Подпишись и читай
самые интересные
статьи первым!

Как устроена зеркальная фотокамера. Устройство фотоаппарата

© 2014 сайт

Для полного контроля над процессом получения цифрового изображения необходимо хотя бы в общих чертах представлять себе устройство и принцип работы цифрового фотоаппарата.

Единственное принципиальное отличие цифровой камеры от плёночной заключается в природе используемого в них светочувствительного материала. Если в плёночной камере это плёнка, то в цифровой – светочувствительная матрица. И как традиционный фотографический процесс неотделим от свойств плёнки, так и цифровой фотопроцесс во многом зависит от того, как матрица преобразует свет, сфокусированный на неё объективом, в цифровой код.

Принцип работы фотоматрицы

Светочувствительная матрица или фотосенсор представляет собой интегральную микросхему (проще говоря, кремниевую пластину), состоящую из мельчайших светочувствительных элементов – фотодиодов.

Существует два основных типа сенсоров: ПЗС (Прибор с Зарядовой Связью, он же CCD – Charge-Coupled Device) и КМОП (Комплементарный Металл-Оксид-Полупроводник, он же CMOS – Complementary Metal-Oxide-Semiconductor). Матрицы обоих типов преобразовывают энергию фотонов в электрический сигнал, который затем подлежит оцифровке, однако если в случае с ПЗС матрицей сигнал, сгенерированный фотодиодами, поступает в процессор камеры в аналоговой форме и лишь затем централизованно оцифровывается, то у КМОП матрицы каждый фотодиод снабжён индивидуальным аналого-цифровым преобразователем (АЦП), и данные поступают в процессор уже в дискретном виде. В целом, различия между КМОП и ПЗС матрицами хоть и принципиальны для инженера, но абсолютно несущественны для фотографа. Для производителей же фотооборудования имеет значение ещё и тот факт, что КМОП матрицы, будучи сложнее и дороже ПЗС матриц в разработке, оказываются при этом выгоднее последних при массовом производстве. Так что будущее, скорее всего, за технологией КМОП в силу чисто экономических причин.

Фотодиоды, из которых состоит любая матрица, обладают способностью преобразовывать энергию светового потока в электрический заряд. Чем больше фотонов улавливает фотодиод, тем больше электронов получается на выходе. Очевидно, что чем больше совокупная площадь всех фотодиодов, тем больше света они могут воспринять и тем выше светочувствительность матрицы.

К сожалению, фотодиоды не могут быть расположены вплотную друг к другу, поскольку тогда на матрице не осталось бы места для сопутствующей фотодиодам электроники (что особенно актуально для КМОП матриц). Восприимчивая к свету поверхность сенсора составляет в среднем 25-50 % от его общей площади. Для уменьшения потерь света каждый фотодиод накрыт микролинзой, превосходящей его по площади и фактически соприкасающейся с микролинзами соседних фотодиодов. Микролинзы собирают падающий на них свет и направляют его внутрь фотодиодов, повышая таким образом светочувствительность сенсора.

По завершении экспонирования электрический заряд, сгенерированный каждым фотодиодом, считывается, усиливается и с помощью аналого-цифрового преобразователя превращается в двоичный код заданной разрядности, который затем поступает в процессор фотоаппарата для последующей обработки . Каждому фотодиоду матрицы соответствует (хоть и не всегда) один пиксель будущего изображения.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Как работает фотоаппарат можно изучить еще в школе. Но знать конструктивные особенности интересно каждому владельцу фотокамеры. Основной принцип работы цифрового фотоаппарата можно выразить в нескольких словах: свет преображается в электричество. Все здесь служит для привлечения света, от кнопки пуск до линз.

Что же революционного с точки зрения света в цифровом фотоаппарате. Он преобразует свет в электрические заряды, которые становятся образом, запечатленным на экране. Как же это работает? Задача каждой детали фотоаппарата поймать отличное изображение. Но главное это свет.

Устройство и работа фотоаппарата

Первое что нужно для получения фото это источник света. Частицы света фотоны покидают источник света, отталкиваются от предмета и входят в камеру через несколько линз. Затем фотоны следуют по установленному пути. Целый ряд линз позволяет сделать максимально четкое изображение.

  1. Створки контролируют количество света, которое должно проникнуть внутрь через отверстие фотоаппарата.
  2. Пройдя сквозь диафрагму, линзы и войдя в отверстие, свет отталкивается от зеркала и направляется в .
  3. До этого свет преломляется, проходя сквозь призму, поэтому то мы и видим изображение в видоискателе не вверх ногами и если нас устраивает композиция, то мы нажимаем на кнопку.
  4. При этом зеркало подымается, и свет направляется внутрь, какую-то долю секунды свет направлен не на видоискатель, а в самое сердце фотоаппарата – .

Длительность этого действия зависит от скорости срабатывания створок. Они открываются на мгновение, когда свет должен воздействовать на сенсор света. Время может быть 1/4000 секунды. То есть в мгновение ока створки могут открыться и закрыться 1400 раз. Для этого существует две створки, когда первая открывается, то вторая закрывается. Таким образом, внутрь попадает чрезвычайно малое количество света. Это важный момент в понимании принципа работы цифрового фотоаппарата.

Теория обработки света

Так в чем же революционность цифровой камеры? Элемент, фиксирующий изображение, сенсор изображения (матрица) это решетка с плотной структурой, состоящей из крошечных сенсоров света. Ширина каждого всего 6 микрон – это 6 миллионных метра. 5 тысяч таких сенсоров могут поместиться на кончике остро заточенного карандаша.

Но сначала свет должен пройти через фильтр, который разделяет его на цвета: зеленый, красный и синий. Каждый сенсор света обрабатывает только один цвет. Когда в него ударяют фотоны, они поглощаются полупроводниковым материалом, из которого он сделан. На каждый поглощенный фотон сенсор света испускает электрическую частицу, она называется электрон. Энергия фотона передается электрону – это электрический заряд. И чем ярче изображение, тем сильнее электрический заряд. Таким образом, каждый электрический заряд обладает различной интенсивностью.

Затем печатная плата переводит эту информацию на язык компьютера, язык цифр и битов или последовательность единиц и нулей. Они представляют собой миллионы крошечных цветных точек, из которых и состоит фото – это пиксели. Чем больше пикселей в изображении, тем лучше разрешение. Другими словами это несколько миллионов микроскопических световых ловушек, которые вместе со всеми элементами фотоаппарата нацелены на одну задачу – преобразовать свет в электричество, что бы сделать прекрасные фотографии.



Дальше вся эта информация в цифровом виде подается в процессор, где она обрабатывается по определенным алгоритмам. Затем уже готовая фотография передается в память фотокамеры, где она и хранится и доступна для просмотра пользователю.

Так вкратце можно изобразить принцип работы цифрового зеркального фотоаппарата .

Современные цифровые камеры во многом напоминают старые пленочные фотоаппараты. И в этом нет ничего удивительного, ведь цифровая фотография, по сути, выросла из пленочной, позаимствовав различные узлы и компоненты. Особенное сходство прослеживается между зеркальным цифровым фотоаппаратом и пленочной камерой: ведь и там и там применяется объектив, с помощью которого аппарат фокусируется на снимаемом объекте. Схожий процесс: фотограф просто нажимает на кнопку затвора и, в конечном счете, получается фотоизображение.

Тем не менее, несмотря на схожесть процесса съемки, устройство цифрового фотоаппарата является гораздо более сложным по сравнению с пленочным. И эта сложность конструкции обеспечивает «цифровикам» существенные преимущества — мгновенный результат съемки, удобство, широкие функциональные возможности по управлению фотосъемкой и обработке изображений. Для того, чтобы разобраться в устройстве цифрового фотоаппарата, нужно, прежде всего, ответить на следующие вопросы: Как создается фотоизображение? Какие узлы цифровой фотоаппарат позаимствовал у пленочного? И что нового появилось в фотокамере с развитием цифровых технологий?

Принцип работы пленочного и цифрового фотоаппарата

Принцип работы обычной пленочной камеры состоит в следующем. Свет, отражаясь от снимаемого объекта или сцены, проходит через диафрагму объектива и фокусируется особым образом на гибкой, полимерной пленке. Фотопленка покрыта светочувствительным эмульсионным слоем на основе галоидного серебра. Мельчайшие гранулы химических веществ на пленке под действием света изменяют свою прозрачность и цвет. В результате, фотопленка благодаря химическим реакциям «запоминает» изображение.

Как известно, для формирования любого существующего в природе оттенка достаточно использовать комбинацию трех основных цветов — красного, зеленого и синего. Все остальные цвета и оттенки получаются путем их смешивания и изменения насыщенности. Каждая микрогранула на поверхности фотопленки отвечает, соответственно, за свой цвет в изображении и изменяет свои свойства именно в той степени, в которой на нее попали лучи света.

Поскольку свет различается по цветовой температуре и интенсивности, то в результате химической реакции на фотопленке получается практически полное дублирование снимаемой сцены. В зависимости от характеристик оптики, освещенности, времени выдержки/экспозиции сцены на пленке и времени раскрытия диафрагмы, а также других факторов формируется тот или иной стиль фотографии.

Что же касается цифрового фотоаппарата, то тут также используется система оптики. Лучи света проходят через линзу объектива, преломляясь особым образом. Далее они достигают диафрагмы, то есть отверстия с изменяемым размером, посредством которого регулируется количество света. Далее при фотографировании лучи света попадают уже не на эмульсионный слой фотопленки, а на светочувствительные ячейки полупроводникового сенсора или матрицы. Чувствительный сенсор реагирует на фотоны света, захватывает фотоизображение и передает его на аналого-цифровой преобразователь (АЦП).

Последний анализирует простые, аналоговые электрические импульсы, и преобразует их с помощью специальных алгоритмов в цифровой вид. Это перекодированное изображение в цифровом виде сохраняется на встроенном или внешнем электронном носителе. Готовое изображение уже можно посмотреть на ЖК-экране цифровой камеры, либо вывести его на монитор компьютера.

В течение всего этого многоступенчатого процесса получения фотоизображения электроника камеры непрерывно опрашивает систему на предмет немедленной реакции на действия фотографа. Сам фотограф через многочисленные кнопки, регуляторы и настройки может влиять на качество и стиль получаемого цифрового снимка. И весь этот сложный процесс внутри цифровой камеры происходит за считанные доли секунды.

Основные элементы цифрового фотоаппарата

Даже визуально корпус цифровой камеры схож с пленочным аппаратом, за исключением того, что в «цифровике» не предусмотрено катушки фотопленки и фильмового канала. На катушку в пленочных фотоаппаратах закреплялась пленка. И по окончании кадров на пленке фотографу приходилось перематывать кадры в обратном направлении вручную. В фильмовом канале фотопленка перематывалась до нужного для съемки кадра.

В цифровых фотоаппаратах все это кануло в лету, причем за счет избавления от фильмового канала и места для катушки с пленкой удалось сделать корпус камеры существенно тоньше. Впрочем, некоторые узды пленочных фотоаппаратов плавно перешли в цифровую фототехнику. Чтобы убедиться в этом, рассмотрим основные элементы современной цифровой камеры:

— Объектив


И в пленочной, и в цифровой фотокамере световые лучи проходят через объектив для получения изображения. Объектив представляет собой оптическое устройство, состоящее из набора линз и служащее для проецирования изображения на плоскости. В зеркальных цифровых фотоаппаратах практически ничем не отличаются от тех, что использовались в пленочных камерах. Более того, многие современные «зеркалки» обладают совместимостью с объективами, разработанными для пленочных моделей. К примеру, старые объективы с байонетом F могут применяться со всеми цифровыми зеркальными фотоаппаратами Nikon.

— Диафрагма и затвор

– это круглое отверстие, посредством которого можно регулировать величину светового потока, попадающего на светочувствительную матрицу или фотопленку. Это изменяемое отверстие, обычно размещающееся внутри объектива, образуется несколькими серповидными лепестками, которые при съемке сходятся или расходятся. Естественно, что диафрагма имеется как в пленочных, так и в цифровых аппаратах.


Тоже самое можно сказать и о затворе, который устанавливается между матрицей (фотопленкой) и объективом. Правда, в пленочных камерах используется механический затвор, представляющий собой своеобразные шторки, которые ограничивают воздействие света на пленку. Современные же цифровые аппараты оснащены электронным эквивалентом затвора, способным включать/выключать сенсор для приема приходящего светового потока. Электронный обеспечивает точную регуляцию времени приема света матрицей фотоаппарата.

В некоторых цифровых камерах, впрочем, имеется и традиционный механический затвор, который служит для предотвращения попадания на матрицу световых лучей после окончания времени выдержки. Тем самым, предотвращается смазывание картинки или появления эффекта ореола. Стоит отметить, что поскольку цифровому фотоаппарату может потребоваться некоторое время, чтобы обработать изображение и сохранить его, то возникает задержка по времени между тем моментом, когда фотограф нажал на кнопку спуска, и моментом, когда камера зафиксировала изображение. Эта задержка по времени называется задержкой срабатывания затвора.

— Видоискатель

Как в пленочном, так и в цифровом фотоаппарате имеется устройство для визирования, то есть устройство для предварительной оценки кадра. Оптический видоискатель, состоящий из зеркал и пентапризмы, показывает фотографу изображение именно в том виде, в котором оно существует в натуре. Однако многие современные цифровые камеры оборудованы электронным видоискателем. Он снимает изображение со светочувствительной матрицы и показывает фотографу таким, каким камера его видит с учетом предустановленных настроек и используемых эффектов.

В недорогих компактных цифровых фотоаппаратах видоискатель как таковой может просто отсутствовать. Его функции выполняет встроенный ЖК-экран с функцией LiveView. ЖК-экраны сегодня встраиваются и в зеркальные цифровые аппараты, поскольку благодаря такому экрану фотограф имеет возможность сразу же просмотреть результаты съемки. Таким образом, если снимок не удался, его можно тут же удалить и отснять новый кадр уже с другими настройками или в другом ракурсе.

— Матрица и аналого-цифровой преобразователь (АЦП)

После того, как мы рассмотрели принцип работы пленочного и цифрового фотоаппарата, стало понятно, в чем собственно состоит основная разница между ними. В цифровой камере вместо фотопленки появилась светочувствительная матрица или сенсор. Матрица представляет собой полупроводниковую пластину, на которой размещается огромное множество фотоэлементов.

Не превышают размеров кадра фотопленки. Каждый из чувствительных элементов матрицы при попадании на него светового потока создает минимальный элемент изображения – пиксел, то есть одноцветный квадрат или прямоугольник. Элементы сенсора реагируют на свет и создают электрический заряд. Таким образом, матрица цифрового фотоаппарата фиксирует световые потоки.

Матрица цифровой камеры характеризуется такими параметрами, как физические размеры, разрешение и чувствительность, то есть способность матрицы точно уловить поток попадающего на нее света. Все эти параметры оказывают свое влияние на качество фотоизображения.

Полученная информация от сенсора в виде электрических импульсов далее поступает на обработку в аналого-цифровой преобразователь (АЦП). Функция последнего состоит в том, чтобы превратить эти аналоговые импульсы в цифровой поток данных, то есть перевести изображение в цифровой вид.

— Микропроцессор

Микропроцессор присутствовал и в некоторых последних моделях пленочных камер, однако в цифровом фотоаппарате он стал одним из ключевых элементов. Микропроцессор отвечает в «цифровике» за работу затвора, видоискателя, матрицы, автофокуса, системы стабилизации изображения, оптики, а также за запись отснятого фото- и видеоматериала на носитель, выбор настроек и программных режимов съемки. Это своеобразный мозговой центр камеры, управляющий всей электроникой и отдельными узлами.


От производительности микропроцессора во многом зависит то, насколько быстро цифровая камера сможет осуществлять непрерывную съемку. В этой связи в некоторых продвинутых моделях цифровых камер используется сразу два микропроцессора, которые могут производить отдельные операции параллельно. Тем самым, обеспечивается максимальная скорость серийной съемки.

— Носитель информации

Если аналоговый (пленочный) фотоаппарат сразу же фиксирует изображение на пленке, то в цифровом, электроника записывает изображение в цифровом формате на внешний или внутренний носитель информации. Для этой цели в большинстве случаев используются . Но в некоторых камерах имеется и встроенная память небольшого объема, которой хватает для размещения нескольких отснятых кадров.


Также цифровые камеры обязательно оснащаются соответствующими разъемами для возможности их подключения к персональному или планшетному компьютеру, телевизору и другим устройствам. Благодаря этому фотограф получает возможность всего через несколько минут после съемки поместить готовое изображение в Интернете, передать по электронной почте или распечатать.

— Батарея

Во многих пленочных фотоаппаратах используется аккумуляторная батарея для приведения в действие электроники, которая, в частности, управляет фокусировкой и автоматической экспозицией сцены. Но эта работа не требует значительного энергопотребления, поэтому на одном заряде батареи пленочная камера способна проработать несколько недель.

Другое дело цифровая фототехника. Здесь жизнь аккумуляторной батареи камеры измеряется часами. А потому для поддержания работы камеры в условиях отсутствия источника электричества фотографу порой приходится запасаться дополнительными батареями.

Несмотря на то, что цифровая фототехника заимствовала многие узлы и компоненты из пленочной фотографии, она обладает рядом существенных преимуществ. Прежде всего, это возможность оперативно контролировать результаты съемки и вносить необходимые коррективы. Цифровой фотоаппарат в силу особенностей своего устройства предоставляет любому фотографу больше гибкости в процессе съемки за счет широких возможностей управления качеством изображений. Цифровые технологии обеспечивают мгновенный доступ к любому кадру и высокоскоростную фотосъемку. Сочетание гибкости, широких функциональных возможностей и оперативности ведения съемки гарантируют обладателю цифровой камеры получение фотографий превосходного качества практически в любых условиях.

Возможности цифровой фототехники сегодня далеко не исчерпаны. По мере развития устройство цифровых камер будет все более усложняться, в них будут реализованы новые технологии, увеличивающие функциональность аппаратов и обеспечивающие еще более высокое качество изображений.


Человека всегда тянуло к прекрасному, увиденной красоте человек пытался придать форму. В поэзии это была форма слова, в музыке красота имела гармоническую звуковую основу, в живописи формы прекрасного передавались красками и цветом. Единственное, что не мог человек, это запечатлеть мгновение. Например, поймать разбивающуюся каплю воды или рассекающую грозовое небо молнию. С появлением в истории фотоаппарата и развитием фотографии это стало возможным. История фотографии знает множественные попытки изобретения фотографического процесса до создания первой фотографии и берет начало в далеком прошлом, когда математики изучая оптику преломления света обнаруживали, что изображение переворачивается, если пропустить его в темную комнату через небольшой отверстие.

В1604 г. немецкий астроном Иоганн Кеплер установил математические законы отражения света в зеркалах, которые в последствии залегли в основу теории линз по которым другой итальянский физик Галилео Галилей создал первый телескоп для наблюдения за небесными телами. Принцип преломления лучей был установлен, оставалось только научиться каким-то образом сохранять полученные изображения на отпечатках еще не раскрытым химическим путем.

В 1820-е гг.. Жозеф Нисефор Ньепс открыл способ сохранения полученного изображения путем обработки попадающего света асфальтовым лаком (аналог битума) на поверхность из стекла в, так называемой камере-обскуре. С помощью асфальтового лака изображение принимало форму и становилось видимым. В первые в истории человечества картину рисовал не художник, а падающие лучи света в преломлении.

В 1835 г. английский физик Уильям Тальбот, изучая возможности камеры-обскура Ньепса смог добиться улучшения качества фотоизображений с помощью изобретенного им отпечатка фотографии - негатива. Благодаря этой новой возможности снимки теперь можно было копировать. На своей первой фотографии Тальбот запечатлел собственное окно на котором четко просматривается оконная решетка. В будущем он написал доклад, где называл художественное фото миром прекрасного, таким образом заложив в историю фотографии будущий принцип печати фотографий. В 1861 г. фотограф из Англии Т. Сэттон изобрел первый фотоаппарат с единым зеркальным объективом. Схема работы первого фотоаппарата была следующей, на штатив закреплялся крупный ящик с крышкой сверху, через которую не проникал свет, но через которую можно было вести наблюдение. Объектив ловил фокус на стекле, где с помощью зеркал формировалось изображение.

В 1889 г. в истории фотографии закрепляется имя Джорджа Истмана Кодак, который запатентовал первую фотопленку в виде рулона, а потом и фотокамеру "Кодак", сконструированную специально для фотопленки. В последствии, название "Kodak" стало брэндом будущей крупной компании. Что интересно, название не имеет сильной смысловой нагрузки, в данном случае Истман решил придумать слово, начинающееся и заканчивающиеся на одну и ту же букву.

В 1904 г. братья Люмьер под торговой маркой "Lumiere" начали выпускаться пластины для цветного фото, которые стали основоположниками будущего цветной фотографии .

В 1923 г. появляется первый фотоаппарат в котором используется пленка 35 мм, взятая из кинематографа. Теперь можно было получать небольшие негативы, просматривая затем их выбирать наиболее подходящие для печатания крупных фотографий. Спустя 2 года фотоаппараты фирмы "Leica" запускаются в массовое производство.

В 1935 г. фотоаппараты Leica 2 комплектуются отдельным видеоискателем, мощной фокусировочной системой, совмещающие две картинки в одну. Чуть позже в новых фотоаппаратах Leica 3 появляется возможность использования регулировки длительности выдержки. Долгие годы фотоаппараты Leica оставались неотъемлимыми инструментами в области искусства фотографии в мире.

В 1935 г. компания "Kodak" выпускает в массовое производство цветные фотопленки "Кодакхром". Но еще долгое время при печати их надо было отдавать на доработку после проявки где уже накладывались цветные компоненты во время проявки.

В 1942 г. "Kodak" запускают выпуск цветных фотопленок "Kodakcolor", которые последующие полвека становятся одними из популярными фотопленками для профессиональных и любительских камер.

В 1963 г. представление о быстрой печати фотографий переворачивают фотокамеры "Polaroid", где фотография печатается мгновенно после полученного снимка одним нажатием. Достаточно было просто подождать несколько минут, чтобы на пустом отпечатке начали прорисовываться контуры изображений, а затем проступала полностью цветная фотография хорошего качества. Еще 30 лет универсальные фотоаппараты Polaroid будут занимать ведущие по популярности места в истории фото, чтобы уступить эпохе цифровой фотографии.

В 1970-х гг. фотоаппараты снабжались встроенным экспонометром, автофокусировку, автоматические режимы съемки, любительские 35 мм камеры имели встроенную фотовспышку. Чуть позже к 80-м годам фотоаппараты начали снабжаться ж/к панелями, которые показывали пользователю программные установки и режими фотокамеры. Эра цифровой техники только начиналась.

В 1974 г. с помощью электронного астрономического телескопа была получена первая цифровая фотография звездного неба.

В 1980 г. компания "Sony" готовит к выпуску на рынок цифровую видеокамеру Mavica. Снятое идео сохранялось на гибком флоппи-диске, который можно было бесконечно стирать для новой записи.

В 1988 г. компания "Fujifilm" официально выпустила в продажу первый цифровой фотоаппарат Fuji DS1P, где фотографии сохранялись на электронном носителе в цифровом виде. Фотокамера обладала 16Mb внутренней памяти.

В 1991 г. компания "Kodak" выпускает цифровую зеркальную фотокамеру Kodak DCS10, имеющую 1,3 mp разрешения и набор готовых функций для профессиональной съемки цифрой.

В 1994 г. компания "Canon" снабжает некоторые модели своих фотокамер системой оптической стабилизации изображений.

В 1995 г. компания "Kodak", следом за Canon прекращает выпуск популярных последние полвека пленочных своих фирменных фотокамер.

2000-х гг. Стремительно развивающиеся на базе цифровых технологий корпорации Sony, Samsung поглощают большую часть рынка цифровых фотоаппаратов. Новые любительские цифровые фотоаппараты быстро преодолели технологическую границу в 3Мп и по размеру матрицы легко соперничают с профессиональной фототехникой имея размер от 7 до 12 Мп. Несмотря на быстрое развитие технологий в цифровой технике, таких как: распознавание лица в кадре, исправление оттенков кожи, устранение эффекта "красных" глаз, 28-кратное "зумирование", автоматические сцены съемки и даже срабатывание камеры на момент улыбки в кадре, средняя цена на рынке цифровых фотокамер продолжает падать, тем более что в любительском сегменте фотоаппаратам начали противостоять мобильные телефоны, снабженные встроенными камерами с цифровым зумом. Спрос на пленочные фотоаппараты стремительно упал и теперь наблюдается другая тенденция повышения цены аналоговой фотографии, которая переходит в разряд раритета.



Устройство пленочного фотоаппарата

Принцип работы аналогового фотоаппарата: свет проходит через диафрагму объектива и, вступая в реакцию с химическими элементами пленки сохраняется на пленке. В зависимости от настройки оптики объектива, применения особых линз, освещенности и угла направленного света, времени раскрытия диафрагмы можно получить различный вид изображения на фотографии. От этого и многих других факторов формируется художественный стиль фотографии. Конечно, главным критерием оценки фотографии остается взгляд и художественный вкус фотографа.

Корпус.
Корпус фотоаппарата не пропускает свет, имеет крепления для объектива и фотоспышки, удобную форму ручки для захвата и место для крепления к штативу. Внутрь корпуса помещается фотопленка, которая надежно закрыта светонепропускающей крышкой.


Фильмовой канал.
В нем пленка перематывается, останавливась на нужном для съемке кадре. Счетчик механически связан с фильмовым каналом, при прокрутке которого указывает на количество отснятых кадров. Существуют камеры с моторным приводом, которые позволяют делать съемку через последовательно заданный промежуток времени, а также вести скоростную съемку до нескольких кадров в секунду.


Видоискатель.
Оптический объектив через которое фотограф видит в рамке будущий кадр. Зачастую имеет дополнительные метки для определения положения объекта и некоторые шкалы настройки светка и контрастности.

Объектив.
Объектив - мощный оптический прибор, состоящий из нескольких линз, позволяющий делать изображения на различном расстоянии со сменой фокусировки. Объективы для профессиональной фотосъемки помимо линз состоят еще из зеркал. Стандартный объектив имеет расстояние фокусаокругленно равное диагонали кадра, угол 45 градусов. Фокусное расстояние широкоугольного объектива меньшее диагонали кадра служит для съемки в небольшом пространстве, угол до 100 градусов. для удаленных и панорамных объектов применяется телескопический объектив у которого фокусное расстояние гораздо больше диагонали кадра.

Диафрагма.

Устройство регулирующее яркость оптической картинки объекта фотографирования по отношению к его яркости. Наибольшее распространение получила ирисовая диафрагма, у которой световое отверстие образуется несколькими серповидными лепестками в виде дуг, при съемке лепестки сходятся или расходятся, уменьшая или увеличивая диаметр светового отверстия.

Затвор

Затвор фотоаппарата приоткрывает шторки для попадания света на пленку, затем свет начинает действовать на пленку, вступая в химическую реакцию. От продолжительности приоткрытия затвора зависит экспозиция кадра. Так для ночной съемки ставится более длительная выдержка, для съемке на солнце или скоростной съемке максимально короткая.





Дальнометр.

Устройство с помощью которого фотограф определяет расстояние до объекта съемки. нередко дальномер бывает совмещен для удобства с видоискателем.

Кнопка спуска.

Запускает процесс фотосъемки длящийся не более секунды. В одно мгновение срабатывает затвор, раскрываются лепестки диафрагмы, свет попадает на химический состав фотопленки и кадр запечатлен. В старых пленочных фотоаппаратах кнопка спуска основана на механическом приводе, в более современных фотоаппаратах кнопка спуска, как и остальные движущиеся элементы камеры на электроприводе


Катушка фотплёнки
Катушка на которую крепится фотопленка внутри корпуса фотоаппарата.По окончании кадров на пленке в механических моделях пользователь перематывал фотопленку в обратном направлении в ручную, в более современных фотоаппаратах пленка перематывалась по окончании с помощью электромоторного привода, работающего от пальчиковых батареек.


Фотовспышка.
Плохая освещенность объектов фотосъемки приводит к использованию фотоспышки. В профессиональной съемке к этому приходится прибегать только в неотлагательных случаях когда нет других приборов освещения экранов, ламп. Фотоспышка состоит из газорязрядной лампы в виде стеклянной трубки содержащей газ ксенон. При накапливании энергии вспышка заряжается, газ в стеклянной трубке ионизируется, затем мгновенно разряжается, создавая яркую вспышку при силе света свыше сотни тысяч свечей. При работе вспышки нередко отмечается эффект "красных глаз" у людей и животных. Это происходит потому, что при недостаточной освещенности помещения где проводится фотосъемка, глаза человека расширяются и при срабатывании вспышки зрачки не успевают сузиться, отражая слишком много света от глазного яблока. Для усранения эффекта "красных глаз" используется один из методов предварительного направления светового потока на глаза человека перед срабатыванием вспышки, что вызывает сужение зрачка и меньшим отражением от него света вспышки.

Устройство цифрового фотоаппарата


Принцип работы цифрового фотоаппарата на стадии прохождения света через линзу объектива тот же, что и у пленочного. Изображение преломляется через систему оптики, но сохраняется не на химическом элементе фотопленки аналоговым путем, а преобразуется в цифровую информацию на матрице от разрешающей способности которой и будет зависеть качество снимка. Затем перекодированное изображение в цифровом виде сохраняется на сменном носителе информации. Информацию в виде изображения можно редактировать, перезаписывать и отправлять на другие носители данных.

Корпус.

Корпус цифрового фотоаппарата имеет вид по аналогии с пленочным фотоаппаратом, но за счет отсутствия необходимости фильмового канала и места для катушки с пленкой, корпус современного цифрового фотоаппарата значительно тоньше обычного пленочного и имеет место для ЖК экрана, встроенного в корпус, либо выдвижного, и слоты для карт памяти.

Видоискатель. Меню. Настройки (ЖК экран) .

Жидкокристалический экран неотъемлимая часть цифрового фотоаппарата. Он имеет совмещенную функцию видоискателя, в котором можно приближать объект, видеть результат автофокусировки, выстраивать экспозицию по границам, а также использовать его в качестве экрана меню с настройками и опциями набора функций съемки.

Объектив.

В профессиональных цифровых фотоаппаратах объектив практически ничем не отличается от аналоговых фотокамер. Он также состоит из линз и набора зеркал и имеет те же механические функции. В любительских камерах объектив стал гораздо меньших форм и помимо оптического зума (приближение объекта) имеет встроенный цифровой зум, который способен многократно приблизить отдаленный объект.

Матрица сенсор.

Главный элемент цифровой фотокамеры небольшая пластина с проводниками которая формирует качество изображения, четкость которого и зависит от разрешающей способности матрицы.

Микропроцессор.

Отвечает за все функции работы цифровой камеры. Все рычаги управления камеры ведут к процессору в котором зашита программная оболочка (прошивка), которая отвечает за действия фотокамеры: работа видоискателя, автофокус, программные сцены съемки, настройки и функции, электрический привод выдвижного объектива, работа фотовспышки.

Стабилизатор изображений.

При покачивании камеры во время нажатия на спусковой завтор или при съемке с движущейся поверхности, например, с качающегося на волнах катера, изображение может получится размытое. Оптический стабилизатор практически не ухудшает качество полученной картинки за счет дополнительной оптики, которая компенсирует отклонения изображения при покачивании, оставляя изображение неподвижным перед матрицей. Схема работы цифрового стабилизатора изображения фотоаппарата при дрожании картинки заключается в условных поправках, вносимых при расчете картинки процессором, задействовав дополнительную треть пикселей на матрице, учавствующих только в коррекции изображения.

Носители информации.

Полученное изображение сохраняется в памяти фотоаппарата в виде информации на внутренней, либо внешней памяти. Фотоаппараты имеют разъемы для карт памяти SD, MMC, CF, XD-Picture и др., а также разъемы для подключения к другим источникам храненияинформации компьютеру, HDD сменным носителям и т.п.

Цифровая фототехника сильно поменяла представления в истории фотографии о том какое должно быть художественное фото. Если в прежние времена фотографу приходилось идти на различные ухищрения, чтобы получить интересный цвет или необычный фокус для определения жанра фотографии, то теперь есть целый набор примочек, включенных в программное обеспечение цифровой фотокамеры, коррекция размеров изображения, изменение цвета, создание рамки вокруг фото. Также любую отснятую цифровую фотографию можно подвергнуть редактированию в известных фоторедакторах на компьютере и легко установить в цифровую фоторамку, которые следом за пошаговым наступлением цифровых технологий становятся все более популярными для украшения интерьера чем-то новым и необычным.

© 2015 сайт

Объектив следует считать ключевым узлом оптического прибора под названием фотоаппарат. Всё верно: не матрицу, а именно объектив. Фотография – это изображение, и не что иное, как фотографический объектив формирует это изображение на светочувствительном материале. Матрица лишь преобразует созданное объективом изображение в цифровую форму.

Фотограф не обязан быть экспертом в области прикладной оптики, но наличие некоторого представления о том, как работает объектив вашей фотокамеры, не только не помешает вашему творческому росту, но и поможет сделать фотосъёмку более осознанной и управляемой.

Конструкция объектива

С основной задачей фотографического объектива – собрать свет, идущий от снимаемой сцены, и сфокусировать его на матрице или плёнке фотоаппарата – может справиться обычная двояковыпуклая линза. Однако качество изображения при этом будет весьма посредственным из-за обилия оптических аберраций . Чтобы обеспечить оптимальное качество картинки, в оптическую схему объектива вводятся дополнительные линзы, корректирующие световой поток, исправляющие аберрации и придающие объективу требуемые свойства. Число оптических элементов в современных объективах может в отдельных случаях достигать двух десятков и более. Элементы могут быть объединены в группы и все вместе они должны действовать как единая собирающая оптическая система.

Помимо оптического блока, т.е. системы линз, расположенных в определённой последовательности, конструкция объектива включает в себя также ряд вспомогательных механизмов, обеспечивающих наводку на резкость, управление диафрагмой, изменение фокусного расстояния (в зум-объективах), оптическую стабилизацию и пр.

Оправа, т.е. корпус объектива, соединяет все его компоненты воедино, а также служит для крепления объектива к фотоаппарату.

Хочется подчеркнуть, что фокусное расстояние не является в буквальном смысле «длиной» объектива и лишь косвенно указывает на его линейные размеры. Физически объектив может быть как длиннее, так и короче своего фокусного расстояния. Следует понимать, что из-за особенностей конструкции многих современных объективов их задняя главная плоскость может располагаться как в пределах системы линз, так и за её пределами.

В случае если задняя главная плоскость вынесена вперёд, фокусное расстояние объектива будет превышать его физические размеры. Такой объектив называется телеобъективом . Практически все современные длиннофокусные объективы являются телеобъективами, что позволяет уменьшить их габариты.

Если задняя главная плоскость расположена в середине объектива, то фокусное расстояние оказывается меньше расстояния от переднего элемента объектива до заднего фокуса. Таковы нормальные и умеренно короткофокусные объективы.

И, наконец, задняя главная плоскость может лежать позади объектива. В этом случае фокусное расстояние будет короче заднего фокального отрезка , т.е. расстояния от заднего оптического элемента до заднего фокуса. Такие объективы называются ретрофокусными объективами или объективами с удлинённым задним отрезком . Зачем нужна столь сложная схема? Ведь габариты она явно не экономит. Дело в том, что наличие поворотного зеркала в зеркальных фотоаппаратах налагает жёсткие ограничения на минимальную допустимую величину заднего фокального отрезка. Иными словами, зеркало не позволяет приблизить объектив вплотную к матрице или плёнке, а это значит, что короткофокусные объективы для зеркальных фотокамер должны проектироваться по ретрофокусной схеме.

Мерой светопропускающей способности объектива является диафрагменное число или число диафрагмы , представляющее собой отношение между фокусным расстоянием объектива и диаметром отверстия диафрагмы. Например, при фокусном расстоянии объектива 200 мм и диаметре отверстия диафрагмы 50 мм их отношение будет равно: 200 ÷ 50 = 4. Последнее обычно записывается как f/4 и означает, что диаметр отверстия диафрагмы в четыре раза меньше фокусного расстояния объектива.

Что будет, если мы уменьшим диаметр отверстия, скажем, до 25 мм? Число диафрагмы окажется равным: 200 ÷ 25 = 8. Таким образом, чем меньше относительное отверстие, тем больше диафрагменное число.

Почему говорят именно об относительном отверстии, а не просто о диаметре отверстия диафрагмы? Потому, что нас в данном случае не интересуют конкретные значения фокусного расстояния и диаметра отверстия, а лишь отношение между ними. Число диафрагмы – величина безразмерная. Независимо от своего фокусного расстояния все объективы, диафрагма которых установлена на f/8, будут пропускать одинаковое количество света. При этом очевидно, что фактический диаметр отверстия будет тем больше, чем больше фокусное расстояние объектива – главное, чтобы их отношение оставалось неизменным.

Для того чтобы уменьшить количество света, проходящего через объектив, в два раза, т.е. на одну ступень экспозиции (), необходимо в два раза уменьшить площадь отверстия диафрагмы. Его диаметр при этом уменьшится в √2 раза. В связи с этим диафрагменные числа, отстоящие друг от друга на одну ступень, различаются в √2, т.е. примерно в 1,414 раза, и образуют следующий стандартный ряд: f/1; f/1,4; f/2; f/2,8; f/4, f/5,6; f/8; f/11; f/16; f/22; f/32; f/45; f/64.

Минимальное доступное значение диафрагмы, т.е. максимальный размер относительного отверстия конкретного объектива, принято называть его светосилой .

В большинстве современных объективов используется механизм т.н. «прыгающей» или «моргающей» диафрагмы. Суть его в том, что вне зависимости от того, какое число диафрагмы выбрано для съёмки, диафрагма остаётся полностью открытой до самого момента спуска затвора и только тогда закрывается до заранее выбранного значения. После каждого снимка диафрагма автоматически возвращается в открытое состояние. Это позволяет осуществлять кадрирование, экспозамер и наводку на резкость при максимальной величине относительного отверстия (минимальном числе диафрагмы) и соответствующей ему максимально яркой картинке в видоискателе. В случае же если у фотографа возникает желание визуально оценить глубину резкости будущего кадра, диафрагму можно принудительно закрыть до рабочего значения, используя кнопку репетира диафрагмы.

Байонет

Объектив крепится к фотоаппарату посредством байонетного соединения. На хвостовике оправы объектива имеются лепестки (обычно их три), которым соответствуют пазы во фланце камеры. При установке объектива хвостовик вставляется во фланец и запирается поворотом на небольшой угол. Несимметричность лепестков исключает затрудняет неправильную ориентацию байонета. Чтобы отсоединить объектив необходимо нажать на кнопку и повернуть его в обратную сторону. См. «Смена объектива ».

По сравнению с резьбовым соединением байонет обладает двумя основными преимуществами: во-первых, смена объективов происходит быстрее, а во-вторых, обеспечивается более точная ориентация объектива относительно камеры, что необходимо для оптимального совмещения электрических контактов и механических приводов.

Помимо своей основной функции – крепления объектива к камере, – байонет должен также обеспечивать и функциональную связь между ними, согласовывая работу диафрагмы, автофокуса, стабилизатора и прочих устройств. Байонеты большинства современных фотографических систем (Canon EF, Sony E, Fujifilm X) не предполагают какой-либо механической связи между камерой и объективом – обмен информацией осуществляется исключительно через электронный интерфейс. В более традиционных байонетах (например, Nikon F) управление диафрагмой (а для старых моделей объективов ещё и автофокусом) реализовано посредством механических приводов.

Важнейшей характеристикой байонетного крепления является его рабочий отрезок . Рабочий отрезок – это расстояние от опорной поверхности объектива (или опорной поверхности фланца камеры) до фокальной плоскости, т.е. до плоскости матрицы или плёнки. Длина рабочего отрезка зависит от особенностей конструкции фотоаппарата. Так, у зеркальных камер рабочий отрезок значительно больше, чем у беззеркальных, поскольку поворотное зеркало не позволяет сделать корпус камеры слишком плоским.

Не следует путать рабочий отрезок с задним фокальным отрезком. Рабочий отрезок – это фиксированный параметр байонета, и его величина неизменна для всех камер и объективов в рамках данной фотографической системы. Задний фокальный отрезок – параметр конкретного объектива, и его величина может отличаться от величины рабочего отрезка, как в большую, так и в меньшую сторону, в зависимости от модели.

Фокусировка

В исходном положении объектив сфокусирован на бесконечность, т.е. в фокальной плоскости оказывается изображение бесконечно удалённого объекта. Чтобы сфокусировать объектив на более близких объектах, необходимо увеличить дистанцию между задней главной плоскостью объектива и плоскостью матрицы или плёнки. Иными словами, объектив должен быть как бы выдвинут навстречу объекту съёмки.

В простейших объективах с небольшим количеством элементов наводка на резкость осуществляется перемещением всего оптического блока внутри оправы объектива. Иногда движется только передняя линза. Хуже всего, когда она ещё и вращается при фокусировке, поскольку это весьма затрудняет использование поляризационных и градиентных фильтров.

В более сложных объективах применяется внутренняя фокусировка. Внешние размеры объектива в таком случае остаются неизменными, а смещение оптического центра достигается перемещением независимой группы линз внутри объектива. Частным случаем внутренней фокусировки является задняя фокусировка, при которой за наводку на резкость отвечает задняя группа элементов.

Большинство современных объективов предполагают использование автоматической фокусировки . Обычно в оправу автофокусных объективов встроен кольцевой электродвигатель (ультразвуковой или шаговый), который и приводит в движение фокусировочную группу линз. Исключение составляют лишь некоторые классические автофокусные объективы Nikon и Pentax, не имеющие собственного фокусировочного мотора. Мотор в данном случае встроен в камеру, а передача крутящего момента происходит посредством механической муфты.

Зум-объективы

Зум-объективами принято называть объективы с переменным фокусным расстоянием. Конструкция зум-объективов значительно сложнее конструкции дискретных объективов и включает ряд дополнительных оптических элементов, взаимное перемещение которых не только изменяет фокусное расстояние объектива, но и компенсирует возникающие при этом дополнительные оптические аберрации.

Отношение между максимальным и минимальным фокусным расстоянием зум-объектива называется его кратностью. Например, кратность зум-объектива с диапазоном фокусных расстояний 24-70 мм приблизительно равна: 70 ÷ 24 ≈ 3, что позволяет говорить о нём как о 3-х кратном зуме.

Оптический стабилизатор

В объективах, снабжённых оптическим стабилизатором изображения, одна из линз может при помощи электромагнитного привода перемещаться в плоскости, перпендикулярной оптической оси объектива, компенсируя тем самым вибрацию фотоаппарата и предотвращая смазывание изображения.

Об особенностях устройства и практическом применении стабилизированной оптики можно прочесть в статье: «Оптический стабилизатор. Нюансы использования IS и VR ».

Светофильтры

Практически все объективы могут использоваться вместе со светофильтрами . Чаще всего фильтры накручиваются на объектив спереди, для чего в оправе объектива предусмотрена специальная резьба. Однако в тех случаях, когда передняя линза объектива отличается необычайно большим диаметром или излишне выпуклой формой, традиционное использование фильтров физически затруднено, в связи с чем и резьба для фильтров может попросту отсутствовать. Существуют два основных подхода к решению этой проблемы. Супертелеобъективы обычно снабжаются выдвижной обоймой, в которую можно вложить стандартный светофильтр небольшого диаметра, после чего обойма вставляется внутрь объектива через специальную прорезь. Многие же сверхширокоугольные объективы в принципе не совместимы со стеклянными фильтрами и вместо этого имеют на хвостовике зажимы для тонких фильтров из пластиковой плёнки. Очевидно, что как внутреннее, так и заднее расположение светофильтров исключает возможность использования прозрачных фильтров для защиты передней линзы от грязи и царапин, предъявляя к вашей аккуратности повышенные требования.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари