Подпишись и читай
самые интересные
статьи первым!

Защитное отключение. Защитное отключение в электроустановках Для чего используют защитное отключение

Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки (через 0,05–0,2 с) при возникновении в ней опасности поражения человека электрическим током.

Защитная функция устройств защитного отключения (УЗО) заключается в ограничении не тока, проходящего через человека, а времени его протекания гак, чтобы выдерживались условия "ГОСТ 12.1.038-82. Система стандартов безопасности труда. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов" (утвержденного постановлением Госстандарта СССР от 30.06.1982 № 2987).

Согласно этому ГОСТу, например, при токе, проходящем через человека, равном 500 мА, время его воздействия не должно превышать 0,1 с, при 250 мА – 0,2 с, при 165 мА – 0,3 с, при 100 мА – 0,5 с и т.д. Область применения УЗО весьма широка (электроустановки общественных и жилых зданий, административные и производственные помещения, мастерские, автозаправочные станции (АЗС), ангары, гаражи, складские помещения и т.д.).

Принцип действия УЗО основан на изменении каких- либо электрических величин, происходящих при замыкании фазы на корпус, снижении сопротивления изоляции сети ниже определенного предела при непосредственном прикосновении человека к токоведущим частям электроустановки и в других опасных для него случаях, на которые реагирует исполнительный орган, подающий сигнал для срабатывания защитного отключения.

Наиболее распространенным и совершенным является УЗО-Д, реагирующее на ток утечки (дифференциальный ток). Такие УЗО состоят из трех функциональных элементов: датчика, исполнительного органа и коммутационного (отключающего) устройства. Датчик улавливает токи утечки, стекающие с фазных проводов на землю в случае прикосновения человека к частям под напряжением. Сигнал о наличии тока утечки поступает в исполнительный орган, где усиливается и преобразуется в команду на отключение коммутационного устройства. Исполнительный орган УЗО может быть электронным или электромеханическим (с магнитоэлектрической защелкой). Второй вариант более надежный.

На рис. 24.13 приведена схема УЗО-Д (УЗО с дифференциальной защитой). Важнейшим функциональным блоком УЗО является дифференциальный трансформатор тока с кольцевым магнитопроводом 1. При отсутствии тока утечки, т.е. тока, проходящего через человека, рабочие токи в прямом (фазном) и обратном (нулевом рабочем) проводах будут равны и наводят в дифференциальном трансформаторе тока 1 с кольцевым магнитопроводом равные, но противоположно направленные потоки. При этом результирующий магнитный поток равен нулю и ток во вторичной обмотке отсутствует, УЗО не срабатывает. При появлении тока утечки (например, при прикосновении человека к корпусу электроустановки, на которой произошел пробой изоляции и появилось напряжение) ток в прямом проводе будет превышать обратный ток на величину тока утечки (ток утечки на рисунке показан точечной линией). Неравенство тока вызывает небаланс магнитных потоков, в результате чего в магнитопроводе дифференциального трансформатора 1 возникает магнитный поток, а в его вторичной обмотке – дифференциальный ток. Этот ток поступает к пусковому органу 2, и если его величина превышает пороговое (заданное) значение, то он срабатывает и воздействует на исполнительный механизм 3 , который за счет своего пружинного привода, спускового механизма и группы контактов размыкает электрическую сеть. В результате защищаемая УЗО электроустановка обесточивается. Для периодического контроля исправности УЗО нажимают кнопку Т (тест), создается искусственный дифференциальный (разностный) ток. Срабатывание УЗО означает, что оно в целом исправно.

Следует заметить, что из всех известных электрозащитных средств УЗО-Д – единственное, обеспечивающее защиту человека от поражения электрическим током при прямом прикосновении к токоведущим частям. Кроме того, оно осуществляет защиту электроустановок от возгораний, первопричиной которых являются утечки тока, вызванные повреждением изоляции, неисправной электропроводкой. Поэтому УЗО называют еще и "противопожарным сторожем".

Устройство защитного отключения характеризуется номинальным рабочим током подключаемой нагрузки (16, 25, 40 А), номинальным дифференциальным отключающим током (10, 30 или 100 мА), быстродействием (20–30 мс) и другими параметрами.

Согласно п. 1.7.80 ПУЭ не допускает применение УЗО, реагирующих на дифференциальный ток, в четырехпроводных трехфазных цепях (система TN-C). Но в случае необходимости применения УЗО для защиты отдельных электроприемников, получающих питание от системы TN-C, защитный РЕ -проводник электроприемника должен быть подключен к PEN -проводнику цепи, питающей электроприемник, до защитно-коммутационного аппарата (УЗО).

Рис. 24.13.

Следует заметить, что в системах TN-C (без отдельного защитного проводника), в незаземленных электроприемниках, изолированных от земли (например, холодильник или стиральная машина на изолирующем основании), УЗО, включенное в цепь питания этого электроприемника, не сработает, поскольку не будет цепи протекания тока утечки, т.е. не будет разностного (дифференциального) тока. При этом на корпусе электроустановки образуется опасный потенциал относительно земли.

Но если человек при этом коснется корпуса электроприемника и протекающий через него ток будет больше отключающего дифференциального тока УЗО (тока уставки), то

УЗО сработает и отключит электроприемник от сети. Жизнь человека будет спасена. О тсюда следует, что применение УЗО в сетях TN-C все же оправданно.

Защитное отключение – это система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижении сопротивления изоляции, неисправности заземления или зануления). Защитное отключение применяется тогда, когда трудно выполнить заземление или зануление, а также в дополнение к нему в некоторых случаях.

В зависимости от того, что является входной величиной, на изменение которой реагирует защитное отключение, выделяют схемы защитного отключения: на напряжение корпуса относительно земли; на ток замыкания на землю; на напряжение или ток нулевой последовательности; на напряжение фазы относительно земли; на постоянный и переменный оперативные токи; комбинированные.

Одна из схем защитного отключения на напряжение корпуса относительно земли приведена на рис. 13.2.

Рис. 13.2. Схема защитного отключения на напряжение корпуса относительно земли

Основным элементом схемы является защитное реле РЗ. При замыкании на корпус одной фазы корпус окажется под напряжением выше допустимого, сердечник реле РЗ втягивается и замыкает цепь питания катушки автоматического выключателя АВ, в результате чего электроустановка отключается.

Достоинством схемы является простота. Недостатки: необходимость иметь вспомогательное заземление RВ; неселективность отключения в случае присоединения нескольких корпусов к одному заземлению; непостоянство уставки при изменениях сопротивления RВ. Устройства защитного отключения, реагирующие на ток нулевой последовательности, применяют для любых напряжений как с заземленной, так и с изолированной нейтралью.

Пожары и взрывы

Пожары и взрывы являются самыми распространенными чрезвычайными событиями в современном индустриальном обществе.

Наиболее часто и, как правило, с тяжелыми социальными и экономическими последствиями происходят пожары на пожароопасных и пожаровзрывоопасных объектах.

К объектам на которых наиболее возможны взрывы и пожары, относятся:

Предприятия химической, нефтеперерабатывающей и целлюлозно-бумажной промышленности;

Предприятия, использующие газо- и нефтепродукты в качестве сырья для энергоносителей;

Газо- и нефтепроводы;

Все виды транспорта, перевозящие взрыво- и пожароопасные вещества;

Топливозаправочные станции;

Предприятия пищевой промышленности;

Предприятия, использующие лакокрасочные материалы и др.

ВЗРЫВО И ПОЖАРООПАСНЫМИ веществами и смесями являются;

Взрывчатые вещества и пороха, применяемые в военных и промышленных целях, изготавливаемые на промышленных предприятиях, хранящиеся на складах отдельно и в изделиях и транспортируемые различными видами транспорта;

Смеси газообразных и сжиженных углеводородных продуктов (метана, пропана, бутана, этилена, пропилена и др.), а также сахарной, древесной, мучной и пр. пыли с воздухом;

Пары бензина, керосина, природный газ на различных транспортных средствах, топливозаправочных станциях и др.

Пожары на предприятиях могут возникать также вследствие повреждения электропроводки и машин, находящихся под напряжением, топок и отопительных систем, емкостей с легковоспламеняющимися жидкостями и т. д.

Известны также случаи взрывов и пожаров в жилых помещениях по причине неисправности и нарушения правил эксплуатации газовых плит.

Характеристика горючих веществ

Вещества, способные самостоятельно гореть после удаления источника зажигания, называются горючими в отличие от веществ, которые на воздухе не горят и называются негорючими. Промежуточное положение занимают трудно горючие вещества, которые возгораются при действии источника зажигания, но прекращают горение после удаления последнего.

Все горючие вещества делятся на следующие основные группы.

1. ГОРЮЧИЕ ГАЗЫ (ГГ) - вещества, способные образовывать с воздухом воспламеняемые и взрывоопасные смеси при температурах не выше 50° С. К горючим газам относятся индивидуальные вещества: аммиак, ацетилен, бутадиен, бутан, бутилацетат, водород, винилхлорид, изобутан, изобутилен, метан, окись углерода, пропан, пропилен, сероводород, формальдегид, а также пары легковоспламеняющихся и горючих жидкостей.

2. ЛЕГКОВОСПЛАМЕНЯЮЩИЕСЯ ЖИДКОСТИ (ЛВЖ) - вещества, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки не выше 61° С (в закрытом тигле) или 66° (в открытом). К таким жидкостям относятся индивидуальные вещества: ацетон, бензол, гексан, гептан, диметилфорамид, дифтордихлорметан, изопентан, изопропилбензол, ксилол, метиловый спирт, сероуглерод, стирол, уксусная кислота, хлорбензол, циклогексан, этилацетат, этилбензол, этиловый спирт, а также смеси и технические продукты бензин, дизельное топливо, керосин, уайтспирт, растворители.

3. ГОРЮЧИЕ ЖИДКОСТИ (ГЖ) - вещества, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки выше 61° (в закрытом тигле) или 66° С (в открытом). К горючим жидкостям относятся следующие индивидуальные вещества: анилин, гексадекан, гексиловый спирт, глицерин, этиленгликоль, а также смеси и технические продукты, например, масла: трансформаторное, вазелиновое, касторовое.

4. ГОРЮЧИЕ ПЫЛИ (ГП) - твердые вещества, находящиеся в мелкодисперсном состоянии. Горючая пыль, находящаяся в воздухе (аэрозоль), способна образовывать с ним взрывчатые смеси. Осевшая на стенах, потолке, поверхностях оборудования пыль (аэрогель) пожароопасна.

Горючие пыли по степени взрыво- и пожароопасности делятся на четыре класса.

1-й класс - наиболее взрывоопасные - аэрозоли, имеющие нижний концентрационный предел воспламенения (взрываемости) (НКПВ) до 15 г/м3 (сера, нафталин, канифоль, пыль мельничная, торфяная, эбонитовая).

2-й класс - взрывоопасные - аэрозоли имеющие величину НКПВ от 15 до 65 г/м3 (алюминиевый порошок, лигнин, пыль мучная, сенная, сланцевая).

3-й класс - наиболее пожароопасные - аэрогели, имеющие величину НКПВ, большую 65 г/м3 и температуру самовоспламенения до 250° С (табачная, элеваторная пыль).

4-й класс - пожароопасные - аэрогели, имеющие величину НКПВ большую 65 г/м3 и температуру самовоспламенения, большую 250° С (древесные опилки, цинковая пыль).

В соответствии с НПБ 105-03 здания и сооружения, в которых размещаются производства, подразделяются на пять категорий.

Категория помещения Характеристика веществ и материалов находящихся (обращающихся) в помещении
А взрыво- пожароопасная Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28° С в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или один с другим в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5кПа.
Б взрыво- пожароопасная Горючие пыли или волокна, легковоспламеняющиеся жидкости с температурой вспышки более 28° С, горючие жидкости в таком количестве, что могут образовывать взрывоопасные пыле- или паро-воздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа.
В1 - В4 пожароопасная Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или один с другим только гореть при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А или Б
Г Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени, горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива
Д Негорючие вещества и материалы в холодном состоянии

ПРИМЕРЫ производств, размещенных в помещениях категорий А, Б, В, Г и Д.

Категория А: цехи обработки и применения металлического натрия и калия, нефтеперерабатывающие и химические производства, склады бензина и баллонов для горючих газов, помещения стационарных кислотных и щелочных аккумуляторных установок, водородные станции и др.

Характер развития пожара и последующего за ним взрыва в значительной мере зависит от огнестойкости конструкций - свойства конструкций сохранять несущую и ограждающую способность в условиях пожара. В соответствии со СНиП 2.01.02.85 различают пять степеней огнестойкости зданий и сооружений: I, II, III, IV, V.

Огнестойкость строительных конструкций характеризует следующие параметры:

1) минимальный предел огнестойкости строительной конструкции - время в часах от начала воздействия огня на конструкцию до образования в ней сквозных трещин или достижения температуры 200° С на поверхности, противоположной воздействию огня.

2) максимальный предел распространения огня по строительным конструкциям определяемый визуально размер повреждения в сантиметрах, которым считается обугливание или выгорание материалов, а также оплавление термопластичных материалов за пределами зоны нагрева.

Все строительные материалы по возгораемости делятся на три группы: НЕСГОРАЕМЫЕ, ТРУДНОСГОРАЕМЫЕ и СГОРАЕМЫЕ.

К НЕСГОРАЕМЫМ материалам и конструкциям относятся применяемые в строительстве металлы и неорганические минеральные материалы и изделия из них: песок, глина, гравий, асбест, кирпич, бетон и др.

К ТРУДНОСГОРАЕМЫМ относятся материалы и изделия из них, состоящие из сгораемых и несгораемых компонентов: кирпич саманный, гипсовая сухая штукатурка, фибролит, ленолиум, эбонит и др.

К СГОРАЕМЫМ относятся все материалы органического происхождения: картон, войлок, асфальт, рубероид, толь кровельный и др.

Основные понятия о пожарах и взрывах.

ПОЖАР - это неконтролируемое горение вне специального очага, наносящее материальный ущерб.

ГОРЕНИЕ - химическая реакция окисления, сопровождающаяся выделением большого количества тепла и обычно свечением. Для возникновения горения необходимо наличие горючего вещества, окислителя (обычно кислорода воздуха, а также хлор, фтор, йод, бром, оксиды азота) и источника зажигания. Кроме того необходимо, чтобы горючее вещество было нагрето до определенной температуры и находилось в определенном количественном соотношении с окислителем, а источник зажигания имел бы достаточную энергию.

ВЗРЫВ - чрезвычайно быстрое выделение энергии в ограниченном объеме, связанное с внезапным изменением состояния вещества и сопровождающееся образованием большого количества сжатых газов, способных производить механическую работу.

Взрыв является частным случаем горения. Но с горением в обычном понятии его роднит лишь то, что это окислительная реакция. Для взрыва характерны следующие особенности:

Большая скорость химического превращения;

Большое количество газообразных продуктов;

Мощное дробящее (бризантное) действие;

Сильный звуковой эффект.

Продолжительность взрыва составляет время порядка 10-5...10-6 с. Поэтому его мощность весьма велика, хотя запасы внутренней энергии у взрывчатых веществ и смесей не выше, чем у горючих веществ, сгорающих в обычных для них условиях.

При анализе взрывных явлений рассматривают две разновидности взрыва: взрывное горение и детонация.

К первому относятся взрывы топливовоздушных смесей (смеси углеводородов, паров нефтепродуктов, а также сахарной, древесной, мучной и прочей пыли с воздухом). Характерной особенностью такого взрыва является скорость горения порядка нескольких сотен м/с.

ДЕТОНАЦИЯ - весьма быстрое разложение взрывчатого вещества (газо-воздушной смеси). распространяющееся по нему со скоростью в несколько км/с и характеризующееся особенностями, присущими любому взрыву, указанному выше. Детонация характерна для военных и промышленных взрывчатых веществ, а также для топливно-воздушных смесей, находящихся в замкнутом объеме.

Отличие взрывного горения от детонации состоит в скорости разложения, у последней она на порядок выше.

В заключении следует сравнить три вида разложения: обычное горение, взрывное и детонацию.

Процессы ОБЫЧНОГО ГОРЕНИЯ протекают сравнительно медленно и с переменной скоростью - обычно от долей сантиметра до нескольких метров в секунду. Скорость горения существенно зависит от многих факторов, но, главным образом, от внешнего давления, заметно возрастая с повышением последнего. На открытом воздухе этот процесс протекает сравнительно вяло и не сопровождается сколько-нибудь значительным звуковым эффектом. В ограниченном же объеме процесс протекает значительно энергичнее, характеризуется более или менее быстрым нарастанием давления и способностью газообразных продуктов горения производить работу.

ВЗРЫВНОЕ ГОРЕНИЕ по сравнению с обычным представляет собой качественно иную форму распространения процесса. Отличительными чертами взрывного горения являются: резкий скачок давления в месте взрыва, переменная скорость распространения процесса, измеряемая сотнями метров в секунду и сравнительно мало зависящая от внешних условий. Характер действия взрыва - резкий удар газов по окружающей среде, вызывающей дробление и сильные деформации предметов на относительно небольших расстояниях от места взрыва.

ДЕТОНАЦИЯ представляет собой взрыв, распространяющийся с максимально возможной для данного вещества (смеси) и данных условий, (например, концентрацией смеси) скоростью, превышающей скорость звука в данном веществе и измеряемой тысячами метров в секунду. Детонация не отличается по характеру и сущности явления от взрывного горения, но представляет собой его стационарную форму. Скорость детонации является величиной, постоянной для данного вещества (смеси определенной концентрации). В условиях детонации достигается максимальное разрушительное действие взрыва.

Систему защиты, обеспечивающую автоматическое отключение всех фаз или полюсов аварийного участка сети за полное время отключения не более 0,2 с, называют защитным отключением .
Независимо от состояния нейтрали питающей системы любое однофазное замыкание на корпус приводит к появлению напряжения относительно земли на корпусах электрооборудования. Это обстоятельство используют при построении универсальной защиты, которая обеспечивает отключение автоматами поврежденного электрооборудования при появлении некоторой заданной разности потенциалов между корпусом и землей. Такая система идентична заземлению и основана на автоматическом отключении электроприемника, если на его металлических частях, нормально не находящихся под напряжением, последнее появляется. Защитное отключение применяют для систем с изолированной и глухозаземленной нейтралью.

Рис. 1. Принципиальная схема защитного отключения:
1 - корпус электроприемника; 2 - отключающая пружина; 3 - контакты сетевого контактора; 4 - защелка; 5 - сердечник катушки; б - отключающая катушка; 7, 8 - заземлители; 9 контакт

Рассмотрим действие защитного отключения при возникновении напряжения на корпусе одиночного электроприемника в результате повреждения его изоляции. Здесь возможны два случая: электроприемник не заземлен и электроприемник имеет заземление.
Первому случаю соответствует разомкнутое положение контакта 9 (рис. 1). На некотором расстоянии от защищаемого электроприемника забивают в землю заземлитель 7 (в том случае, если нет естественных заземлителей, которые не должны иметь электрической связи с корпусом / электроприемника). Защитный отключатель позволяет произвести разрыв цепи электроснабжения контактами сетевого контактора при подаче напряжения на катушку 6.
При обесточенном состоянии катушки 6 ее сердечник 5 удерживает защелку 4, не позволяя пружине 2 разомкнуть контакты 3 (на схеме контакты показаны разомкнутыми, хотя сердечник удерживает защелку). Один конец обмотки катушки присоединен к корпусу 7 электроприемника, второй - к выносному заземлителю 7. В случае повреждения изоляции между корпусом электроприемника и выносным заземлителем 7 появится фазное напряжение. Отключающая катушка 6 окажется под напряжением, и по ее обмотке потечет ток. Сердечник 5 втянется и освободит удерживающую защелку 4. Пружина 2 разомкнет контакты 3 сетевого контактора, и цепь питания электроустановки разорвется. Напряжение прикосновения на корпусе электроприемника исчезнет, соприкосновение с ним станет безопасным.
Второму случаю, когда корпус электроприемника заземлен, соответствует замкнутое положение контакта 9. При возникновении повреждения изоляции на корпусе электроприемника появится напряжение, значение которого будет определять падение напряжения в заземлителе, равное току замыкания на землю, умноженному на сопротивление заземления заземлителя. Принципиальной разницы в действии защиты в первом и втором случаях нет.
Основой защиты с помощью защитного отключения является быстрое отключение поврежденного электроприемника.


Рис. 2. Схема защитного отключения при изолированной нейтрали

Согласно ПУЭ, защитное отключение рекомендуется применять в следующих установках: электроустановки с изолированной нейтралью, к которым предъявляются повышенные требования в отношении безопасности (в дополнение к устройству заземлений). Схема такого защитного отключения показана на рис. 2. При появлении в катушке реле КА тока замыкания на землю его размыкающий контакт в цепи катушки контактора КМ размыкается и контактор своими главными контактами отключает электродвигатель М от сети;
электроустановки с глухозаземленной нейтралью напряжением до 1000 В, корпуса которых не имеют присоединения к заземленному нейтральному проводу, поскольку выполнение такого присоединения затруднено;
передвижные установки, если заземление их не может быть выполнено в соответствии с требованиями ПУЭ.
Защитное отключение отличается универсальностью и быстродействием, поэтому его использование в сетях как с глухозаземленной, гак и с изолированной нейтралью весьма перспективно. Особенно целесообразно использовать его в сетях напряжением 380/220 В.
Недостатком защитного отключения является возможность отказа отключения в случае пригоралия контактов коммутационного устройства или обрыва проводов.

Защитник Windows – это встроенный компонент операционной системы, который помогает защитить компьютер от вредоносных программ, таких как вирусы, программы-шпионы и другие, потенциально небезопасные приложения.

По сути Windows Defender это тот же антивирус, только бесплатный, если не учитывать стоимость самой операционной системы. Так зачем же его отключать, если он выполняет такие полезные функции, за него не надо дополнительно платить и отдельно устанавливать?

Дело в том, что защитник Windows выполняет только базовую защиту компьютера. Антивирусы сторонних разработчиков справляются с защитой ПК намного лучше. Можете сами в этом убедиться, посмотрев на каком месте находится Defender по данным исследований лаборатории AV-Test (изображение кликабельно).

С другой стороны, если вы «прилежный» пользователь компьютера и сети Интернет, не заходите на подозрительные сайты, не скачиваете и не используете пиратский софт, используете только проверенные носители информации, то Защитника Windows 10 вам будет вполне достаточно для обеспечения минимальной безопасности.

Но вернемся к основной теме статьи. Как все-таки отключить защитник Windows 10?

В первую очередь следует отметить, что Defender сам автоматически отключается при установке дополнительного антивирусного программного обеспечения, при условии, что система корректно распознает ПО стороннего разработчика.

Далее рассмотрим вариант, который я сознательно не включал в общий список способов деактивации Defender. Дело в том, что он имеет только временное действие. Через некоторое время или после перезагрузки компьютера защитник вновь перейдет в рабочее состояние. Это особенность Windows 10. В Windows 8.1 таким методом можно было полноценно отключить встроенный антивирус.

  1. Откройте параметры компьютера (Windows + I ).
  2. Зайдите в раздел «Обновление и безопасность ».
  3. Выберите пункт «Защитник Windows » в меню слева.
  4. Отключите параметр «Защита в реальном времени »

Теперь рассмотрим способы, которые полностью отключают Defender.

Отключение Защитника Windows 10 навсегда

Способ 1 – Через реестр

1. Откройте окно «Выполнить » (Windows +R ), введите команду regedit и нажмите «ОК ».

2. Перейдите к следующей ветви реестра:

HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows Defender

3. Кликните правой кнопкой мыши на пустом месте слева и создайте параметр DWORD (32 бита) с именем .

4. Двойным щелчком мыши откройте только что созданный параметр, присвойте ему значение 1 и нажмите «ОК ».

Теперь можете закрыть редактор реестра и проверить действие этого метода через параметры компьютера. Там вы можете убедиться, что все настройки, связанные с Defender стали неактивными. Вы также можете попробовать запустить встроенный антивирус, нажав ссылку в самом низу «Открыть Защитник Windows ».

В результате вы получите сообщение о том, что защитник Windows 10 отключен групповой политикой.

Если вы захотите вновь активировать отключенный защитник Windows 10, то достаточно удалить параметр DisableAntiSpyware или изменить его значение на 0.

Способ 2 – С помощью редактора локальной групповой политики

1. Запустите команду gpedit.msc через окно «Выполнить » (Windows + R ).

2. Перейдите к следующему разделу:

Конфигурация компьютера -> Административные шаблоны -> Компоненты Windows -> Endpoint Protection

В некоторых версиях (сборках) Windows 10 этот раздел может называться Windows Defender или Защитник Windows .

3. В этом разделе слева найдите пункт «» и откройте его.

4. Активируйте этот параметр, как показано на изображении ниже и нажмите «ОК ».

Закройте редактор групповой политики и можете, как и в первом способе, проверить отключился ли Defender.

Если нужно обратно включить Защитник Windows, выполните все действия, описанные выше, и присвойте параметру значения «Не задано ». При этом для активации встроенного антивируса может потребоваться перезагрузка.

Способ 3 – Программа NoDefender

Если описанные выше способы не помогли, вы можете попробовать утилиты, специально созданные для отключения Защитника Windows. Одной из таких является NoDefender .

Внимание! Используйте это способ только в крайнем случае. Программы такого плана официально не поддерживаются разработчиками Windows, и поэтому никто не дает никаких гарантий, что они не повлияют на работоспособность операционной системы.

Перед использованием NoDefender обязательно делайте резервную копию системы. Также стоит отметить, что процесс отключения защитника с помощью этой утилиты является необратимым. По крайней мере, функционал программы не позволяет обратно включить Defender.

2. Распакуйте полученный архив и запустите программу.

3. В первом окне программы нажмите «Next ».

5. Отключите следующие параметры: защита в реальном времени, облачная защита и автоматическая отправка образцов .

7. Затем нажмите «Next » и на последнем шаге «Exit ».

Все. Защитник Windows 10 отключен. Теперь если попробуете активировать Defender, будет выведено сообщение «Приложение отключено и не ведет наблюдение за компьютером ».

Разработчики приложения утверждают, что повторный запуск NoDefender позволяет снова активировать защитник. У меня сделать это не получилось.

Под защитным отключением понимают быстрое, за время не более 200 мс, автоматическое отсоединение от источника питания всех фаз потребителя или части электропроводки в случае если повреждена изоляция или имеет место иная аварийная ситуация, угрожающая человеку поражением электрическим током.

Защитное автоматическое отключение питания – автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.

Защитное отключение может быть как единственной и главной мерой защиты, так и дополнительной мерой к сетям заземления и зануления применительно к электроустановкам с рабочим напряжением до 1000 вольт.

Назначение защитного отключения – обеспечение электробезопасности, что достигается за счет ограничения времени воздействия опасного тока на человека.

Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током. Такая опасность может возникнуть при:

    замыкании фазы на корпус электрооборудования;

    при снижении сопротивления изоляции фаз относительно земли ниже определенного предела;

    появлении в сети более высокого напряжения;

    прикосновении человека к токоведущей части, находящейся под напряжением.

В этих случаях в сети происходит изменение некоторых электрических параметров: например, могут измениться напряжение корпуса относительно земли, напряжение фаз относительно земли, напряжение нулевой последовательности и др. Любой из этих параметров, а точнее говоря – изменение его до определенного предела, при котором возникает опасность поражения человека током, может служить импульсом, вызывающим срабатывание защитно-отключающегося устройства, т. е. автоматическое отключение опасного участка сети.

По настоящее время устройства защитного отключения обычно применялись на электроустановках четырех видов:

    Передвижные установки с изолированной нейтралью (в таких условиях в принципе возведение полноценного заземляющего устройства проблематично). Защитное отключение применяется тогда либо совместно с заземлением, либо как самостоятельная защитная мера.

    Стационарные установки с изолированной нейтралью (где необходима защита электрических машин, с которыми работают люди).

    Мобильные и стационарные установки с нейтралью любого типа, когда имеет место высокая степень угрозы поражения электрическим током, или если установка функционирует во взрывоопасных условиях.

    Стационарные установки с глухозаземленной нейтралью на некоторых потребителях большой мощности и на удаленных потребителях, где зануления недостаточно для защиты или где оно в качестве защитной меры не вполне эффективно, не дает достаточной кратности тока замыкания фазы на землю.

Для реализации функции защитного отключения применяли специальные устройства защитного отключения. Их схемы могут отличаться, конструкции зависят от особенностей защищаемой электроустановки, от характера нагрузки, от режима заземления нейтрали и т. д.

Прибор защитного отключения – совокупность отдельных элементов, которые реагируют на изменение какого-либо параметра электрической сети и дают сигнал на отключение автоматического выключателя. Устройство защитного отключения в зависимости от параметра, на который оно реагирует, можно отнести к тому или иному типу, в том числе к типам устройств, реагирующих на напряжение корпуса относительно земли, ток замыкания на землю, напряжение фазы относительно земли, напряжение нулевой последовательности, ток нулевой последовательности, оперативный ток и др.

Здесь может быть применено специально установленное реле защиты, которое устроено так же, как и высокочувствительные реле напряжения с размыкающимися контактами, которые включаются в цепь питания магнитного пускателя, скажем, электродвигателя.

Назначение защитного отключения заключается в том, чтобы одним прибором осуществлять совокупность защиты либо некоторые из следующих ее видов:

    от однофазных замыканий на землю или на элементы электрооборудования, нормально изолированные от напряжения;

    от не полных замыканий, когда снижение изоляции одной из фаз создает опасность поражения человека;

    от поражения при прикосновении человека к одной из фаз электрооборудования, если прикосновение произошло в зоне действия защиты прибора.


В качестве примера можно привести простое устройство защитного отключения на базе реле напряжения. Обмотка реле включается между корпусом защищаемого оборудования и заземлителем.

В условиях, когда обмотка реле имеет сопротивление сильно превосходящее таковое у вспомогательного заземлителя, вынесенного за пределы зоны растекания заземления защиты, - обмотка реле К1 окажется под напряжением корпуса относительно земли.

Тогда в момент аварийного пробоя на корпус, напряжение это будет больше напряжения срабатывания реле и реле сработает, замкнув цепь отключения автоматического выключателя Q1 или разомкнув своим срабатыванием цепь питания обмотки магнитного пускателя Q2.

Другой вариант простого устройства защитного отключения для электроустановок - это (реле максимального тока). Его обмотка включается в разрыв провода зануления, благодаря чему контакты аналогичным образом разомкнут цепь питания обмотки магнитного пускателя если замкнут цепь питания обмотки автоматического выключателя. Вместо обмотки реле, кстати, иногда можно использовать обмотку выключателя - расцепителя в качестве реле максимального тока.

Когда устройство защитного отключения вводится в эксплуатацию, его обязательно проверяют: проводятся плановые полные и частичные проверки, чтобы убедиться, что устройство работает надежно, что отключения когда нужно происходят.

Раз в три года проводят полную плановую проверку, зачастую вместе с ремонтом сопряженных цепей электроустановок. В проверку входят также испытания изоляции, проверка уставок защиты, тесты устройств защиты и общий осмотр аппаратуры и всех соединений.

Что касается частичных проверок, то их проводят время от времени в зависимости от частных условий, однако в них входят: проверка изоляции, общий осмотр, тесты защиты в действии. Если защитное устройство работает не вполне корректно, проводят более глубокую проверку по специальному алгоритму.

В наше время наибольшее распространение защитное отключение получило в электроустановках, используемых в сетях напряжением до 1 кВ с заземленной или изолированной нейтралью.

Электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью . Для защиты от поражения электрическим током при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания.

При выполнении автоматического отключения питания в электроустановках напряжением до 1 кВ все открытые проводящие части должны быть присоединены к глухозаземленной нейтрали источника питания, если применена система TN, и заземлены, если применены системы IT или ТТ. При этом характеристики защитных аппаратов и параметры защитных проводников должны быть согласованы, чтобы обеспечивалось нормированное время отключения поврежденной цепи защитно-коммутационным аппаратом в соответствии с номинальным фазным напряжением питающей сети.

Защита осуществляется , которое, работая в дежурном режиме, постоянно контролирует условия поражения человека электрическим током.


УЗО применяют в электроустановках до 1 кВ:

    в передвижных эл. установках с изолированной нейтралью (особенно если затруднено создание заземляющего устройства. Может применяться как в виде самостоятельной защиты, так и в сочетании с заземлением);

    в стационарных электроустановках с изолированной нейтралью для защиты ручных электрических машин в качестве единственной защиты, и в дополнение к другим;

    в условиях повышенной опасности поражения электрическим то- ком и взрывоопасности в стационарных и передвижных электроустановках с различными режимами нейтрали;

    в стационарных электроустановках с глухозаземленной нейтралью на отдельных удаленных потребителях электрической энергии и потребителя большой номинальной мощности, на которых защита занулением не достаточно эффективна.

Принцип работы УЗО состоит в том, что оно постоянно контролирует входной сигнал и сравнивает его с наперед заданной величиной (уставкой). Если входной сигнал превышает уставку, то устройство срабатывает и отключает защищенную электроустановку от сети. В качестве входных сигналов устройств защитного отключения используют различные параметры электрических сетей, которые несут в себе информацию об условиях поражения человека электрическим током.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари