г/л, процентах, частях)

Азотная кислота - 2.-.4, соляная кислота 2...5, Ортофосфорная кислота - 15...25, остальное - вода. Температура раствора - 70...80°С, время обработки - 1...10 мин. Содержа¬ние компонентов - в % (по объему).

Серная кислота - 0,1, уксусная кислота - 25, перекись водорода (30%-ная) - 13. Температура раствора - 18...25°С, время обработки - 30...60 мин. Содержание компонентов - в г/л.

Азотная кислота - 100...200, серная кислота - 200..,600, соляная кислота - 25, Ортофосфорная кислота - 400. Температура смеси - 80...120°С, время обработки - 10...60 с. Содержание компонентов в частях (по объему).

Для нержавеющей стали

Серная кислота - 230, соляная кислота - 660, кислотный оранжевый краситель - 25. Температура раствора - 70...75°С, время обработки - 2...3 мин. Содержание компонентов - в г/л.

Азотная кислота - 4...5, соляная кислота - 3...4, Ортофосфорная кислота - 20.,.30, метилоранж - 1,..1,5, остальное - вода. Температура раствора - 18...25°С, время обработки - 5..10 мин. Содержа¬ние компонентов - в % (по массе).

Азотная кислота - 30...90, железистосинеродистый калий (желтая кровяная соль) - 2...15 г/л, препарат ОП-7 - 3...25, соляная кислота - 45..110, ортофосфорная кислота - 45...280.

Температура раствора - 30...40°С, время обработки - 15...30 мин. Содержание компонентов (кроме желтой кровяной соли) - в пл/л.

Последний состав применим для полирования чугуна и любых сталей.

Для меди

Азотная кислота - 900, хлористый натрий - 5, сажа - 5. Температура раствора - 18...25°С, время обработки - 15...20 с. Содержание компонентов - г/л.

Внимание! В растворы хлористый натрий вводят в последнюю очередь, причем раствор должен быть предварительно охлажден!

Азотная кислота - 20, серная кислота - 80, соляная кислота - 1, хромовый ангидрид - 50. Температура раствора - 13..18°С, время обработки - 1...2 мин. Содержание компонентов - в мл.

Азотная кислота 500, серная кислота - 250, хлористый натрий - 10. Температура раствора - 18...25°С, время обработки - 10...20 с. Содержание компонентов - в г/л.

Для латуни

Азотная кислота - 20, соляная кислота - 0,01, уксусная кислота - 40, ортофосфорная кислота - 40. Температура смеси - 25...30°С, время обработки - 20...60 с. Содержание компонентов - в мл.

Сернокислая медь (медный купорос) - 8, хлористый натрий - 16, уксусная кислота - 3, вода - остальное. Температура раствора - 20°С, время обработки - 20...60 мин. Содержание компонентов - в % (по массе).

Для бронзы

Ортофосфорная кислота - 77...79, азотнокислый калий - 21...23. Температура смеси - 18°С, время обработки - 0,5-3 мин. Содержание компонентов - в % (по массе).

Азотная кислота - 65, хлористый натрий - 1 г, уксусная кислота - 5, ор-тофосфорная кислота - 30, вода - 5. Температура раствора - 18...25°С, время обработки - 1...5 с. Содержание компонентов (кроме хлористого натрия) - в мл.

Для никеля и его сплавов (мельхиора и нейзильбера)

Азотная кислота - 20, уксусная кислота - 40, ортофосфорная кислота - 40. Температура смеси - 20°С, время обработки - до 2 мин. Содержание компонентов - в % (по массе).

Азотная кислота - 30, уксусная кислота (ледяная) - 70. Температура смеси - 70...80°С, время обработки - 2...3 с. Содержание компонентов - в % (по объему).

Для алюминия и его сплавов

Ортофосфорная кислота - 75, серная кислота - 25. Температура смеси - 100°С, время обработки - 5...10 мин. Содержание компонентов - в частях (по объему).

Ортофосфорная кислота - 60, серная кислота - 200, азотная кислота - 150, мочевина - 5г. Температура смеси - 100°С, время обработки - 20 с. Содержание компонентов (кроме мочевины) - в мл.

Ортофосфорная кислота - 70, серная кислота - 22, борная кислота - 8. Температура смеси - 95°С, время обработки - 5...7 мин. Содержание компонентов - в частях (по объему).

Пассивирование

Пассивирование - процесс создания химическим путем на поверхности металла инертного слоя, который не дает собственно металлу окисляться. Процессом пассивирования поверхности металлических изделий пользуются чеканщики при создании своих произведений; умельцы - при изготовлении различных поделок (люстр, бра и других предметов обихода); рыболовы-спортсмены пассивируют свои самодельные металлические приманки.

Составы растворов для пассивирования (г/л)

Для черных металлов

Нитрит натрия - 40. ..100. Температура раствора - 30...40°С, время обработки - 15...20 мин.

Нитрит натрия - 10...15, кальцинированная сода - 3...7. Температура раствора - 70...80°С, время обработки - 2...3 мин.

Нитрит натрия - 2...3, кальцинированная сода - 10, препарат ОП-7 - 1...2. Температура раствора - 40...60°С, время обработки - 10...15 мин.

Хромовый ангидрид - 50. Температура раствора - 65...75"С, время обработки - 10...20 мин.

Для меди и ее сплавов

Серная кислота - 15, бихромат калия - 100. Температура раствора - 45°С, время обработки - 5...10 мин.

Бихромат калия - 150. Температура раствора - 60°С, время обработки - 2...5 мин.

Для алюминия и его сплавов

Ортофосфорная кислота - 300, хромовый ангидрид - 15. Температура раствора - 18...25°С, время обработки - 2...5 мин.

Бихромат калия - 200. Температура раствора - 20°С, «время обработки -5...10 мин.

Для серебра

Бихромат калия - 50. Температура раствора - 25...40°С, время обработки - 20 мин.

Для цинка

Серная кислота - 2...3, хромовый ангидрид - 150...200. Температура раствора - 20°С, время обработки - 5...10 с.

Фосфатирование

Как уже было сказано, фосфатная пленка на поверхности стальных деталей представляет собой достаточно надежное антикоррозионное покрытие. Оно также является отличным грунтом под лакокрасочные покрытия.

Некоторые низкотемпературные способы фосфатирования применимы для обработки кузовов легковых автомобилей перед покрытием их антикоррозионными и противоизносными составами.

Составы растворов для фосфатирования (г/л)

Для стали

Мажеф (фосфорнокислые соли марганца и железа) - 30, азотнокислый цинк - 40, фтористый натрий - 10. Температура раствора - 20°С, время обработки - 40 мин.

Моноцинкфосфат - 75, азотнокислый цинк - 400...600. Температура раствора - 20°С, время обработки - 20...30 с.

Мажеф - 25, азотнокислый цинк - 35, нитрит натрия - 3. Температура раствора - 20°С, время обработки - 40 мин.

Моноаммонийфосфат - 300. Температура раствора - 60…80°С, время обработки - 20...30 с.

Ортофосфорная кислота - 60...80, хромовый ангидрид- 100...150. Температура раствора - 50...60°С, время обработки - 20...30 мин.

Ортофосфорная кислота - 400...550, бутиловый спирт - 30. Температура раствора - 50°С, время обработки - 20 мин.

Нанесение металлических покрытий

Химическое покрытие одних металлов другими подкупает простотой технологического процесса. Действительно, если, например, необходимо химически отникелировать какую-либо стальную деталь, достаточно иметь подходящую эмалированную посуду, источник нагрева (газовая плита, примус и т.п.) и относительно недефицитные химреактивы. Час-другой - и деталь покрыта блестящим слоем никеля.

Заметим, что только с помощью химического никелирования можно надежно отникелировать детали сложного профиля, внутренние полости (трубы и т.п.). Правда, химическое никелирование (и некоторые другие подобные процессы) не лишено и недостатков. Основной из них - не слишком крепкое сцепление никелевой пленки с основным металлом. Однако этот недостаток устраним, для этого применяют так называемый метод низкотемпературной диффузии. Он позволяет значительно повысить сцепление никелевой пленки с основным металлом. Метод этот применим для всех химических покрытий одних металлов другими.

Никелирование

В основу процесса химического никелирования положена реакция восстановления никеля из водных растворов его солей с помощью гипофосфита натрия и некоторых других химреактивов.

Никелевые покрытия, полученные химическим путем, имеют аморфную структуру. Наличие в никеле фосфора делает пленку близкой по твердости пленке хрома. К сожалению, сцепление пленки никеля с основным металлом сравнительно низкое. Термическая обработка пленок никеля (низкотемпературная диффузия) заключается в нагреве отникелированных деталей до температуры 400°С и выдержке их при этой температуре в течение 1 ч.

Если покрываемые никелем детали закалены (пружины, ножи, рыболовные крючки и т.п.), то при температуре 40°С они могут отпуститься, то есть потерять свое основное качество - твердость. В этом случае низкотемпературную диффузию проводят при температуре 270...300 С с выдержкой до 3 ч. При этом термообработка повышает и твердость никелевого покрытия.

Все перечисленные достоинства химического никелирования не ускользнули от внимания технологов. Они нашли им практическое применение (кроме использования декоративных и антикоррозионных свойств). Так, с помощью химического никелирования осуществляется ремонт осей различных механизмов, червяков резьбонарезных станков и т.д.

В домашних условиях с помощью никелирования (конечно, химического!) можно отремонтировать детали различных бытовых устройств. Технология здесь предельно проста. Например, сносилась ось какого-либо устройства. Тогда наращивают (с избытком) слой никеля на поврежденном месте. Затем рабочий участок оси полируют, доводя его до нужного размера.

Надо отметить, что с помощью Химического никелирования нельзя покрывать такие металлы, как олово, свинец, кадмий, цинк, висмут и сурьму.
Растворы, применяемые для химического никелирования, подразделяются на кислые (рН - 4...6,5) и щелочные (рН - выше 6,5). Кислые растворы предпочтительнее применять для покрытия черных металлов, меди и латуни. Щелочные - для нержавеющих сталей.

Кислые растворы (по сравнению с щелочными) на полированной детали дают более гладкую (зеркальную) поверхность, у них меньшая пористость, скорость протекания процесса выше. Еще немаловажная особенность кислых растворов: у них меньше вероятность саморазряда при превышении рабочей температуры. (Саморазряд - мгновенное выпадение никеля в раствор с расплескиванием последнего.)

У щелочных растворов основное преимущество - более надежное сцепление никелевой пленки с основным металлом.

И последнее. Воду для никелирования (и при нанесении других покрытий) берут дистиллированную (можно использовать конденсат из бытовых холодильников). Химреактивы подойдут как минимум чистые (обозначение на этикетке - Ч).

Перед покрытием деталей любой металлической пленкой необходимо провести специальную подготовку их поверхности.

Подготовка всех металлов и сплавов заключается в следующем. Обработанную деталь обезжиривают в одном из водных растворов, а затем деталь декапируют в одном из нижеперечисленных растворов.

Составы растворов для декапирования (г/л)

Для стали

Серная кислота - 30...50. Температура раствора - 20°С, время обработки - 20...60 с.

Соляная кислота - 20...45. Температура раствора - 20°С, время обработки- 15...40 с.

Серная кислота - 50...80, соляная кислота - 20...30. Температура раствора - 20°С, время обработки - 8...10 с.

Для меди и ее сплавов

Серная кислота - 5%-ный раствор. Температура - 20°С, время обработки - 20с.

Для алюминия и его сплавов

Азотная кислота. (Внимание, 10...15%-ный раствор.) Температура раствора - 20°С, время обработки - 5...15 с.

Учтите, что для алюминия и его сплавов перед химическим никелированием проводят еще одну обработку - так называемую цинкатную. Ниже приведены растворы для цинкатной обработки.

Для алюминия

Едкий натр - 250, окись цинка - 55. Температура раствора - 20 С, время обработки - З...5с.

Едкий натр - 120, сернокислый цинк - 40. Температура раствора - 20°С, время обработки - 1,5...2 мин.

При подготовке обоих растворов сначала отдельно в половине воды растворяют едкий натр, в другой половине - цинковую составляющую. Затем оба раствора сливают вместе.

Для литейных алюминиевых сплавов

Едкий натр - 10, окись цинка - 5, сегнетова соль (кристаллогидрат) - 10. Температура раствора - 20 С, время обработки - 2 мин.

Для деформируемых алюминиевых сплавов

Хлорное железо (кристаллогидрат) - 1, едкий натр - 525, окись цинка 100, сегнетова соль - 10. Температура раствора - 25°С, время обработки - 30...60 с.

После цинкатной обработки детали промывают в воде и завешивают их в раствор для никелирования.

Все растворы для никелирования универсальны, то есть годны для всех металлов (хотя есть и некоторая специфика). Готовят их в определенной последовательности. Так, все химреактивы (кроме гипофосфита натрия) растворяют в воде (посуда эмалированная!). Затем раствор разогревают до рабочей температуры и только после этого растворяют гипофосфит натрия и завешивают детали в раствор.

В 1 л раствора можно отникелировать поверхность площадью до 2 дм2 .

Составы растворов для никелирования (г/л)

Сернокислый никель - 25, янтарнокислый натрий - 15, гипофосфит натрия - 30. Температура раствора - 90°С, рН - 4,5, скорость наращивания пленки - 15...20 мкм/ч.

Хлористый никель - 25, янтарно-кислый натрий - 15, гипофосфит натрия - 30. Температура раствора - 90...92°С, рН - 5,5, скорость наращивания - 18...25 мкм/ч.

Хлористый никель - 30, гликолевая кислота - 39, гипофосфит натрия - 10. Температура раствора 85,..89°С, рН - 4,2, скорость наращивания - 15...20 мкм/ч.

Хлористый никель - 21, уксуснокислый натрий - 10, гипофосфит натрия - 24, Температура раствора - 97°С, рН - 5,2, скорость наращивания - до 60 мкм/ч.

Сернокислый никель - 21, уксуснокислый натрий - 10, сульфид свинца - 20, гипофосфит натрия - 24. Температура раствора - 90°С, рН - 5, скорость наращивания - до 90 мкм/ч.

Хлористый никель - 30, уксусная кислота - 15, сульфид свинца - 10...15, гипофосфит натрия - 15. Температура раствора - 85...87°С, рН - 4,5, скорость наращивания - 12...15 мкм/ч.

Хлористый никель - 45, хлористый аммоний - 45, лимоннокислый натрий - 45, гипофосфит натрия - 20. Температура раствора - 90°С, рН - 8,5, скорость наращивания - 18... 20 мкм/ч.

Хлористый никель - 30, хлористый аммоний - 30, янтарнокислый натрий - 100, аммиак (25%-ный раствор - 35, гипофосфит натрия - 25).
Температура - 90°С, рН - 8...8,5, скорость наращивания - 8...12 мкм/ч.

Хлористый никель - 45, хлористый аммоний - 45, уксуснокислый натрий - 45, гипофосфит натрия - 20. Температура раствора - 88....90°С, рН - 8...9, скорость наращивания - 18...20 мкм/ч.

Сернокислый никель - 30, сернокислый аммоний - 30, гипофосфит натрия - 10. Температура раствора - 85°С, рН - 8,2...8,5, скорость наращивания - 15...18 мкм/ч.

Внимание! По существующим ГОСТам однослойное покрытие никелем на 1 см2 имеет несколько десятков сквозных (до основного металла) пор. Естественно, что на открытом воздухе стальная деталь, покрытая никелем, быстро покроется «сыпью» ржавчины.

У современного автомобиля, к примеру, бампер покрывают двойным слоем (подслой меди, а сверху - хром) и даже тройным (медь - никель - хром). Но и это не спасает деталь от ржавчины, так как по ГОСТу и у тройного покрытия имеется несколько пор на 1 см2. Что делать? Выход - в обработке поверхности покрытия специальными составами, закрывающими поры.

Протереть деталь с никелевым (или другим) покрытием кашицей из окиси магния и воды и сразу же опустить ее на 1...2 мин в 50%-ный раствор соляной кислоты.

После термообработки еще не остывшую деталь опустить в невитаминизированный рыбий жир (лучше старый, непригодный по прямому назначению).

Протереть 2...3 раза отникелированную поверхность детали составом ЛПС (легко проникающей смазкой).

В последних двух случаях излишки жира (смазки) через сутки удаляют с поверхности бензином.

Обработку рыбьим жиром больших поверхностей (бамперов, молдингов автомашин) проводят так. В жаркую погоду протирают их рыбьим жиром два раза с перерывом в 12...14 ч. Затем через 2 суток излишки жира удаляют бензином.

Эффективность такой обработки характеризует следующий пример. Никелированные рыболовные крючки начинают покрываться ржавчиной сразу же после первой рыбалки в море. Обработанные рыбьим жиром те же крючки не корродируют почти весь летний сезон морской ловли.

Хромирование

Химическое хромирование позволяет получить на поверхности металлических деталей покрытие серого цвета, которое после полирования приобретает нужный блеск. Хром хорошо ложится на никелевое покрытие. Наличие фосфора в хроме, полученном химическим путем, значительно увеличивает его твердость. Термическая обработка для хромовых покрытий необходима.

Ниже приводятся проверенные практикой рецепты химического хромирования.

Составы растворов для химического хромирования (г/л)

Фтористый хром - 14, лимоннокислый натрий - 7, уксусная кислота - 10 мл, гипофосфит натрия - 7. Температура раствора - 85...90°С, рН - 8...11, скорость наращивания - 1,0...2,5 мкм/ч.

Фтористый хром - 16, хлористый хром - 1, уксуснокислый натрий - 10, щавелевокислый натрий - 4,5, гипофосфит натрия - 10. Температура раствора - 75...90°С, рН - 4...6, скорость наращивания - 2...2,5 мкм/ч.

Фтористый хром - 17, хлористый хром - 1,2, лимоннокислый натрий - 8,5, гипофосфит натрия - 8,5. Температура раствора - 85...90°С, рН - 8...11, скорость наращивания - 1...2,5 мкм/ч.

Уксуснокислый хром - 30, уксуснокислый никель - 1, гликолевокислый натрий - 40, уксуснокислый натрий - 20, лимоннокислый натрий - 40, уксусная кислота - 14 мл, гидроксид натрия - 14, гипофосфит натрия - 15. Температура раствора - 99°С, рН - 4...6, скорость наращивания - до 2,5 мкм/ч.

Фтористый хром - 5...10, хлористый хром - 5...10, лимоннокислый натрий - 20...30, пирофосфат натрия (замена гипофосфита натрия) - 50...75.
Температура раствора - 100°С, рН - 7,5...9, скорость наращивания - 2...2,5 мкм/ч.

Бороникелирование

Пленка из этого двойного сплава обладает повышенной твердостью (особенно после термообработки), высокой температурой плавления, большой износоустойчивостью и значительной коррозионной стойкостью. Все это позволяет применять такое покрытие в различных ответственных самодельных конструкциях. Ниже приведены рецепты растворов, в которых осуществляют бороникелирование.

Составы растворов для химического бороникелировапия (г/л)

Хлористый никель - 20, гидроксид натрия - 40, аммиак (25%-ный раствор):- 11, борогидрид натрия - 0,7, этилендиамин (98%-ный раствор) - 4,5. Температура раствора - 97°С, скорость наращивания - 10 мкм/ч.

Сернокислый никель - 30, триэтилснтетрамин - 0,9, гидроксид натрия - 40, аммиак (25%-ный раствор) - 13, борогидрид натрия - 1. Температура раствора - 97 С, скорость наращивания - 2,5 мкм/ч.

Хлористый никель - 20, гидроксид натрия - 40, сегнетова соль - 65, аммиак (25%-ный раствор) - 13, борогидрид натрия - 0,7. Температура раствора - 97°С, скорость наращивания - 1,5 мкм/ч.

Едкий натр - 4...40, метабисульфит калия - 1…1,5, виннокислый калийнатрий - 30...35, хлористый никель - 10...30, этилендиамин (50%-ный раствор) - 10...30, борогидрид натрия - 0,6...1,2. Температура раствора - 40...60°С, скорость наращивания - до 30 мкм/ч.

Растворы приготавливают так же, как для никелирования: сначала растворяют все, кроме борогидрида натрия, раствор нагревают и растворяют борогидрид натрия.

Борокобальтирование

Использование данного химического процесса позволяет получить пленку особо большой твердости. Ее используют для ремонта пар трения, где требуется повышенная износостойкость покрытия.

Составы растворов для борокобальтирования (г/л)

Хлористый кобальт - 20, гидроксид натрия - 40, лимоннокислый натрий - 100, этилендиамин - 60, хлористый аммо¬ний - 10, борогидрид натрия - 1. Температура раствора - 60°С, рН - 14, скорость наращивания - 1,5...2,5 мкм/ч.

Уксуснокислый кобальт - 19, ам¬миак (25%-ный раствор) - 250, винно-кислый калий - 56, борогидрид натрия - 8,3. Температура раствора - 50°С, рН - 12,5, скорость наращивания - 3 мкм/ч.

Сернокислый кобальт - 180, борная кислота - 25, диметилборазан - 37. Температура раствора - 18°С, рН - 4, скорость наращивания - 6 мкм/ч.

Хлористый кобальт - 24, этилендиамин - 24, диметилборазан - 3,5. Температура раствора - 70 С, рН - 11, скорость наращивания - 1 мкм/ч.

Раствор приготовляют так же, как и бороникелевые.

Кадмирование

В хозяйстве часто приходится применять крепежные детали, покрытые кадмием. Особенно это касается деталей, которые эксплуатируются под открытым небом.

Отмечено, что кадмиевые покрытия, полученные химическим путем, хорошо сцепляются с основным металлом даже без термообработки.

Хлористый кадмий - 50, этилендиамин - 100. С деталями должен контактировать кадмий (подвеска на кадмиевой проволоке, мелкие детали пересыпают порошковым кадмием). Температура раствора - 65°С, рН - 6...9, скорость наращивания - 4 мкм/ч.

Внимание! Последним в растворе (после нагрева) растворяют этилендиамин.

Меднение

Химическое меднение чаще всего применяют при изготовлении печатных плат для радиоэлектроники, в гальванопластике, для металлизации пластмасс, для двойного покрытия одних металлов другими.

Составы растворов для меднения (г/л)

Сернокислая медь - 10, серная кислота - 10. Температура раствора - 15...25°С, скорость наращивания - 10 мкм/ч.

Виннокислый калий-натрий - 150, сернокислая медь - 30, едкий натр - 80. Температура раствора - 15...25°С, скорость наращивания - 12 мкм/ч.

Сернокислая медь - 10...50, едкий натр - 10...30, сегнетова соль 40...70, формалин (40%-ный раствор) - 15...25. Температура раствора - 20°С, скорость наращивания - 10 мкм/ч.

Сернокислая медь - 8...50, серная кислота - 8...50. Температура раствора - 20°С, скорость наращивания - 8 мкм/ч.

Сернокислая медь - 63, виннокислый калий - 115, углекислый натрий - 143. Температура раствора - 20 С, скорость наращивания - 15 мкм/ч.

Сернокислая медь - 80...100, едкий натр - 80..,100, углекислый натрий - 25...30, хлористый никель - 2...4, сегнетова соль - 150...180, формалин (40%-ный раствор) - 30...35. Температура раствора - 20°С, скорость наращивания - 10 мкм/ч. Этот раствор позволяет получать пленки с небольшим содержанием никеля.

Сернокислая медь - 25...35, гидроксид натрия - 30...40, углекислый натрий - 20-30, трилон Б - 80...90, формалин (40%-ный раствор) - 20...25, роданин - 0,003...0,005, железосинеродистый калий (красная кровяная соль) - 0,1..0,15. Температура раствора - 18...25°С, скорость наращивания - 8 мкм/ч.

Этот раствор отличается большой стабильностью работы по времени и позволяет получить толстые пленки меди.

Для улучшения сцепления пленки с основным металлом применяют термическую обработку такую же, как и для никеля.

Серебрение

Серебрение металлических поверхностей, пожалуй, самый популярный процесс среди умельцев, который они применяют в своей деятельности. Можно привести десятки примеров. Например, восстановление слоя серебра на мельхиоровых столовых приборах, серебрение самоваров и других предметов быта.

Для чеканщиков серебрения вместе с химическим окрашиванием металлических поверхностей (о нем будет сказано ниже) - способ увеличения художественной ценности чеканных картин. Представьте себе отчеканенного древнего воина, у которого посеребрена кольчуга и шлем.

Сам процесс химического серебрения можно провести с помощью растворов и паст. Последнее предпочтительнее при обработке больших поверхностей (например, при серебрении самоваров или деталей крупных чеканных картин).

Состав растворов для серебрения (г/л)

Хлористое серебро - 7,5, железистосинеродистый калий - 120, углекислый калий - 80. Температура рабочего раствора - около 100°С. Время обработки - до получения нужной толщины слоя серебра.

Хлористое серебро - 10, хлористый натрий - 20, кислый виннокислый калий - 20. Обработка - в кипящем растворе.

Хлористое серебро - 20, железистосинеродистый калий - 100, углекислый калий - 100, аммиак (30%-ный раствор) - 100, хлористый натрий - 40. Обработка - в кипящем растворе.

Сначала готовится паста из хлористого серебра - 30 г, винной кислоты - 250 г, хлористого натрия - 1250, и все разводится водой до густоты сметаны. 10...15 г пасты растворяют в 1 л кипящей воды. Обработка - в кипящем растворе.

Детали завешивают в растворы для серебрения на цинковых проволочках (полосках).

Время обработки определяют визуально. Здесь необходимо отметить, что лучше серебрится латунь, нежели медь. На последнюю необходимо нанести довольно толстый слой серебра, чтобы темная медь не просвечивала бы через слой покрытия.

Еще одно замечание. Растворы с солями серебра нельзя долго хранить, так как при этом могут образовываться взрывчатые компоненты. Это же касается всех жидких паст.

Составы паст для серебрения.

В 300 мл теплой воды растворяют 2 г ляпис-карандаша (продается в аптеках, представляет собой смесь азотнокислого серебра и аминокислотного калия, взятых в соотношении 1:2 (по массе). К полученному раствору понемногу добавляют 10%-ный раствор хлористого натрия до прекращения выпадения осадка. Творожистый осадок хлорного серебра отфильтровывают и тщательно промывают в 5...6 водах.

В 100 мл воды растворяют 20 г тиосульфита натрия. В полученный раствор добавляют хлорное серебро до тех пор, пока оно не перестанет растворяться. Раствор фильтруют и добавляют в него зубной порошок до консистенции жидкой сметаны. Этой пастой с помощью ватного тампона натирают (серебрят) деталь.

Ляпис-карандаш - 15, лимонная кислота (пищевая) - 55, хлористый аммоний - 30. Каждый компонент перед смешиванием растирают в порошок. Содержание компонентов - в % (по массе).

Хлористое серебро - 3, хлористый натрий - 3, углекислый натрий - 6, мел - 2. Содержание компонентов - в частях (по массе).

Хлористое серебро - 3, хлористый натрий - 8, виннокислый калий - 8, мел - 4. Содержание компонентов - в частях (по массе).

Азотнокислое серебро - 1, хлористый натрий - 2. Содержание компонентов - в частях (по массе).

Последние четыре пасты применяют следующим образом. Тонкоизмельченные компоненты смешивают. Мокрым тампоном, припудривая его сухой смесью химреактивов, натирают (серебрят) нужную деталь. Смесь все время добавляют, постоянно увлажняя тампон.

При серебрении алюминия и его сплавов детали сначала цинкуют, а затем уже покрывают серебром.

Цинкатную обработку проводят в одном из следующих растворов.

Составы растворов для цинкатной обработки (г/л)

Для алюминия

Едкий натр - 250, окись цинка - 55. Температура раствора - 20°С, время обработки - 3...5 с.

Едкий натр - 120, сернокислый цинк - 40. Температура раствора - 20°С, время обработки - 1,5...2,0 мин. Для получения раствора сначала в одной половине воды растворяют едкий натр, в другой - сернокислый цинк. Затем оба раствора сливают вместе.

Для дюраля

Едкий натр - 10, окись цинка - 5, сегнетова соль - 10. Температура раствора - 20°С, время обработки - 1...2 мин.

После цинкатной обработки детали серебрят в любом из вышеперечисленных растворов. Однако лучшими считаются следующие растворы (г/л).

Азотнокислое серебро - 100, фто¬ристый аммоний - 100. Температура раствора - 20°С.

Фтористое серебро - 100, азотнокислый аммоний - 100. Температура раствора - 20°С.

Лужение

Химическое лужение поверхностей деталей применяют как антикоррозионное покрытие и как предварительный процесс (для алюминия и его сплавов) перед пайкой мягкими припоями. Ниже приведены составы для лужения некоторых металлов.

Составы для лужения (г/л)

Для стали

Хлористое олово (плавленое) - 1, аммиачные квасцы - 15. Лужение ведется в кипящем растворе, скорость наращивания - 5...8 мкм/ч.

Хлористое олово- 10, сернокислый алюминий-аммоний - 300. Лужение ведется в кипящем растворе, скорость наращивания - 5 мкм/ч.

Хлористое олово - 20, сегнетова соль - 10. Температура раствора - 80°С, скоро¬сть наращивания - 3...5 мкм/ч.

Хлористое олово - 3...4, сегнетова соль - до насыщения. Температура раствора - 90...100°С, скорость наращивания - 4...7 мкм/ч.

Для меди и ее сплавов

Хлористое олово - 1, виннокислый калий- 10. Лужение ведется в кипящем растворе, скорость наращивания - 10 мкм/ч.

Хлористое олово - 20, молочнокислый натрий - 200. Температура раствора - 20°С, скорость наращивания - 10 мкм/ч.

Двухлористое олово - 8, тиомочевина - 40...45, серная кислота - 30...40. Температура раствора - 20°С, скорость наращивания - 15 мкм/ч.

Хлористое олово - 8...20, тиомочевина - 80...90, соляная кислота - 6,5...7,5, хлористый натрий - 70...80. Температура раствора - 50...100°С, скорость наращивания - 8 мкм/ч.

Хлористое олово - 5,5, тиомочевина - 50, винная кислота - 35. Температура раствора - 60...70°С, скорость наращивания - 5...7 мкм/ч.

При лужении деталей из меди и ее сплавов их завешивают на цинковых подвесках. Мелкие детали «припудривают» цинковыми опилками.

Для алюминия и его сплавов

Лужению алюминия и его сплавов предшествуют некоторые дополнительные процессы. Вначале обезжиренные ацетоном или бензином Б-70 детали обрабатывают в течение 5 мин при температуре 70°С следующего состава (г/л): углекислый натрий - 56, фосфорнокислый натрий - 56. Затем детали опускают на 30 с в 50%-ный раствор азотной кислоты, тщательно промывают под струей воды и сразу же помещают в один из растворов (для лужения), приведенных ниже.

Станнат натрия - 30, гидроксид натрия - 20. Температура раствора - 50...60°С, скорость наращивания - 4 мкм/ч.

Станнат натрия - 20...80, пирофосфат калия - 30…120, едкий натр - 1,5..Л,7, щавелевокислый аммоний - 10...20. Температура раствора - 20...40°С, скорость наращивания - 5 мкм/ч.

Удаление металлических покрытий

Обычно этот процесс необходим для удаления некачественных металлических пленок или для очистки какого-либо ре¬ставрируемого металлического изделия.

Все нижеприведенные растворы работают быстрее при повышенных температурах.

Составы растворов для удаления металлических покрытий частями (по объему)

Для стали удаления никеля со стали

Азотная кислота - 2, серная кисло¬та - 1, сернокислое железо (окисное) - 5...10. Температура смеси - 20°С.

Азотная кислота - 8, вода - 2. Температура раствора - 20 С.

Азотная кислота - 7, уксусная кислота (ледяная) - 3. Температура смеси - 30°С.

Для удаления никеля с меди и ее сплавов (г/л)

Нитробензойная кислота - 40…75, серная кислота - 180. Температура раствора - 80...90 С.

Нитробензойная кислота - 35, этилендиамин - 65, тиомочевина - 5...7. Температура раствора - 20...80°С.

Для удаления никеля с алюминия и его сплавов применяют техническую азотную кислоту. Температура кислоты - 50°С.

Для удаления меди со стали

Нитробензойная кислота - 90, диэтилентриамин - 150, хлористый аммоний - 50. Температура раствора - 80°С.

Пиросернокислый натрий - 70, аммиак (25%-ный раствор) - 330. Температура раствора - 60°.

Серная кислота - 50, хромовый ангидрид - 500. Температура раствора - 20°С.

Для удаления меди с алюминия и его сплавов (с цинкатной обработкой)

Хромовый ангидрид - 480, серная кислота - 40. Температура раствора - 20...70°С.

Техническая азотная кислота. Температура раствора - 50°С.

Для удаления серебра со стали

Азотная кислота - 50, серная кислота - 850. Температура - 80°С.

Азотная кислота техническая. Температура - 20°С.

Серебро с меди и ее сплавов удаляют азотной кислотой технической. Температура - 20°С.

Хром со стали снимают раствором едкого натра (200 г/л). Температура раствора - 20 С.

Хром с меди и ее сплавов удаляют 10%-ной соляной кислотой. Температура раствора - 20°С.

Цинк со стали снимают 10%-ной соляной кислотой - 200 г/л. Температура раствора - 20°С.

Цинк с меди и ее сплавов удаляют концентрированной серной кислотой. Температура - 20 С.

Кадмий и цинк с любых металлов снимают раствором азотнокислого алюминия (120 г/л). Температура раствора - 20°С.

Олово со стали удаляют раствором, содержащим гидроксид натрия - 120, нитробензойную кислоту - 30. Температура раствора - 20°С.

Олово с меди и ее сплавов снимают в растворе хлорного железа - 75…100, сернокислой меди - 135...160, уксусной кислоты (ледяная) - 175. емпература раствора - 20°С.

Химическое оксидирование и окрашивание металлов

Химическое оксидирование и окрашивание поверхности металлических деталей предназначаются для создания на поверхности деталей антикоррозионного покрытия и усиления декоративности покрытия.

В глубокой древности люди умели уже оксидировать свои поделки, изменяя их цвет (чернение серебра, окраска золота и т.п.), воронить стальные предметы (нагрев стальную деталь до 220...325°С, они смазывали ее конопляным маслом).

Составы растворов для оксидирования и окрашивания стали (г/л)

Заметим, что перед оксидированием деталь шлифуется или полируется, обезжиривается и декапируется.

Черный цвет

Едкий натр - 750, азотнокислый натрий - 175. Температура раствора - 135°С, время обработки - 90 мин. Пленка плотная, блестящая.

Едкий натр - 500, азотнокислый натрий - 500. Температура раствора - 140°С, время обработки - 9 мин. Пленка интенсивная.

Едкий натр - 1500, азотнокислый натрий - 30. Температура раствора - 150°С, время обработки - 10 мин. Пленка матовая.

Едкий натр - 750, азотнокислый на¬трий - 225, азотистокислый натрий - 60. Температура раствора - 140°С, время обработки - 90 мин. Пленка блестящая.

Азотнокислый кальций - 30, ортофосфорная кислота - 1, перекись марганца - 1. Температура раствора - 100°С, время обработки - 45 мин. Пленка матовая.

Все приведенные способы характеризуются высокой рабочей температурой растворов, что, конечно, не позволяет обрабатывать крупногабаритные детали. Однако имеется один «низкотемпературный раствор», пригодный для этого дела (г/л): тиосульфат натрия - 80, хлористый аммоний - 60, ортофосфорная кислота - 7, азотная кислота - 3. Температура раствора - 20°С, время обработки - 60 мин. Пленка черная, матовая.

После оксидирования (чернения) стальных деталей их обрабатывают в течение 15 мин в растворе калиевого хромпика (120 г/л) при температуре 60°С.

Затем детали промывают, сушат и покрывают любым нейтральным машинным маслом.

Голубой цвет

Соляная кислота - 30, хлорное железо - 30, азотнокислая ртуть - 30, этиловый спирт - 120. Температура раствора - 20...25°С, время обработки - до 12 ч.

Гидросернистый натрий - 120, уксуснокислый свинец - 30. Температура раствора - 90...100°С, время обработки - 20...30 мин.

Синий цвет

Уксуснокислый свинец - 15...20, тиосульфат натрия - 60, уксусная кислота (ледяная) - 15...30. Температура раствора - 80°С. Время обработки зависит от интенсивности окраски.

Составы растворов для оксидирования и окрашивания меди (г/л)

Синевато-черные цвета

Едкий натр - 600...650, азотнокислый натрий - 100...200. Температура раствора - 140°С, время обработки - 2ч.

Едкий натр - 550, азотистокислый натрий - 150...200. Температура раствора - 135...140°С, время обработки- 15...40 мин.

Едкий натр - 700...800, азотнокислый натрий - 200...250, азотистокислый натрий -50...70. Температура раствора - 140...150°С, время обработки - 15...60 мин.

Едкий натр - 50...60, персульфат калия - 14…16. Температура раствора - 60...65 С, время обработки - 5...8 мин.

Сернистый калий - 150. Температура раствора - 30°С, время обработки - 5...7 мин.

Кроме вышеперечисленных, применяют раствор так называемой серной печени. Получают серную печень, сплавляя в железной банке в течение 10...15 мин (при помешивании) 1 часть (по массе) серы с 2 частями углекислого калия (поташа). Последний можно заменить тем же количеством углекислого натрия или едкого натра.

Стеклообразную массу серной печени выливают на железный лист, остужают и дробят до порошка. Хранят серную печень в герметичной посуде.

Раствор серной печени готовят в эмалированной посуде из расчета 30...150 г/л, температура раствора - 25...100°С, время обработки определяется визуально.

Раствором серной печени, кроме меди, можно хорошо почернить серебро и удовлетворительно - сталь.

Зеленый цвет

Азотнокислая медь - 200, аммиак (25%-ный раствор) - 300, хлористый аммоний - 400, уксуснокислый натрий - 400. Температура раствора - 15...25°С. Интенсивность окраски определяют визуально.

Коричневый цвет

Хлористый калий - 45, сернокислый никель - 20, сернокислая медь - 100. Температура раствора - 90...100°С, интенсивность окраски определяют визуально.

Буровато-желтый цвет

Едкий натр - 50, персульфат калия - 8. Температура раствора - 100°С, время обработки - 5...20 мин.

Голубой цвет

Тиосульфат натрия - 160, уксуснокислый свинец - 40. Температура раствора - 40…100°С, время обработки - до 10 мин.

Составы для оксидирования и окрашивания латуни (г/л)

Черный цвет

Углекислая медь - 200, аммиак (25%-ный раствор) - 100. Температура раствора - 30...40°С, время обработки - 2...5 мин.

Двууглекислая медь - 60, аммиак (25%-ный раствор) - 500, латунь (опилки) - 0,5. Температура раствора - 60...80°С, время обработки - до 30 мин.

Коричневый цвет

Хлористый калий - 45, сернокислый никель - 20, сернокислая медь - 105. Температура раствора - 90...100°С, время обработки - до 10 мин.

Сернокислая медь - 50, тиосульфат натрия - 50. Температура раствора - 60...80°С, время обработки - до 20 мин.

Сернокислый натрий - 100. Температура раствора - 70°С, время обработки - до 20 мин.

Сернокислая медь - 50, марганцовокислый калий - 5. Температура раствора - 18...25°С, время обработки - до 60 мин.

Голубой цвет

Уксуснокислый свинец - 20, тиосульфат натрия - 60, уксусная кислота (эссенция) - 30. Температура раствора - 80°С, время обработки - 7 мин.

3еленый цвет

Сернокислый никель-аммоний - 60, тиосульфат натрия - 60. Температура раствора - 70...75°С, время обработки - до 20 мин.

Азотнокислая медь - 200, аммиак (25%-ный раствор) - 300, хлористый аммоний - 400, уксуснокислый натрий - 400. Температура раствора - 20°С, время обработки - до 60 мин.

Составы для оксидирования и окрашивания бронзы (г/л)

Зеленый цвет

Хлористый аммоний - 30, 5%-ная уксусная кислота - 15, среднеуксусная соль меди - 5. Температура раствора - 25...40°С. Здесь и далее интенсивность окраски бронзы определяют визуально.

Хлористый аммоний - 16, кислый щавелевокислый калий - 4, 5%-ная уксусная кислота - 1. Температура раствора - 25...60°С.

Азотнокислая медь - 10, хлористый аммоний - 10, хлористый цинк - 10. Температура раствора - 18...25°С.

Желто-зеленый цвет

Азотнокислая медь - 200, хлористый натрий - 20. Температура раствора - 25°С.

От синего до желто-зеленого цвета

В зависимости от времени обработки удается получить цвета от синего до желто-зеленого в растворе, содержащем углекислый аммоний - 250, хлористый аммоний - 250. Температура раствора - 18...25°С.

Патинирование (придание вида старой бронзы) проводят в таком растворе: серная печень - 25, аммиак (25%-ный раствор) - 10. Температура раствора - 18...25°С.

Составы для оксидирования и окрашивания серебра (г/л)

Черный цвет

Серная печень - 20...80. Температура раствора - 60.,.70°С. Здесь и далее интенсивность окраски определяют визуально.

Углекислый аммоний - 10, сернистый калий - 25. Температура раствора - 40...60°С.

Сернокислый калий - 10. Температура раствора - 60°С.

Сернокислая медь - 2, азотнокислый аммоний - 1, аммиак (5%-ный раствор) - 2, уксусная кислота (эссенция) - 10. Температура раствора - 25...40°С. Содержание компонентов в этом растворе дано в частях (по массе).

Коричневый цвет

Раствор сернокислого аммония - 20 г/л. Температура раствора - 60...80°С.

Сернокислая медь - 10, аммиак (5%-ный раствор) - 5, уксусная кислота - 100. Температура раствора - 30...60°С. Содержание компонентов в растворе - в частях (по массе).

Сернокислая медь - 100, 5%-ная уксусная кислота - 100, хлористый аммоний - 5. Температура раствора - 40...60°С. Содержание компонентов в растворе - в частях (по массе).

Сернокислая медь - 20, азотнокислый калий - 10, хлористый аммоний - 20, 5%-ная уксусная кислота - 100. Температура раствора - 25...40°С. Содержание компонентов в растворе - в частях (по массе).

Голубой цвет

Серная печень - 1,5, углекислый аммоний - 10. Температура раствора - 60°С.

Серная печень - 15, хлористый аммоний - 40. Температура раствора - 40...60°С.

Зеленый цвет

Йод - 100, соляная кислота - 300. Температура раствора - 20°С.

Йод - 11,5, йодистый калий - 11,5. Температура раствора - 20°С.

Внимание! При окрашивании серебра в зеленый цвет необходимо работать в темноте!

Состав для оксидирования и окраски никеля (г/л)

Никель можно окрасить только в черный цвет. Раствор (г/л) содержит: персульфат аммония - 200, сернокислый натрий - 100, сернокислое железо - 9, роданистый аммоний - 6. Температура раствора - 20...25°С, время обработки - 1-2 мин.

Составы для оксидирования алюминия и его сплавов (г/л)

Черный цвет

Молибденовокислый аммоний - 10...20, хлористый аммоний - 5...15. Температура раствора - 90...100°С, время обработки - 2...10 мин.

Серый цвет

Трехокись мышьяка - 70...75, углекислый натрий - 70...75. Температура раствора - кипение, время обработки - 1...2 мин.

Зеленый цвет

Ортофосфорная кислота - 40...50, кислый фтористый калий - 3...5, хромовый ангидрид- 5...7. Температура раствора - 20...40 С, время обработки - 5...7 мин.

Оранжевый цвет

Хромовый ангидрид - 3...5, фтор-силикат натрия - 3...5. Температура раствора - 20...40°С, время обработки - 8...10 мин.

Желто-коричневый цвет

Углекислый натрий - 40...50, хро¬овокислый натрий - 10...15, едкий натр - 2...2,5. Температура раствора - 80...100°С, время обработки - 3...20 мин.

Защитные составы

Часто умельцу требуется обработать (окрасить, покрыть другим металлом и т.п.) только часть поделки, а остальную поверхность оставить без изменения.
Для этого поверхность, которую не надо покрывать, закрашивают защитным составом, который препятствует образованию той или иной пленки.

Наиболее доступные, но нетермостойкие защитные покрытия - воскообразные вещества (воск, стеарин, парафин, церезин), растворенные в скипидаре. Для приготовления такого покрытия обычно смешивают воск и скипидар в соотношении 2:9 (по массе). Приготовляют этот состав следующим образом. В водяной бане расплавляют воск и в него вводят теплый скипидар. Чтобы защитный состав был бы контрастным (его наличие можно бы было четко видеть, контролировать), в состав вводят небольшое количество растворимой в спирте краски темного цвета. Если таковой не имеется, нетрудно ввести в состав небольшое количество темного сапожного крема.

Можно привести более сложный по составу рецепт, % (по массе): парафин - 70, пчелиный воск - 10, канифоль - 10, пековый лак (кузбасслак) - 10. Все составляющие смешивают, расплавляют на малом огне и тщательно перемешивают.

Воскообразные защитные составы наносят в горячем виде кистью или тампоном. Все они рассчитаны на рабочую температуру не выше 70°С.
Несколько лучшей термостойкостью (рабочая температура до 85°С) обладают защитные составы на основе асфальтовых, битумных и пековых лаков. Обычно их разжижают скипидаром в соотношении 1:1 (по массе). Холодный состав наносят на поверхность детали кистью или тампоном. Время высыхания - 12...16 ч.

Перхлорвиниловые краски, лаки и эмали выдерживают температуру до 95°С, масляно-битумные лаки и эмали, асфальтово-масляные и бакелитовые лаки-до 120°С.

Наиболее кислотостойким защитным составом является смесь клея 88Н (или «Момент») и наполнителя (фарфоровая мука, тальк, каолин, окись хрома), взятых в соотношении: 1:1 (по массе). Необходимую вязкость получают добавлением к смеси растворителя, состоящего из 2 ча¬стей (по объему) бензина Б-70 и 1 части этилацетата (или бутилацетата). Рабочая, температура такого защитного состава - до 150 С.

Хороший защитный состав - эпоксидный лак (или шпаклевка). Рабочая температура - до 160°С.

В процессе эксплуатации материалы подвержены физическому износу. Для восстановления свойств металла используют многочисленные способы защиты. Одним из самых эффективных методов защиты является никелирование материалов.

Для нанесения никеля в домашних условиях используют способы химического и электролитического никелирования.

Что называют никелированием

Никелированием называют процесс нанесения тонкого никелевого покрытия на поверхность материала. Никелевый слой принимают равным 1–50 мкм.

Слой никеля используется для повышения антикоррозийных и износостойких свойств материалов. Довольно часто такое покрытие имеет защитно-декоративное значение.

Никелирование используется для обработки стали и сплавов цветных металлов. Тонкий слой никеля используется для защиты изделий из марганца, титана, вольфрама, молибдена и сплавов на их основе.

Разработаны и успешно внедрены способы нанесения никелевого защитного покрытия на керамику, пластик, фарфор, стекло и другие неметаллические поверхности.

Виды никелирования

Никелирование в простых домашних условиях проводят двумя способами:

  • электролитическим;
  • химическим.

Выбор способа зависит от структуры и формы материала.

При электролитическом способе используются вещества, частично или полностью состоящие из ионов и обладающие ионной проводимостью. Никелевое покрытие наносят за счет электрохимических свойств этих веществ. Наибольшее распространение получили электролиты сернокислого натрия и хрома.

В зависимости от степени отражения покрытия различают никелирование:

Функции электролитического никелирования

  • матовое;
  • блестящее.

Для нанесения матового покрытия используются электролиты без добавок. Изделия с матовым оттенком не имеют металлического блеска.

Блестящее никелирование получают путем добавления в электролит специальных блескообразователей на основе хлорамина, пропаргилового спирта, бепзосульфамида и других окислителей.

Наилучшая защита никелевого покрытия достигается при минимальной пористости защитного слоя. С этой целью производят его омеднение либо используют многослойную структуру материала.

К сведению. При одинаковой толщине многослойные покрытия в несколько раз надёжнее однослойных материалов.

Наиболее распространёнными примерами многослойных материалов являются медно-никелево-хромовые покрытия.

Основными недостатками электролитического никелирования являются:

  • высокая степень пористости;
  • неравномерность осаждения никеля;
  • сложность обработки поверхностей со сложной формой.

Основой метода служит свойство ионов никеля восстанавливаться в жидкой среде. С этой целью используют гипофосфит натрия или другие химические реактивы. Химический способ позволяет обрабатывать изделия со сложной формой поверхности.

Недостатком способа является относительная дороговизна сухих реактивов, используемых для приготовления водных химических растворов.

Проведение электролитического никелирования дома

Электролитическое (гальваническое) никелирование деталей проводят двумя способами:

  • погружением деталей в электролит;
  • без погружения деталей в электролит.

Первый способ используют при обработке небольших по размеру деталей. Второй способ используют при обработке больших и тяжелых предметов.

Перед никелированием выполняют процесс омеднения металла.

Метод с погружением в электролит

По первому способу поверхность изделия шлифуют наждачной бумагой для снятия оксидной пленки. Затем образец промывают в теплой воде. После этого его обрабатывают содовым раствором и вновь промывают в теплой чистой воде.

Затем в стеклянную или фарфоровую посуду помещают две тонкие медные пластины. Пластины играют роль анодов. Их ставят в вертикальном положении, параллельно друг другу.

Изделие помещают между этими двумя пластинами. Для этого образец подвешивают с помощью проволоки. Проволоку обоими концами прикрепляют к пластинам.

В посуду добавляют водный раствор электролита со следующим составом:

  • дистиллированная вода;
  • 20%-ный медный купорос;
  • 2%-ная серная кислота.

Медные пластины подключают к источнику электроснабжения. Величину напряжения определяют из расчета 15–20 мА на 1 см2 поверхности материала.

К сведению. Никелевый электролит чувствителен к изменениям кислотности. Для поддержания уровня кислотности используют буферные соединения на основе борной кислоты.

В растворе электролита хлорид меди диссоциирует (распадается) на составляющие компоненты. Ионы смещаются к катоду и превращаются в нейтральные атомы. Ионы хлора окисляются у анода.

При пропускании тока через электролит ионы меди переходят в раствор. Из раствора медь оседает на катоде в виде нейтральных атомов. Примеси остаются на дне посуды. Чистота полученной меди составляет почти 100%.

Через 30 минут на детали образуется тонкий слой меди. Воздействие электрического тока вызывает увеличение толщины медного слоя. Чем больше толщина слоя, тем меньшее количество пор остается на обрабатываемой поверхности.

Метод без погружения деталей в электролит

Гальваническое никелирование больших по размеру деталей производят без погружения их в электролит. Для этого используют кисточку из распущенных медных проволок. В качестве кисточки часто используют очищенный от изоляции многожильный медный кабель.

Увеличением напыляемого медного слоя добиваются устранения пористости поверхности образца.

Процесс осаждения никеля проводят аналогично процессу омеднения поверхности. Для этого в емкость добавляют электролит. В состав электролита входят следующие химические реагенты, г/л:

  • раствор сернокислого натрия – 310;
  • раствор хлористого никеля – 65;
  • ортоборная кислота – 45;
  • 1,4-бутандиол – 0,15;
  • орто-сульфобензимид (сахарин) – 2,0;
  • каолин (известь) – 1,0.

В электролит опускают тонкие никелевые пластины. Они играют роль анодов. Между ними помещают изделие. Концы пластин подключают к клемме источника питания с положительным зарядом. Корпус детали присоединяют к отрицательному полюсу.

Для регулирования величины тока используют реостат. Контроль величины подаваемого электрического тока проводят с помощью миллиамперметра. Величина подаваемого тока не должна превышать 6 В. Осаждение никеля проводят при температуре около 50°С и плотности электротока 4–5 А/ дм2. Продолжительность процесса – 3 мин.

К сведению. Никелевое покрытие без подложки имеет довольно слабое сцепление с поверхностью. С целью повышения адгезии используют термическую обработку изделия при температуре 450 градусов.

Завершающий этап обработки детали

Обработанную деталь промывают под потоком чистой теплой воды и подвергают сушке.

Никелированное покрытие обладает матовым оттенком. Для придания блеска деталь полируют.

Никелевые покрытия с дефектами удаляют с помощью анодного растворения в электролите. Для этого в состав электролита включают серную кислоту. Химическую плотность кислоты принимают равной 1,2-2,8 кг/м3. Процесс снятия слоя никеля проводят при температуре 20-25° С и анодной плотности электротока 5 А/дм2.

Проведение химического никелирования дома

Химический способ никелирования в домашних условиях проводят с помощью рабочих растворов. В зависимости от количества сухих реагентов, скорость увеличения никелевого слоя составляет 80 мкм/ч и более.

В состав рабочего раствора входят следующие реагенты, г/л:

  • никелевый купорос (порошок сернокислого никеля) – 20;
  • галенит (порошок сульфида свинца) – 20;
  • ацетат натрия – 15;
  • раствор гипофосфита натрия – 25.

Рабочая температура химического раствора– 90°С. При удалении свинцового реагента скорость реакции снижается до 50 мкм/ч и менее.

При достижении рабочей температуры, в емкость с раствором опускают обрабатываемую деталь. Перед проведением никелирования покрытие очищают и обезжиривают.

Изделие выдерживают в рабочем растворе на протяжении 1 часа. По мере испарения добавляют дистиллированную воду.

По завершении процесса деталь вынимают и промывают в теплой воде. После ополаскивания изделие подвергают тщательной сушке. При необходимости тщательно полируют.

Увеличение срока службы никелевого покрытия

Никелевое покрытие может быть подвержено сплошной поверхностной коррозии. Процесс коррозии проявляется только в начальный период. По мере увеличения температуры рабочего раствора, поверхностная коррозия проникает вглубь материала. Затем этот процесс замедляется и полностью прекращается.

Для увеличения срока службы никелевого покрытия используют технологию омеднения. Омеднение позволяет устранить и незначительные дефекты поверхности. Нанесение меди в качестве подложки обеспечивает надежность и долговечность никелевой защиты.

Пористость медного покрытия вызывает разрушение защитного слоя и уменьшает срок службы готового изделия. Металл подложки подвергается коррозии с последующим отслаиванием защитного слоя.

Чаще всего процессам коррозии подвергаются изделия с однослойным защитным покрытием. Многослойные детали подвергаются воздействию вредных факторов в меньшей степени.

Для защиты изделий от повреждения проводят ряд дополнительных мероприятий. Используют специальные добавки, которыми закрывают поры.

К сведению. Для предотвращения потери твердости никелирование стали проводят при температуре 250-300ºС.

Дополнительная обработка деталей для продления срока службы

Никелирование на дому проводят с использованием следующих способов:

  • Сухой реактив оксида магния смешивают с водой до кашеобразного состояния. Полученной массой тщательно обрабатывают деталь и погружают ее на несколько минут в 50%-ную соляную либо серную кислоту.
  • Рабочую поверхность протирают проникающей смазкой. Затем изделие погружают в очищенный рыбий жир. Излишки жира через сутки удаляют с помощью бензина или других растворителей.
  • Большие по размеру детали обрабатывают рыбьим жиром за два прохода. Промежуток между обработками должен составлять не менее 12 часов. Через два дня излишки рабьего жира удаляют.

Использование сплавов никеля с другими металлами способно улучшить физико-химические свойства никеля.

Алюминий способствует повышению электрического сопротивления и коррозионной стойкости никеля.

Вольфрам, молибден и титан увеличивают его термостойкость.

Добавление хрома приводит к повышению стойкости никелевого покрытия в окислительных и восстановительных растворах.

Медь увеличивает сопротивляемость никеля действию различных кислот.

Всем привет! Цель статьи заключается в том, чтобы показать процесс никелирования со всех возможных сторон. А именно, как добиться высокого качества покрытия, не слишком потратится на расходные материалы и безопасно произвести гальванические работы. Мы также по возможности изготовим свой собственный электролит с нуля, вместо того, чтобы покупать специальные химические реактивы.

Если вы уже знакомы с процессом омеднения, отметьте следующее, что данный процесс имеет существенные отличия. Никель не очень хорошо растворяется (если вообще растворяется) в уксусе без специальных активаторов.

Никелирование можно использовать во множестве случаев, например:

  • Создать антикоррозионное покрытие, что защитит основной металл от окисления и коррозии. Его часто используют в пищевой промышленности, для предотвращения загрязнения пищевых продуктов железом.
  • Увеличить твёрдость покрываемого предмета и таким образом повысить долговечность деталей механизмов и инструментов.
  • Помочь при спаивании разных металлов.
  • Создать всевозможные варианты красивых декоративных отделок.
  • Значительная толщина покрытия, может сделать предмет магнитным.

Примечание: Чтобы получить различные виды покрытий (на вид и по свойствам), вам будет нужно добавить дополнительные химические реактивы и металлы для получения желаемого результата. Реактивы изменят пути размещения атомов относительно себя и/или добавляют другие металлы в наносимое покрытие. Если вам нужно получить антикоррозийное покрытие, не добавляйте никаких химических реактивов в электролит, так как они могут оставить на покрытии пятна или сделать его тусклым.

Отказ от ответственности – ацетат никеля, химический состав, который мы будем изготавливать, очень ядовит. Название статьи говорит о том, что вам не нужно играть в безумные игры с сильнейшими кислотами, что могут оставить тяжелые ожоги на коже. При тех концентрациях, с которыми мы будем работать, процесс будет «относительно безопасным». Тем не менее, не забудьте вымыть руки, после того, как закончите работу и не забудьте должным образом вытереть поверхности (на которых или рядом с которыми) могли попасть остатки химического состава.

Давайте начинать.

Шаг 1: Материалы

Почти все расходные материалы можно найти в ближайшем супермаркете. Найти источник чистого никеля немного сложнее, но он не будет стоить больше, чем пару долларов. Также настоятельно рекомендую найти блок питания (AC/DC).

Материалы:

  • Дистиллированный 5% уксус;
  • Поваренная соль;
  • Банка с закручивающейся крышкой;
  • 6В батарею;
  • Зажимы «крокодильчики»;
  • Нитриловые перчатки;
  • Бумажные полотенца;
  • Кислотный абразив Cameo Stainless Steel and Aluminum Cleaner;

Чистый никель – вы можете «достать» несколькими различными путями.

  • Купить две пластины никеля на eBay за ~$5;
  • В хорошем строительном магазине можно найти никелированные сварочные электроды;
  • Большинство музыкальных магазинов продают никелированные гитарные струны.

Вы также можете удалить никелевые витки/намотки со старых гитарных струн, если у вас трудности с деньгами. Это займёт немного времени, потребуется воспользоваться кусачками и плоскогубцами. Наибольшее количество никеля содержат струны, что состоят из стального ядра, которое в дальнейшем может «загрязнить» электролит.

Кроме этого можно воспользоваться никелированными дверными ручками. Я советовал бы с опаской относиться к этому варианту. Всё из-за того, что существует хороший шанс того, что они просто покрыты никелиподобным покрытием.

  • Высоковольтный блок питания (постоянное напряжение). В проекте использовал старый 13.5В зарядник для ноутбука. Можно использовать зарядки для мобильных телефонов или же старый компьютерный блок питания.
  • Держатель предохранителя;
  • Простой проволочный предохранитель, рассчитанный на приграничные условия эксплуатации выбранного вами блока питания.

Шаг 2: Подготавливаем блок питания

Моя версия стенда довольно сырая, зато она эффективная. Вы можете (и возможно следует) сделать небольшой ящик с банкой, предохранителем и двумя клеммами, что выведены наружу, к которым присоединены крокодильчики для подключения к блоку питания.

В случае, если будете использовать зарядку для мобильного телефона, вам будет нужно выполнить следующие действия:

  • Отрезать бочкообразный штекер.
  • Разделить два провода и укоротить один из них на 5-8 см. Это поможет предотвратить случайное короткое замыкание.
  • Зачистить от изоляции около 6 мм проводов.
  • Припаять к одному из них держатель предохранителя и установить в него предохранитель.

В том же случае, если вы будете использовать зарядку для ноутбука будет нужно выполнить следующее:

  • Отрезать бочкообразный штекер;
  • Используя лезвие, удалите наружную изоляцию. Большинство зарядок имеют один изолированный провод, что обернут во множество медных проводов без изоляции.
  • Скрутить медные провода без изоляции вместе, сформировав одну жилу. Это будет «земля».
  • Припаять к нему держатель предохранителя.
  • Зачистить около 6 мм изолированного провода и связать обо провода используя пластиковую застёжку или изоленту, таким образом он не коротнёт с оголенным проводом.

Намного более сложнее превратить компьютерный блок питания в настольный БП. Поисковик вам в помощь, вы наверняка найдёте пару статей, в которых всё подобно расписано.

Примечание относительно полярностей

При проведении процесса никелирования, нужно заранее определить полярности выводов. Полярность можно определить при помощи мультиметра (режим вольтметра). Если у вас нет под рукой прибора, вы можете смешать щепотку соли с небольшим количеством воды. Возьмите один из «крокодильчиков», подсоедините его к одному проводу и опустите в воду. Повторите подобную процедуру с другим проводом. Крокодильчик, вокруг которого будут возникать пузырьки и будет иметь отрицательную полярность.

Шаг 3: Готовим электролит

В принципе, можно приобрести различные соли никеля, но в этом же нет духа изобретателя. Я покажу, как можно изготовить ацетат никеля, намного дешевле, чем покупать хим. реактивы в магазине.

Заполним банку дистиллированным уксусом, оставив около 25 мм от верха. Растворим немного соли в уксусе. Количество соли не так важно, но не стоит перебарщивать (щепотки должно хватить). Причина, по которой мы добавляем соль, кроется в том, что она увеличивает электропроводность уксуса. Чем больше величина тока, что протекает через уксус, тем быстрее мы сможем растворить никель. Однако, слишком большая величина тока, приведёт к тому, что толщина покрытие будет нещадно низкой. Всё нужно делать с экономией.

В отличии от меди, никель не превратится в электролит, просто полежав некоторое время. Нам нужно растворить никель электричеством.

Поместим два куска чистого никеля в уксус с солью таким образом, чтобы части обоих кусков выглядывали из раствора (находились в воздухе) и при этом не касались друг друга. Закрепим «крокодильчик» на одном куске никеля, после чего подключим его к положительному выводу (полярность мы определили в прошлом шаге). Закрепим второй «крокодильчик» на другом куске никеля и подсоединим его к отрицательному выводу блока питания. Убедитесь в том, что зажимы не касаются уксуса, так как они растворятся в нём и приведут электролит в негодность.

Вокруг источника никеля, что соединён с отрицательным выводом начнут образовываться пузырьки водорода, а вокруг положительного — пузырьки кислорода. Говоря по правде, очень небольшое количество газообразного хлора (от соли) также сформируется на положительной клемме, но если вы не положили значительное количество соли или используете невысокое напряжение, то концентрация хлора, что растворяется в воде, не будет превышать допустимые пределы. Проводить работы следует на улице или в хорошо проветриваемом помещении.

Через некоторое время (в моём случае около двух часов), вы заметите, что раствор стал светло-зеленого цвета. Это ацетат никеля. Если вы получили синие, красные, желтые или любые другие цвета, — это означает, что источник никеля не был чистым. Раствор должен быть прозрачным, если он мутный — источник никеля не был чистым. Раствор и «источники никеля» могут греться во время процесса — это нормально. Если они на ощупь стали очень горячими, отключите питание, дайте им остыть в течение часа, а затем снова включите питание (повторяйте при необходимости). Возможно, вы добавили слишком много соли, что увеличило ток и мощность, рассеиваемую в виде тепла.

Шаг 4: Подготовка поверхности для покрытия

ПРИМЕЧАНИЕ. Некоторые металлы, такие как нержавеющая сталь, не допускают прямого никелирования. Сначала будет нужно создать промежуточный медный слой.

Итоговый результат будет зависит от чистоты поверхности, на которую будет наноситься никелевое покрытие. Даже если поверхность выглядит чистой, всё равно нужно её очистить (мылом или чистящим средством в состав которого входит кислоты).

Вы можете дополнительно очистить поверхность путем обратного гальванического разложения (т.е. «электроочисткой») в течение нескольких секунд. Прикрепите объект к положительному выводу, «пустой провод» к отрицательному выводу и оставьте их в растворе солей уксуса на 10-30 секунд. Это приведет к удалению остаточного окисления.

Большие поверхности можно очистить тонкой стальной щёткой и уксусом.

Шаг 5: Пришло время для гальванизации

В этом шаге в качестве источника питания будет использоваться 6В батарея. Более низкое напряжения (примерно в 1 В) позволит добиться лучшего, более блестящего и более гладкого покрытия. Для гальванопокрытия можно использовать источник питания более высокого постоянного напряжения, но полученный результат будет далек от идеала.

Поместим источник никеля в раствор ацетата никеля и подключим его к положительному выводу батареи. Закрепим другой зажим на объекте, который будет никелироваться и подключим его к отрицательному выходу аккумулятора.

Поместим объект в раствор и подождём около 30 секунд. Достанем его, повернём на 180 градусов и поместим его обратно в раствор еще на 30 секунд. Нужно менять место крепления зажима, чтобы покрыть всю поверхность. В отличие от медного покрытия, зажим не должен оставлять меток «ожогов».

Раствор вокруг объекта должен пузыриться.

Шаг 6:

Никель не окисляется при комнатной температуре и не тускнеет. Можно слегка отполировать поверхность, чтобы получить яркий блеск.

Если никелирование не такое блестящее, как хотелось бы, отполируйте его средством, которое не содержит воска или масла, а затем снова проведите гальванику покрытие.

Добавление небольшое количество олова во время первоначального покрытия, изменит цвет (олово даёт цвет белого металла, такого как серебро). Многие металлы могут быть электрически растворены в уксусе, как никель. Два основных металла, которые не могут быть электрически растворены в уксусе, — это золото и серебро (поверьте, я пробовал). С прошлого эксперимента у меня осталось немного медного электролита, который я смешал с раствором никеля. Результат — матовая, темно-серая, очень твердая поверхность, которая похожа на школьную доску.

Если вы не опытный химик, будьте очень осторожны, добавляя случайные химические вещества к гальванической ванне — вы можете запросто создать какой-то токсичный газ…

На этом всё! Спасибо за внимание.

Никелирование изделий из металлов позволяет не только защитить их поверхности от коррозии, но и создать на них блестящее покрытие. Такие изделия широко применяются при изготовлении сантехники, автомобильных запчастей, медицинских инструментов и т. д. В связи с этим многие люди задаются вопросом, можно ли выполнить никелирование стали в домашних условиях?

Технология никелирования металлов

Никелирование осуществляется путем нанесения на металлический предмет тонкого слоя никелевого покрытия. Покрыть никелем можно изделия из различных металлов, таких как:

  • сталь;
  • медь;
  • титан;
  • алюминий.




Существуют металлы, которые нельзя никелировать:

  • олово;
  • свинец;
  • кадмий;
  • сурьма.




Никелевое покрытие обеспечивает защиту изделия от воздействия влаги и различных агрессивных веществ. Часто его наносят в качестве слоя-основы перед хромированием деталей. После нанесения тонкой пленки никеля, напыления из серебра, золота и других металлов держатся более прочно.

В домашних условиях применяются способы, не требующие использования специализированного оборудования. Благодаря этому, никелирование стали, меди, алюминия в бытовых условиях доступно практически каждому человеку. Чтобы получить равномерное покрытие, необходимо предварительно подготовить деталь.

Как подготовить изделие к никелированию?

Подготовка изделия довольно трудоемкий процесс. Следует полностью исключить наличие коррозии, окислений и т. п. Подготовка проводится в несколько этапов.

Обработка пескоструйным аппаратом

Данный вид обработки можно выполнять как специализированным пескоструйным аппаратом, так и самодельным. Во время обработки нужно постараться убрать как можно больше посторонних наслоений с поверхности заготовки. Особое внимание следует обратить на труднодоступные места. Они должны быть очищены так же, как и другие участки поверхности.

Шлифовка

Чтобы никелевое покрытие получилось равномерным, нужно максимально выровнять поверхность. Шлифовка дает возможность очистить предмет от оксидной пленки. Для выполнения этого этапа используется наждачная бумага, а также различные инструменты и приспособления, предназначенные для шлифовки.

Совет: не стоит пренебрегать шлифовкой заготовок, неправильная подготовка может привести к отслоению покрытия.

Устранение жировых загрязнений

После того, как процесс шлифовки окончен, следует смыть образовавшиеся загрязнения под проточной водой. Затем потребуется провести обезжиривание заготовки. Для этого можно использовать как готовые, так и самодельные растворители. После нанесения растворителя деталь нужно еще раз промыть водой и тщательно просушить.

Внимание: при выборе растворителя необходимо учитывать степень его воздействия на металл, из которого выполнено изделие. Запрещается применять обезжиривающие растворы, вступающие в химическую реакцию с поверхностью.

Омеднение

Никелирование изделия лучше проводить с предварительным омеднением заготовки. Этот этап не является обязательным, но никелирование стали и других металлов будет более качественным, если покрытие наносится на тонкий слой меди.

Для омеднения детали необходимо поместить ее в стеклянную емкость с водным электролитом, состоящим из медного купороса и серной кислоты. Предмет подвешивается на проводе таким образом, чтобы он не касался стенок и дна емкости. По обе стороны от заготовки размещаются медные пластины, являющиеся электродами. После этого к электродам и заготовке подключается источник постоянного тока. Степень омеднения прямо зависит от времени проведения процесса.

Способы нанесения никелевого покрытия

Никелирование изделия в домашних условиях можно выполнить двумя способами: химическим и электролитическим.

Электролитический метод

Нанесение покрытия с использованием электролита называется гальваническим никелированием. Сначала потребуется подготовить водный раствор (электролит). Для этого необходимы следующие компоненты:

  • сернокислый никель – 70 г;
  • сернокислый магний – 15 г;
  • поваренная соль – 2.5 г;
  • сернокислый натрий – 25 г;
  • борная кислота – 10г;
  • вода – 500г.






Каждый из компонентов нужно отдельно растворить в воде и профильтровать. Полученные растворы смешивают и заливают в стеклянную емкость. Для гальванического никелирования в сосуд с электролитом помещают никелевые электроды. Чтобы покрытие на заготовке было равномерным, со всех сторон устанавливают не менее двух электродов.

Подготовленную заготовку помещают в сосуд между электродами таким образом, чтобы она не касалась стен и дна емкости. Электроды соединяют между собой медными проводниками, и подключают к плюсовому контакту источника постоянного тока. Токопроводящий провод подключают к минусовому выводу.

В процессе никелирования стали напряжение питания не должно превышать 6 Вольт. Следует контролировать плотность тока, она не должна превышать 1,2 А. Процесс занимает около 30–40 минут. По его окончании, предмет нужно промыть проточной водой и тщательно просушить. Нанесенное покрытие должно получиться матовым и гладким. Чтобы поверхность изделия приобрела блеск, потребуется выполнить ее полировку.

Химический метод

Никелирование стали и других металлов химическим способом отличается от гальванического прочностью покрытия. При помощи химического никелирования можно легко нанести вещество даже на самые труднодоступные места.

В эмалированную посуду наливают воду и растворяют в ней янтарно-кислый натрий и хлористый никель. Затем раствор нагревают до температуры 90 градусов. По достижению требуемой температуры добавляется гипофосфит натрия. Изделие аккуратно подвешивается над емкостью с раствором. Количество жидкости рассчитывается исходя из того, что в 1 литре раствора можно покрыть поверхность площадью 2дм 2 .

Никелирование контролируется визуально: когда деталь равномерно покроется пленкой, процесс завершается. По окончании, деталь нужно промыть в растворе, изготовленном из воды и небольшого количества мела. После этого осуществляют сушку и полировку детали.

Как увеличить срок службы покрытия?

Полученное покрытие имеет пористую структуру. Поэтому металл изделия подвержен коррозии. Чтобы снизить риск ее возникновения, слой никеля покрывают смазочными составами. После их нанесения предмет погружают в емкость с рыбьим жиром. Спустя 24 часа, его излишки убирают при помощи растворителя.

Если изделие имеет крупные габариты, и погрузить его в емкость невозможно, то его поверхность просто натирают рыбьим жиром. Данную процедуру потребуется проводить дважды, с промежутком времени около 12 часов. Через 48 часов после обработки остатки жира нужно удалить.

Выполнить никелирование стали в домашних условиях можно двумя способами. Данный процесс является несложным, но требует тщательной подготовки и предельной аккуратности при выполнении. Необходимо приобрести качественные компоненты для приготовления раствора, заранее подготовить рабочую зону, емкости, инструменты и устройства.

В процессе работы важно соблюдать меры безопасности: защитить глаза и кожные покровы от попадания химических веществ, обеспечить достаточную вентиляцию помещения, предотвратить возможность воспламенения смеси и электрической установки.

НИКЕЛИРОВАНИЕ , технический процесс нанесения на поверхность металлов б. или м. тонкой пленки металлического никеля или никелевых сплавов; цель этого нанесения - уменьшить коррозию металла, увеличить твердость наружного слоя, повысить или изменить отражательную способность поверхности, сообщить ей более красивый вид. Полученное впервые Беттгером в 1842 г. и промышленно осуществленное в США с 1860 г., никелирование в настоящее время сделалось одним из наиболее широко усвоенных промышленностью способов покрытия металлов.

Существующие многочисленные способы никелирования могут быть подразделены на две главные группы: способы контактные и способы гальванотехнические ; в настоящее время особенно часто прибегают к последним. Нанесение никелевой пленки применяется в отношении поверхностей различных металлов, причем в соответствии с характером никелирования их можно разделить на группы: 1) медные, латунные, бронзовые, цинковые, 2) железные, 3) оловянные, свинцовые и из сплавов типа британия-металла, 4) алюминиевые и из алюминиевых сплавов. Никелевые пленки представляют вполне удовлетворительную защиту железа от ржавления во внутренних помещениях.

Однако они недостаточны под открытым небом; кроме того на отполированные никелированные поверхности действуют горячие жиры, уксус, чай, горчица, вследствие чего столовая и кухонная никелированная посуда покрывается пятнами. В тех случаях когда требуется вполне надежная защита от воздействия непогоды и вместе с тем нарядный вид никелированной поверхности, на железо д. б. наложена двойная пленка - цинковая, а затем никелевая. Этот способ двойного покрытия (цинком, а затем никелем) применяется также в отношении т. н. корсетной стали. При необходимости получить особенно стойкие пленки, как например, на проволоках, откладывают одновременно никель и платину, причем содержание последней постепенно повышают от 25% до 100% и, наконец, прокаливают предмет в струе водорода при 900-1000°С. Крупные изделия, например, котлы для варки, барабаны центрифуг или вентиляторы, если по экономическим условиям не могут быть сделаны из чистого никеля, но недостаточно стойки при никелевой пленке по железу или меди, облицовываются слоем свинца в несколько мм, а по нему слоем никеля в 1-2 мм. Ржавление железных и стальных никелированных изделий объясняется присутствием электролита, остающегося в тонких порах никелевой пленки. Это явление устраняется, если изделия перед никелировкой выдержать в масле при 200°С, по охлаждении обезжирить, слабо омеднить, затем отникелировать в лимоннокислой никелевой ванне слабым током и наконец просушить в шкафу при 200°С; тогда влага удаляется из пор, которые закупориваются находящимся в них маслом.

Имеется ряд предложений накладывать двойные защитные пленки по литому железу, железным или стальным листам, проволокам и полосам в порядке обратном вышеуказанному, т. е. сначала покрывать изделия тонкой пленкой никеля контактным или электролитическим способом, а затем уже погружать в ванну с расплавленным цинком или оловом (Вивиен и Лефебр, 1860 г.). Предложено также добавлять некоторое количество никеля в сплав из 25-28 кг цинка, 47-49 кг свинца и 15 кг олова, служащий для покрытия железных листов горячим способом. Стойкость поверхностей алюминия и его сплавов против соли и морской воды м. б. достигнута гальваническим осаждением на них, после очистки их песчаною струей, последовательных слоев: никеля толщиною в 6 мкм, меди в 20 мкм и затем снова никеля в 50 мкм, после чего поверхность полируется. Стойкость алюминия против 15%- ной натровой щелочи достигается никелевой пленкой в 40 мкм толщиною. В некоторых случаях применяется покрытие не чистым никелем, а сплавом, например никелево-медным; для этого электролиз ведется в ванне, содержащей катионы в соотношении требуемого сплава; осажденная пленка затем переводится в сплав нагреванием изделия до краснокалильного жара.

Контактное никелирование . Стальные предметы, согласно указанию Ф. Штольба (1876 г.), после полировки и надлежащего обезжиривания кипятятся в ванне из 10-15%-ного водного раствора чистого хлористого цинка, к которому добавлено сернокислого никеля до образования зеленой мути от основной никелевой соли. Никелирование длится около 1ч. После этого предмет прополаскивается в воде с мелом, а ванна, после фильтрации и добавки никелевой соли, может применяться вновь. Получающаяся пленка никеля тонка, но держится прочно. Для повышения температуры ванны предложено или вести процесс под давлением (Ф. Штольба,. 1880 г.) или применять ванну с концентрированным раствором хлористого цинка. Во избежание ржавления предметов их выдерживают в течение 12 ч. в известковом молоке. Более сложная ванна для железных предметов, предварительно омедненных в ванне из 250 г сернокислой меди в 23 л воды с несколькими каплями серной кислоты, содержит 20 г винного камня, 10 г нашатыря, 5 г хлористого натрия, 20 г хлорного олова, 30 г сернокислого никеля и 50 г двойной сернокислой никелево-аммониевой соли.

Гальваническое никелирование . Обеднение никелевой ванны м. б. предупреждаемо достаточно легким растворением никелевых анодов. Вальцованные, и в особенности из чистого никеля, аноды растворяются трудно и потому при техническом никелировании пользуются в качестве анодов никелевыми брусками, содержащими до 10% железа. Однако такие аноды ведут к осаждению на предмете железа, а наличие железа в никелевой пленке влечет за собой целый ряд пороков никелирования. Как указано Калгане и Гаммоге (1908 г.), невозможно получить при анодах с железом осадок, вполне свободный от последнего. Но осадок никеля будет содержать уже только 0,10-0,14% железа, если в анодах содержание железа снижено до 7,5%; содержание железа в осадке можно еще уменьшить, заключая аноды в тканевые мешки, тогда как вращение электродов ведет к повышенному содержанию железа в осадке и к снижению его выхода. Присутствие железа в никелевой пленке ведет к отложению осадков с постепенно понижающимся содержанием железа и потому неоднородных в отношении механических свойств на различной глубине; К. Энгеман (1911 г.) считает эту неоднородность единственной причиной легкой отщепляемости никелевых пленок. Наличие железа м. б. причиною ряда других пороков никелирования (см. табл.), например, легкости ржавления пленок.

Порок Причина возникновения Мера борьбы
Осаждение никеля не происходит, газообразования нет Источник тока не работает Проверка и возобновление источника энергии
Провода приключены неправильно Переключение проводов
Ванна слишком холодна Нагрев ванны до температуры выше 15°С
Ванна слишком кисла Подливается водный раствор нашатырного спирта или водная взвесь углекислого никеля при непрерывном помешивании и частом испытании на конго-бумагу
Ванна содержит цинк Ванна делается щелочной посредством углекислого никеля, размешивается в течение нескольких часов, фильтруется и подкисляется 10%-ной серной кислотой
Неполное покрытие предмета никелевой пленкой Недостаточный ток Предметы подвешиваются на равных расстояниях от анодов, ванна подогревается не менее как до 20°С
Очень глубокие вогнутости поверхности предмета Устанавливаются небольшие вспомогательные аноды, вводимые в углубления предмета
Щелочность ванны Осторожное подкисление ванны 10%-ной серной кислотой при помешивании и постоянном испытании лакмусовой бумагой
Легкая отщепляемость белой или же желто-никелевой пленки при полировке Загрязненность поверхности предметов окислами и жиром Дополнительная очистка поверхности предметов
Слишком большое напряжение (выше 4 V ) Увеличивают число никелируемых предметов или снижают напряжение до 2,5-3 V
Слишком большая кислотность ванны Нейтрализация нашатырным спиртом или водной взвесью углекислого никеля
Бедность ванны никелем Удаление части электролита и добавка никелевой соли, пока ванна не станет нормального зеленого цвета
Несоответственные вязкость и поверхностное натяжение ванны Добавка глицерина или амилового спирта, или растительных отваров, или других коллоидов
Выделение водородных ионов Добавка окислителей или поглотителей водорода; применение несимметричного переменного тока
Несоответственная подготовка поверхности предметов Сообщение поверхностям шероховатости, механически или химически, покрытие их тонким слоем никеля из горячего раствора хлористого никеля или холодного концентрированного раствора этило-сернокислого никеля
Отставание никелевой пленки или разрыв ее при изгибе и растяжении предметов Присутствие капиллярных прослоек электролита Просушка и нагрев предметов до 250-270°С
Недостаточная обрабатываемость листов, покрытых толстым слоем никеля Вероятно та же Промывка, просушка без доступа воздуха и наконец, нагрев до слабого краснокалильного жара
Поверхность в ямочках и пленка пронизана бесчисленными порами Пыль и частички волокон, плавающие в ванне Ванну кипятят, фильтруют и устанавливают в ней правильную реакцию
Образование газовых пузырьков Постукивание по токоведущему стержню. Пузырьки удаляют; устанавливают слабокислую реакцию
Грубость и неровность поверхности Выделение водорода Введение связывающего водород свободного хлора в газообразном виде временами пропускаемой струей или в водном растворе; с несколько меньшим успехом хлор м. б. заменен бромом; весьма рекомендуется добавление раствора хлористого кобальта
Недостаточная гибкость пленки Высокое сопротивление ванны Добавка соли натрия
Желтизна пленки; поверхность становится матовой, а затем получает желтый и тёмно-жёлтый цвет Наличие примесей железа в ванне, содержание которых повышается в старых ваннах Избегать старых ванн, не слишком двигать ванны, работать со слабыми токами
Чернота пленка, темные полосы в местах отставания при правильной плотности тока Содержание в ванне посторонних металлов (до 1%) Удаление посторонних металлов

Недостаток проводящих солей

Добавление проводящих солей в количестве 2-3 кг на 100 л ванны: нашатырь, хлористый калий и хлористый натрий дают повышение проводимости на 84,31 и 18% соответственно
Бедность ванны солью никеля Добавка никелевой соли
Загар поверхности Слишком большая проводимость ванны из-за чрезмерной крепости ее Контроль концентрации ванны (например, постоянства плотности в 5° Вẻ) и плотности тока
Образование полос Загрязнения, производимые полировальным кругом в небольших углублениях Устранение затруднительно; достигается до известной степени мгновенным погружением в котел со щелоком или механической протиркой предметов
Изменения концентрации и возникновение потоков жидкости Уменьшение плотности тока и повышение температуры ванны
Образование пятен Недостаточная очистка готовых отникелированных изделий Тщательная промывка в проточной воде изделий после никелирования, затем погружение в кипящую вполне чистую воду, отряхивание изделий и просушка в нагретых опилках
Непрочное приставание никелевой пленки к железу Наличие ржавчины Тщательное освобождение от ржавчины. Гальваническое нанесение промежуточного слоя из цианкалиевой ванны, после чего пленка утолщается в кислой ванне

Электролитическая ванна для никелирования составляется гл. образом из двойной никелево-аммониевой соли, причем для устранения основных солей добавляют слабые кислоты. Большая кислотность ванны ведет к более твердым пленкам. Необходимо иметь в виду, что технический никелевый купорос не пригоден для ванн, т. к. часто содержит медь; ее следует удалить пропусканием сероводорода через водный раствор купороса. Применяются также хлористые соли, но при сульфатных ваннах осадки тверже, белее и более стойки, чем при хлоридных. Высокое сопротивление никелевой ванны выгодно снижать добавкой различных проводящих солей - особенно нашатыря и хлористого натрия - и нагреванием. Нейтрализация избыточной серной кислоты в старых растворах успешно производится углекислым никелем, который получается из теплого водного раствора сернокислого никеля, осаждаемого содой. Для белизны и гладкости пленок сделано большое количество предложений добавлять к никелевой ванне различные органические кислоты (винную, лимонную и т. д.) и их соли, например, уксусно-, лимонно- и виннокислые соли щелочных и щелочноземельных металлов (Кейт, 1878 г.), пропионовокислый никель, борно-виннокислые соли щелочных металлов. При необходимости получить толстые никелевые осадки предложено добавление борной, бензойной, салициловой, галловой или пирогалловой кислот, и кроме того 10 капель серной, муравьиной, молочной кислоты на 1 л ванны, чтобы предупредить поляризацию на изделии. Как указал Пауелл (1881 г.), прибавка бензойной кислоты (31 г на ванну из 124 г сернокислого никеля и 93 г лимоннокислого никеля в 4,5 л воды) избавляет от необходимости пользоваться химически чистыми солями и кислотами. Осадок никеля имеет хорошие свойства также и при простой ванне из никелево-аммонийного сульфата, но при условии щелочности раствора, что достигается добавкой аммиака. Весьма хорошие осадки получаются из нейтрального раствора фтористо-борнокислого никеля при комнатной температуре (при температуре выше 35°С раствор разлагается с образованием нерастворимой основной соли) и плотности тока 1,1-1,65 А/дм 2 . Приводим несколько рецептов ванн. 1) 50 ч. бисульфита натрия, 4 ч. азотнокислого окисного никеля и 4 ч. концентрированного нашатырного спирта растворяют в 150 ч. воды. 2) 10-12 ч. сернокислого никеля, 4 ч. двойной никелево-аммониевой сернокислой соли, 1-3 ч. борной кислоты, 2 ч. хлористого магния, 0,2-0,3 ч. лимоннокислого аммония, доливается до 100 ч. (всего) воды. Ток плотностью 1,6 А/дм 2 отлагает пленку со скоростью 2 мкм/ч.; повышая температуру до 70°С, можно снизить сопротивление ванны в два-три раза и тем ускорить никелирование. 3) Электролит из 72 г двойной никелево-аммониевой сернокислой соли, 8 г сернокислого никеля, 48 г борной кислоты и 1 л воды особенно благоприятен для мягкости и непористости осадка, т. к. снижает выделение водорода.

Получение никелевых пленок особого вида . 1) Белая пленка по цинку, олову, свинцу и британия-металлу получается в ванне из 20 г двойной никелево-аммониевой сернокислой соли и 20 г углекислого никеля, растворенных в 1 л кипящей воды, и нейтрализованной при 40°С уксусной кислотою; ванна должна поддерживаться нейтральной. 2) Матово-белая пленка получается в ванне из 60 г двойной никелево-аммониевой сернокислой соли, 15 г перекристаллизованного сернокислого никеля, 7,4 г нашатыря, 23 г хлористого натрия и 15 г борной кислоты на 1 л воды; ванна д. б концентрирована до 10° Вẻ; напряжение от 2 до 2,5 V. 3) Черная пленка получается на поверхностях, тщательно обезжиренных или покрытых тонким слоем белого никеля путем электролиза в ванне из 60 г двойной никелево-аммониевой сернокислой соли, 1,5 г роданистого аммония и около 1 г сернокислого цинка на 1 л воды 4) Черная пленка получается также в электролите из 9 г двойной никелево-аммониевой сернокислой соли в 1 л воды с последующей добавкой 22 г роданистого калия, 15 г углекислой меди и 15 г белого мышьяка, предварительно растворенного в углекислом аммонии; глубина черного тона вырастает с содержанием в растворе мышьяка. 5) Глубоко синяя пленка получается в ванне из равных частей двойной и простой сернокислых солей никеля, доведенной до 12° Bẻ, причем на литр добавляют 2 ч. аммиачного отвара лакричного корня; электролиз длится 1 час при 3,5 V, а затем еще 1/2 часа при 1,4 V. 6) Коричневая пленка получается так: электролиз при напряжении 0,75-1 V ведется в ванне из 180 г двойной никелево-аммониевой сернокислой соли и 60 г сернокислого никеля, растворенных в возможно малом количестве кипящей воды, добавленной до 50 см 3 и смешанной затем с растворами 30 г сернокислого никеля и 60 г роданистого натрия, каждый в 0,5 л воды, после чего добавляют раствор до 4,5 л. Полученной пленке черного цвета придают коричневый оттенок, погружая изделие на несколько секунд в ванну из 100,6 г перхлората железа и 7,4 г соляной кислоты в 1 л воды: после промывки и просушки поверхность изделия для закрепления тона лакируют.

Никелирование алюминия и его сплавов . Предложено несколько процессов. 1) Подготовка поверхности алюминиевых изделий состоит в обезжиривании, затем очистке пемзой и наконец погружении в 3%-ный водный раствор цианистого калия; после электролиза в никелевой ванне изделия промываются холодной водой. 2) После промывки 2%-ным раствором цианистого калия изделия погружаются в раствор из 1 г хлористого железа (феррохлорид) на 0,5 л воды и технической соляной кислоты, пока поверхность не станет серебряно-белой, и затем никелируются в течение 5 мин. при напряжении 3 V. 3) Полировка изделий, удаление полировочного состава бензином, выдержка в течение нескольких минут в теплом водном растворе фосфорнокислого натрия, соды и смолы, промывка, погружение на короткое время в смесь из равных частей 66%-ной серной кислоты (содержащей несколько хлористого железа) и 38%-ной азотной кислоты, новая промывка и электролиз в ванне, содержащей никелевую соль, горькую соль и борную кислоту; напряжение 3-3,25 V. 4) По Ж. Канаку и Э. Тассилли: протравка изделия кипящей калиевой щелочью, чистка щеткой в известковом молоке, 0,2%-ная цианкалиевая ванна, ванна из 1 г железа в 500 г соляной кислоты и 500 г воды, промывка, никелирование в ванне из 1 л воды, 500 г хлористого никеля и 20 г борной кислоты при напряжении 2,5 V и плотности тока 1 А/дм 2 , наконец полировка матово-серого осадка. Железная ванна служит для огрубления поверхности алюминия и тем содействует прочности, с какою удерживается пленка на металле. 5) По Фишеру, ванна для никелирования составляется из 50 г сернокислого никеля и 30 г нашатыря в 1 л воды при плотности тока 0,1-0,15 А/дм 2 , за 2-3 часа получается толстый осадок, который обладает высоким блеском после полировки стеариновым маслом и венской известью. 6) Горячая ванна (60°С) составляется из 3400 г двойной никелево-аммониевой сернокислой соли, 1100 г сернокислого аммония и 135 г молочного сахара в 27 л воды. 7) Холодная ванна содержит азотнокислый никель, цианистый калий и фосфорнокислый аммоний.

Контроль никелевой пленки . Распознавание состава металлической пленки на предмете, по Л. Ловитону (1886 г.), может производиться посредством нагревания предмета в наружном пламени бунзеновской горелки: никелевая пленка синеет, получает черный отблеск и сохраняется невредимою; серебро не изменяется в пламени, но чернеет при обработке разбавленным раствором сернистого аммония; наконец оловянное покрытие быстро становится от серо-желтого до серого и исчезает при обработке указанным реагентом. Проверка качества никелевой пленки на железе и меди в отношении пор и изъянов может производиться при помощи т. н. ферроксилового испытания и с особым удобством при помощи ферроксиловой бумаги, покрытой гелем агар-агара с железисто-синеродистым калием и хлористым натрием. Наложенная в смоченном виде на испытуемую поверхность и по прошествии 3-5 мин. закрепленная в воде, эта бумага дает документальное изображение малейших пор, которое м. б. сохраняемо.

Регенерация никеля со старых изделий . Удаление никелевого покрытия с изделий из железа и других неамальгамируемых металлов производится следующими способами: а) парами ртути под вакуумом или под обыкновенным давлением; б) нагреванием обрезков с серой, после чего слой металла легко удаляется молотками; в) нагреванием обрезков с веществами, отдающими серу при высокой температуре) при внезапном охлаждении пленка никеля соскакивает; г) обработкой нагретой до 50-60°С серной или азотной кислотой; железо переходит в раствор, и никель остается почти нерастворенным; однако несмотря на свою простоту этот способ мало применим, т. к. полученный никель сохраняет еще значительное содержание железа, не удаляемое и при повторной обработке кислотою (Т. Флейтман); д) длительным нагреванием при доступе воздуха или водяного пара, после чего обрезки подвергаются механическим ударам и никель отскакивает; е) электролитическим растворением: железный покрываемый никелем предмет делают анодом в ванне, содержащей углекислый аммоний; если покрытие состоит из сплава никеля, то необходимо регулировать напряжение, причем при 0,5 V осаждается медь, а при напряжении большем 2 V - никель; при этом процессе железо не разъедается; ж) железные или стальные обрезки делают анодом в ванне из водного раствора натриевой селитры, тогда как катод состоит из угольной палки; напряжение не должно превосходить 20 V; з) с цинковых кружек никель удаляется электролизом предметов, сделанных анодом в 50°-ной серной кислоте; кислота этой концентрации обладает свойством растворять только никель, серебро и золото, но не другие металлы, если идет ток; напряжение применяется 2-5 V; в качестве катодов служат железные листы, на которых никель осаждается в виде пыли; цинк не растворяется, хотя бы кружки и оставались в электролите долгое время.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари