Подпишись и читай
самые интересные
статьи первым!

Введение. Углы падения солнечных лучей и затенение

В одной и той же географической точке в разное время суток солнечные лучи падают на землю под разными углами. Вычислив этот угол и зная географические координаты, можно точно вычислить астрономическое время. Возможно и обратное действие. С помощью хронометра, показывающего точное астрономическое время, можно выполнить географическую привязку точки.

Вам понадобится

  • - гномон;
  • - линейка;
  • - горизонтальная поверхность;
  • - жидкостный уровень для установления горизонтальной поверхности;
  • - калькулятор;
  • - таблицы тангенсов и котангенсов.

Инструкция

  • Найдите строго горизонтальную поверхность. Проконтролируйте ее с помощью уровня. Можно использовать как пузырьковый, так и электронный прибор. Если вы пользуетесь жидкостным уровнем, пузырек должен находиться строго в центре. Для удобства дальнейшей работы закрепите на поверхности лист бумаги. Лучше всего в данном случае использовать миллиметровку. В качестве горизонтальной поверхности можно взять лист толстой прочной фанеры. На ней не должно быть впадин и бугров.
  • Нарисуйте на миллиметровке точку или крест. Установите гномон вертикально так, чтобы его ось совпадала с вашей меткой..Гномоном называется установленный строго вертикально стержень или шест. Его вершина имеет форму острого конуса.
  • В точке окончания тени гномона поставьте вторую точку. Обозначьте ее как точку А, а первую - как точку С. Высота гномона вам должна быть известна с достаточной точностью. Чем крупнее гномон, тем точнее получится результат.
  • Измерьте расстояние от точки А до точки С любым доступным вам способом. Обратите внимание на то, чтобы единицы измерения были теми же, что и высота гномона. Если есть необходимость, переведите в наиболее удобные единицы.
  • На отдельном листе бумаги сделайте чертеж, используя полученные данные. На чертеже должен получиться прямоугольный треугольник, у которого прямой угол С - место установки гномона, катет СА - длина тени, а катет СВ - высота гномона.
  • Вычислите угол А с помощью тангенса или котангенса, используя формулу tgА=ВС/АС. Зная тангенс, определите собственно угол.
  • Полученный угол является углом между горизонтальной поверхностью и солнечным лучом. Углом падения называется угол между перпендикуляром, опущенным на поверхность, и лучом. То есть он равен 90º- А.

На изменения притока тепла в короткие периоды времени и на неравномерное распределение его в ландшафтной оболочке влияет ряд обстоятельств, из которых мы рассмотрим наиболее важные.

Небольшие периодические изменения радиации зависят прежде всего от того, что Земля обращается вокруг Солнца по эллиптической орбите и, следовательно, расстояние её от Солнца меняется. В перигелии, т. е. в наиболее близкой к Солнцу точке орбиты (Земля бывает в ней в настоящую эпоху 1 января), расстояние равно 147 млн. км; в афелии, т. е. наиболее удалённой от Солнца точке орбиты (3 июля), это расстояние уже 152 млн. км; разница составляет 5 млн. км. В соответствии с этим в начале января радиация увеличивается на 3,4% по сравнению со средней (т. е. вычисленной для среднего расстояния от Земли до Солнца), а в начале июля на 3,5% уменьшается.

Весьма важным фактором, определяющим количество радиации, получаемое тем или иным участком земной поверхности, является угол падения солнечных лучей. Если J - интенсивность радиации при вертикальном падении лучей, то при встрече их с поверхностью под углом α интенсивность радиации будет J sin α: чем острее угол, тем на большую площадь должна распределиться энергия пучка лучей и, стало быть, тем меньше её придётся на единицу площади.

Угол, образуемый солнечными лучами с земной поверхностью, зависит от рельефа местности, географической широты и высоты Солнца над горизонтом, изменяющейся как в течение суток, так и в течение года.

На неровной местности (всё равно, идёт ли речь о горах или мелких неровностях) различные элементы рельефа освещаются Солнцем неодинаково. На солнечном склоне холма угол падения лучей больше, чем на равнине у подножия холма, но на противоположном склоне этот угол очень мал. Под Ленинградом склон холма, обращённый к югу и наклоненный под углом в 10°, находится в тех же тепловых условиях, что и горизонтальная площадка под Харьковом.

Зимой обращённые к югу крутые склоны обогреваются лучше, чем пологие (так как Солнце стоит в общем низко над горизонтом). Летом пологие склоны южной экспозиции получают тепла больше, а крутые меньше, чем горизонтальная поверхность. Склоны северной экспозиции в нашем полушарии во все сезоны получают наименьшее количество радиации.

Зависимость угла падения солнечных лучей от географической широты довольно сложная, так как при существующем угле наклона эклиптики высота Солнца в данном месте (значит, и угол падения солнечных лучей на плоскость горизонта) меняется не только за сутки, но и в году. Наибольшая полуденная высота, какой на широте φ. Солнце достигает в дни равноденствий, составляет 90° - φ, в день летнего солнцестояния 90°- φ +23°,5 и в день зимнего солнцестояния 90° - φ - 23°,5.

Следовательно, наибольший угол падения солнечных лучей в полдень на экваторе в году изменяется от 90° до 66°,5, а на полюсе от -23°,5 до + 23°,5, т. е. практически от 0° до + 23°,5 (так как отрицательный угол характеризует величину погружения Солнца под горизонт).

Большую роль в преобразовании солнечной радиации играет газовая оболочка Земли. Частички воздуха, водяного пара и пылинки рассеивают солнечный свет; благодаря этому днём светло и при отсутствии прямых солнечных лучей. Атмосфера, кроме того, поглощает некоторое количество лучистой энергии, т. е. переводит её в тепловую. Наконец, поступающая в атмосферу, частично отражается обратно в мировое пространство. Особенно сильными отражателями служат облака.

В результате не вся радиация, поступившая на границу атмосферы, достигает поверхности Земли, а лишь часть её и притом качественно (по спектральному составу) изменённая, так как волны короче 0,3 μ, энергично поглощаемые кислородом и озоном, до земной поверхности не доходят, а видимые волны неодинаково рассеиваются.

Очевидно, что при отсутствии атмосферы тепловой режим Земли отличался бы от того, какой на самом деле наблюдается. Для целого ряда расчётов и сопоставлений нередко бывает удобно устранить влияние атмосферы на радиацию, иметь понятие о радиации в чистом виде. С этой целью вычисляют так называемую солнечную постоянную, т. е. количество тепла, приходящееся в 1 мин. на 1 кв. см перпендикулярной к солнечным лучам чёрной (поглощающей всю радиацию) поверхности, которое Земля получала бы при своём среднем расстоянии от Солнца и при отсутствии атмосферы. Солнечная постоянная равна 1,9 кал.

При наличии атмосферы особое значение приобретает такой фактор, влияющий на радиацию, как длина пути солнечного луча в атмосфере. Чем большую толщу воздуха должен пронизывать солнечный луч, тем больше потеряет он энергии в процессах рассеяния, отражения и поглощения. Длина пути луча непосредственно зависит от высоты Солнца над горизонтом и, следовательно, от времени суток и времени года. Если длину пути солнечного луча сквозь атмосферу при высоте Солнца 90° принять за единицу, тогда длина пути при высоте Солнца 40° удвоится, при высоте 10° станет равной 5,7 и т. д.

Для теплового режима земной поверхности очень важна ещё продолжительность освещения её Солнцем. Так как Солнце светит только днём, то определяющим фактором здесь будет длина дня, меняющаяся по временам года.

Наконец, необходимо помнить, что, хотя интенсивность радиации измеряется по отношению к поверхности, поглощающей всю радиацию, на самом деле солнечная энергия, падающая на различные по своей природе тела, поглощается далеко не одинаково. Отношение отражённой радиации к падающей называется альбедо. Давно известно, что альбедо чёрной почвы, светлых скал, травянистого пространства, зеркала водоёма и т. п. сильно разнятся. Светлые пески отражают 30-35%, чёрная почва (гумус) 26%, зелёная трава 26% радиации. Для свежевыпавшего чистого и сухого снега альбедо может достигать 97%. Влажная почва поглощает радиацию иначе, чем сухая: синяя сухая глина отражает 23% радиации, та же глина мокрая 16%. Следовательно, даже при одном и том же притоке радиации, в одних и тех же условиях рельефа, различные точки земной поверхности будут получать различное количество тепла.

Из периодических факторов, обусловливающих известный ритм в колебаниях радиации, особое значение имеет смена времён года.

Положение Солнца на небосводе постоянно меняется. Летом Солнце выше на небе, чем зимой; зимой оно поднимается к югу от направления строго на восток, а летом - к северу от этого направления Графически это можно представить наброском пути Солнца по небосводу в течение года; цифры в кружках ука­зывают время дня. Чтобы предусмотреть наиболее эффективное условие затенения, необходимо определить положение Солнца. Например, чтобы определить размеры затеняющего устройства, препятствующего попаданию прямых солнечных лучей в окно между 10 и 14 ч, требуется знать угол поступления солнечного света (угол падения). Другая ситуация, нуждающаяся в такой информации, описывается в разделе «Солнечная радиация».

Положение Солнца на небе определяется двумя угловыми измерениями: высотой и азимутом Солнца. Высота Солнца а из­меряется от горизонтали; солнечный азимут |3 измеряется от на­правления прямо на юг (рис. 6.23). Эти углы можно вычислить или взять из заранее составленных таблиц или номограмм.

Расчет зависит от трех переменных: широты L, склонения 6 и часового угла Я. Широту можно узнать из любой хорошей карты. Склонение или мера того, насколько на север или на юг от экватора переместилось Солнце, меняется месяц от месяца (рис. 6.24). Часовой угол зависит от местного солнечного времени: Я = 0,25 (количество минут от местного солнечного полдня). Солнечное время (время, показываемое непосредственно солнеч­ными часами) отсчитывается от солнечного полдня, когда Солн­це находится в наивысшей точке небосвода. Из-за изменения ско­рости движения Земли по орбите в разное время года долгота суток (измеряемая от полдня до следующего солнеч­ного полдня) несколько отличается от долготы суток по среднему солнечному времени (измеряемому обычными часами). При вы­числении местного солнечного времени эта разница принимается во внимание наряду с поправкой на долготу, если наблюдатель не стоит на меридиане поясного времени своего часового пояса.

Для корректировки местного поясного времени (воспользуй­тесь точными часами) по местному солнечному времени необ­ходимо выполнить несколько операций:

1) если действует декретное время, то вычтите 1 ч;

2) определите меридиан данного пункта. Определите мериди­ан поясного времени для этого пункта (75° для восточного пояс­ного времени, 90° для центрального поясного времени, 150° для поясного времени Аляска - Гавайи). Умножьте разности между меридианами на 4 мин/град. Если данный пункт находится к вос­току от поясного меридиана, то добавьте поправочные минуты к поясному времени; если он находится к западу, то вычтите их;

3) добавьте уравнение времени (рис 6.25) для интересующей

Рис 6 23 Положение Солн­ца на небосводе }

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари