Подпишись и читай
самые интересные
статьи первым!

Техническое обслуживание и ремонт средств электрохимической защиты подземных стальных газопроводов от коррозии. Катодная защита от коррозии

Больше 15 лет я разрабатываю станции катодной защиты. Требования к станциям четко формализованы. Есть определенные параметры, которые должны быть обеспечены. А знание теории защиты от коррозии совсем не обязательно. Гораздо важнее знание электроники, программирования, принципов конструирования электронной аппаратуры.

Создав этот сайт, я не сомневался, что когда-нибудь там появится раздел катодная защита. В нем я собираюсь писать о том, что я хорошо знаю, о станциях катодной защиты. Но как-то не поднимается рука писать о станциях, не рассказав, хотя бы коротко, о теории электрохимической защиты. Постараюсь рассказать о таком сложном понятии как можно проще, для не профессионалов.

По сути это источник вторичного электропитания, специализированный блок питания. Т.е. станция подключается к питающей сети (как правило ~ 220 В) и вырабатывает электрический ток с заданными параметрами.

Вот пример схемы системы электрохимической защиты подземного газопровода с помощью станции катодной защиты ИСТ-1000.

Станция катодной защиты установлена на поверхности земли, вблизи от газопровода. Т.к. станция эксплуатируется на открытом воздухе, то она должна иметь исполнение IP34 и выше. В этом примере используется современная станция, с контроллером GSM телеметрии и функцией стабилизации потенциала.

В принципе, бывают очень разными. Они могут быть трансформаторными или инверторными. Могут быть источниками тока, напряжения, иметь различные режимы стабилизации, различные функциональные возможности.

Станции прошлых лет это громадные трансформаторы с тиристорными регуляторами. Современные станции это инверторные преобразователи с микропроцессорным управлением и GSM телемеханикой.

Выходная мощность устройств катодной защиты, как правило, находится в диапазоне 1 – 3 кВт, но может доходить и до 10 кВт. Станциям катодной защиты и их параметрам посвящена отдельная статья.

Нагрузкой для устройства катодной защиты является электрическая цепь: анодное заземление – почва – изоляция металлического объекта. Поэтому требования к выходным энергетическим параметрам станций, прежде всего, определяют:

  • состояние анодного заземления (сопротивление анод-почва);
  • почва (сопротивление грунта);
  • состояние изоляции объекта защиты от коррозии (сопротивление изоляции объекта).

Все параметры станции определяются при создании проекта катодной защиты:

  • рассчитываются параметры трубопровода;
  • определяется величина защитного потенциала;
  • рассчитывается сила защитного тока;
  • определяется длина защитной зоны;
  • 0 Рубрика: . Вы можете добавить в закладки.

Приемка в эксплуатацию электрозащитных установок. Все вновь смонтированные устройства и установки электрической защиты газопроводов от коррозии принимаются в эксплуатацию комиссией в составе представителей:

Ш конторы или службы защиты управления;

Ш эксплуатационного треста или конторы;

Ш заказчика;

Ш строительно-монтажной организации.

При приемке установок подрядчик представляет комиссии следующую исполнительную техническую документацию:

Ш исполнительный план размещения установок электрозащиты с привязками в масштабе 1: 500;

Ш паспорт на установку электрозащиты;

Ш акты на скрытые работы по прокладке дренажного кабеля, по монтажу контура анодного заземления (для станций катодной защиты), по монтажу защитного контура заземления, по проверке сопротивления растеканию контура анодного заземления (для станций катодной защиты), по монтажу ЛЭП и др.;

Ш разрешение энергоснабжающей организации на подключение установки к ЛЭП.

В присутствии членов комиссии должно быть произведено опробование установки электрозащиты с соответствующими измерениями. Ввод в эксплуатацию защитных устройств и установок разрешается на основании актов приемочных комиссий. При вводе установки в эксплуатацию проверяется влияние ее на соседние металлические сооружения. Такая проверка должна производится в присутствии представителей владельцев этих сооружений.

Техническое обслуживание и ремонт установок электрохимической защиты

Эксплуатация дренажных установок заключается в техническом обслуживании (осмотре) установок, контроле работы их и, если требуется, изменение режима работы, а также в периодических контрольных измерениях на защищаемых газопроводах.

При техническом обслуживании (осмотре) дренажных установок производятся не реже четырех раз в месяц и включает в себя:

Ш внешний осмотр всех элементов дренажа с целью выявления внешних дефектов;

Ш проверка исправности предохранителей;

Ш проверка состояния контактов у имеющихся на дренаже реле;

Ш чистка контактов реле, а также чистка дренажа (шкафа) от пыли, снега, грязи и т.п.

При контроле работы дренажных установок производится:

Ш измерение средней величины силы тока, проходящего в цепи дренажа, и определение направления тока, при котором дренаж работает;

Ш измерение величины и знака разности потенциалов между защищаемым сооружением и рельсами (минусовой шиной), при которой срабатывает поляризованный дренаж;

Ш определение средней величины этой разности потенциалов;

Ш измерение разности потенциалов между защищаемым сооружением и землей в точке присоединения дренажа.

При эксплуатация катодных станций производят технический осмотр и контроль за их работой.

В технический осмотр входят:

Ш проверка исправности монтажа предохранителей;

Ш очистка агрегатов от снега, пыли и грязи.

Осмотр производится не реже двух раз в месяц по графику. Результаты осмотра регистрируются в журнале.

Контроль за работой станции катодной защиты (СКЗ) газопроводов заключается в измерении:

Ш величины силы тока СКЗ;

Ш величины выходного напряжения катодной станции;

Ш разности потенциалов газопровод - земля.

Эксплуатация протекторов заключается в техническом осмотре и контроле их работы.

Технический осмотр протекторных установок производится один раз в шесть месяцев, а контроль эффективности работы - два раза в год.

При контроле работы протекторных установок проводят измерение:

Ш потенциалов защищаемого газопровода по отношению к земле, как в пунктах присоединения протекторов, так и на участках между протекторами;

Ш силы тока в цепи протектор - газопровод;

Ш электрохимического потенциала протектора по отношению к земле.

Протектор считается непригодным к дальнейшему использованию, если износ его составляет 90%.Такие протекторы заменяют новыми.

Текущий ремонт защитных установок выполняют в процессе эксплуатации на основании заключений технического осмотра.

Текущий ремонт установок электрохимической защиты включает:

Ш все виды работ по техническому осмотру и обслуживанию с проверкой эффективности работы устанок электрохимической защиты;

Ш ремонт выпрямителя и других элементов схемы;

Ш измерение сопротивления изоляции токоведущих частей;

Ш устранение обрывов дренажных линий;

Ш проведение полной ревизии оборудования.

Капитальный ремонт установок электрохимической защиты производят оринтировочно один раз в пять лет и включает работы по замене анодных заземлителей, дренажных и питающих линий. После капитального ремонта основное оборудование электрозащиты проверяется в работе под нагрузкой в течении, указанного заводом изготовителем, но не менее 24 часов. На период текущего и капитального ремонта установки демонтируют и заменяют аналогичными из резерва.

г. Москва, 1981 г.

"Инструкция по проектированию электрохимической защиты подземных металлических сооружений и кабелей связи от коррозии" разработана войсковой частью 33859, согласована с Государственной экспертизой проектов, Центральным Военпроектом, войсковой частью 14262, войсковой частью 54240, войсковой частью 44011, войсковой частью 52678, войсковой частью 52686 и Конторой по защите от электрокоррозии подземных сооружений и сетей" УГХ Московской обл.

Проектным организациям, занимающимся проектированием защиты подземных металлических сооружений от коррозии, необходимо руководствоваться настоящей Инструкцией.

1. Введение

Настоящая инструкция разработана на основании указания Технического управления капитального строительства Минобороны 1979 года в соответствии с требованиями ГОСТ 9.015-74 "Инструкции по защите городских подземных трубопроводов от электрохимической коррозии" и "Правил безопасности в газовом хозяйстве ".

При разработке инструкции использован опыт эксплуатации устройств электрозащиты, построенной по проектам, разработанным в/ч 33859, для защиты различных подземных металлических сооружений (ПМС), а также многолетний опыт организаций, эксплуатирующих различные виды электрозащитных установок в Московской области.

Настоящая инструкция распространяется на эксплуатацию установок дренажной, катодной и протекторной защиты трубопроводов, кабелей связи, емкостей и резервуаров.

При эксплуатации защитных установок необходимо учитывать действующие в отдельных районах СССР ведомственные и территориальные инструкции на эксплуатацию средств электрозащиты ПМС от коррозии.

Виды работ и периодичность их выполнения принята в соответствии с действующей нормативной документацией.

2. Общие указания

2.1. Защитные устройства вводят в эксплуатацию после завершения пусконаладочных работ и испытания на стабильность е течение 72 часов.

2.2. Перед приемкой и включением электрозащиты в эксплуатацию необходимо убедиться в правильности выполнения строительно-монтажных работ.

2.3. Монтаж электрозащиты должен быть выполнен в соответствии с проектной документацией. Все отступления от проекта должны быть согласованы с проектной и другими заинтересованными организациями.

2.4. Электрические параметры внешней цепи электрозащитной установки должны соответствовать данным, указанным в технической документации установки.

2.5. Смонтированные электрозащитные установки должны включать в себя все необходимые элементы, предусмотренные проектом и условиями согласований проекта.

2.6. Электрозащитную установку включают в эксплуатацию только в том случае, если она смонтирована с учетом правил техники безопасности и "Правил устройства электроустановок" (ПУЭ).

2.7. До включения защитной установки, по всей длине зоны защиты защищаемых и смежных ПМС выполняются измерения потенциалов "Ис-з" в нормальном режиме (т.е. без включения электрозащитной установки).

2.8. Приемку электрозащиты в эксплуатацию производит комиссия в составе:

Представителя заказчика;

Представителя строительной организации ;

Представителя пусконаладочной организации;

Представителя эксплуатационной организации;

Представителя конторы "Подземметаллзащиты, где это необходимо и допускается условиями режима;

Представителя проектной организации (по необходимости).

2.9. При сдаче защитной установки в эксплуатацию комиссии должна быть представлена заказчиком следующая документация:

Проект на строительство электрозащиты;

Акты на выполнение строительно-монтажных работ;

Исполнительные чертежи М 1:500 и схемы с нанесением зоны защиты 1:2000;

Справка о результатах наладки защитной установки;

Справка о влиянии защитной установки на смежные ПМС;

Паспорта электрозащитных установок;

Разрешение на подключение мощности к электрической сети;

Акты на скрытые работы;

Акты на проверку сопротивления изоляции кабелей;

Акты на проверку сопротивления растеканию контуров анодного и защитного заземлений;

Акты на приемку электрозащитных установок в эксплуатацию.

2.10. После ознакомления с исполнительной документацией приемная комиссия проверяет эффективность действия защитных установок. Для этого измеряются электрические параметры установок и потенциалы ПМС на участке, где в соответствии с отчетом по наладке зафиксированы защитные потенциалы.

2.11. Влияние защиты на смежные ПМС определяется по величине потенциалов этих ПМС в пунктах, оговоренных в отчете по наладке.

2.12. Приемка в эксплуатацию защитной установки оформляется актом, в котором отражаются:

Отступления от проекта и недоделки, если таковые имеются;

Перечень исполнительной документации;

Рабочие параметры электрозащиты;

Значения потенциалов ПМС в пределах защищаемого участка;

Влияние защиты на смежные ПМС.

2.13. В случае, если отступления от проекта или недоделки отрицательно сказываются на эффективности защиты, либо противоречат требованиям эксплуатации, в акте указываются способы и сроки их устранения, а также сроки представления защитной установки к повторному предъявлению.

2.14. В случае обнаружения неэффективности построенной защиты или ее вредного влияния на смежные ПМС организация, автор проекта защиты, разрабатывает дополнительную проектную документацию, предусматривающую устранение обнаруженных недостатков.

2.15. Каждой принятой в эксплуатацию защитной установке присваивается порядковый номер и заводится специальный журнал, в который заносятся данные приемных испытаний. Журнал используется также и при плановой эксплуатации защитной установки.

3. Оснащение службы эксплуатации электрозащитных установок

3.1. Служба эксплуатации должна иметь следующий минимум измерительной техники и материалов:

Измеритель заземлений "М-416" (МС-08, МС-07) для измерения сопротивления растеканию контуров анодных, защитных заземлений и удельного сопротивления грунта;

Ампервольтметр "М-231" для визуальных измерений потенциалов "ПМС - земля";

Милливольтметр "Н-399" (Н-39); для измерений и автоматической записи потенциалов "ПМС - земля" и обнаружения блуждающих токов;

Планиметр полярный, для обсчёта лент самописцев;

Комбинированный прибор "Ц-4313" (Ц-4315) для измерения напряжения, тока и сопротивлений;

Мегомметр M-1101;

Индикатор напряжения МИН-1 (УНН-90);

Стальные электроды сравнения для измерения потенциалов в зоне блуждающих токов при "И ПМС-з " > 1 B;

Медносульфатные электроды сравнения для измерения потенциалов на оболочках кабелей и на трубопроводах при " И ПМС-з " < 1 В;

Электроды для измерения удельного сопротивления грунта и сопротивления растеканию контуров заземлений;

Провод различных сечений и марок для сборки электроизмерительных цепей;

Таблица № 1

Величины минимальных поляризационных (защитных) потенциалов

Металл сооружения

Значение минимального поляризационного (защитного) потенциала, В, по отношению к медносульфатному электроду сравнения

Среда

Сталь

0,85

Любая

Свинец

0,50

Кислая

0,72

Щелочная

Алюминий

0,85

Любая

Величины максимальных поляризационных (защитных) потенциалов

Металл сооружения

Защитные покрытия

Значение максимального поляризационного (защитного) потенциала, В, по отношению к медносульфатному электроду сравнения

Среда

Сталь

С защитным покрытием

1,10

Любая

Сталь

Без защитного покрытия

Не ограничивается

Любая

Свинец

С защитным покрытием и без него

1,10

Кислая

1,30

Щелочная

Алюминий

С частично поврежденным покрытием

1,38

Любая

Коррозионная активность грунтов по отношению к углеродистой стали в зависимости от их удельного электрического сопротивления

Наименование показателя

Удельное электрическое сопротивление грунта, Ом

Св. 100

Св. 20 до 100

Св. 10 до 20

Св. 5 до 10

До 5

Коррозионная активность

Низкая

Средняя

Повышенная

Высокая

Весьма высокая

Коррозионная активность

Низкая

Средняя

Повышенная

Высокая

Весьма высокая

6. Методика выполнения электрометрических работ

6.1. Контроль величины защитного тока и выходного напряжения производится по приборам электрозащитой установки. Проверка этих приборов производится в сроки, предусмотренные инструкцией завода-изготовителя. При отсутствии вышеуказанных приборов величина тока и выходного напряжения измеряются переносными приборами.

6.2. Измерение разности потенциала "сооружение - земля" при проверке режима работы катодной станции или дренажа и при снятии общей потенциальной характеристики (один раз в три месяца) производится приборами типа "М-231" и "Н-39" (Н-399).

6.3. Плюсовая клемма приборов подключается к защищаемому сооружению (трубопровод, кабель и т.п.), минусовая к электроду сравнения.

6.4. Подключение соединительного провода от положительной клеммы прибора к защищаемому сооружению производится в пунктах, указанных на планах и в таблицах отчета по наладке электрозащиты подземных металлических сооружений от коррозии.

6.5. Электрод сравнения устанавливается на возможно меньшем расстоянии от подземного сооружения. Если электрод устанавливается на поверхности земли, то его располагают над осью сооружения. Стальной электрод сравнения забивается в грунт на глубину 15 - 20 см.

6.6. Измерения потенциалов "И ПМС - земля" в колодцах, залитых водой, рекомендуется выполнять методом переносного электрода, т.е. при подключении измерительного прибора к ПМС в колодце электрод сравнения относится по трассе ПМС на расстояние 50 - 80 м от колодца.

6.7. При измерениях с медносульфатным электродом в сухую погоду место установки электрода на грунт увлажняется водой. Грунт в месте установки электрода очищается от сора, травы и т.п.

6.8. Измерение разности потенциала "сооружение - земля" производится в следующей последовательности:

Прибор "М-231" устанавливается в горизонтальном положении;

Корректором стрелка прибора устанавливается на нуль;

Подсоединяются провода от подземного сооружения и электрода сравнения к прибору М-231;

Устанавливается такой необходимый предел измерения, при котором стрелка прибора заметно отклоняется, что дает возможность прочесть показания прибора;

Записываются показания прибора.

6.9. Если показания прибора составляют не более 10 ÷ 15 % полного числа делений шкалы, следует перейти на меньший предел измерения.

6.10. Измерения начинать только с больших пределов, переходя, по мере надобности, на меньший.

6.11. Измерения потенциалов производятся двумя исполнителями. Один следит за положением стрелки прибора и через равные промежутки времени (5 ÷ 10 сек.) по команде вслух отсчитывает показания прибора. При этом фиксируется не максимальное и минимальное значение потенциалов за истекшие 5 - 10 сек., а фактическое положение стрелки прибора в момент отсчета. Второй исполнитель следит по часам за временем и через 5 ÷ 10 сек. подает команду для отсчета. Всего в каждом пункте измерения фиксируется 90 - 120 отсчетов.

6.12. Каждый отсчет (в вольтах) заносится в протокол, в котором указывается адрес пункта измерений, его номер, тип и номер прибора, режим измерений (с защитой или без защиты), число и время измерений, вид подземного сооружения.

6.13. При наличии блуждающих токов на сооружениях производится также автоматическая запись потенциалов регистрирующими (самопишущими) приборами типа "Н-39" или "Н-399".

Измерения производятся в пунктах, оговоренных в отчете по наладке средств электрозащиты, а также в точках подключения дренажного кабеля к защищаемому сооружению и в точках, с наименьшим защитным потенциалом. Измерения производятся в период снятия общей потенциальной характеристики.

6.14. Запись потенциалов производится в течение 2 - 4 часов. Подготовка прибора, его подключение и обработка лент записи потенциалов производится в соответствии с инструкцией завода-изготовителя прибора.

6.15. Измерение сопротивления растеканию анодного заземления производится приборами типа "МС-08 или "М-416" в соответствии с инструкцией завода-изготовителя прибора.

7. Обработка результатов измерений

7.1. Обработка результатов измерений потенциалов и токов заключается в определении средних, максимальных и минимальных значений за время измерения.

7.2. При обработке результатов измерений потенциалов по отношению к земле, выполненных со стальным электродом сравнения визуальными приборами в зонах влияния блуждающих токов, средние за период измерения величины потенциалов определяются по формулам:

где И ср.(+) и И ср.(-) - соответственно средние положительные и отрицательные значения измеренных величин;

И - соответственно сумма мгновенных значений измеряемых величин положительного и отрицательного знаков;

n - общее число отсчётов;

l , m - число отсчётов соответственно положительного или отрицательного знака.

7.3. При использовании неполяризующегося медносульфатного электрода сравнения величину разности потенциалов между ПМС, проложенным в поле блуждающих токов и землей (И ПМС - земля) определяют по формуле

И пмс-з = ±И изм - (-0,55) = И изм + 0,55,

И изм - потенциал стали, измеренный в поле блуждающих токов, В;

0,55 - среднее значение потенциалов стали в грунтах относительно медносульфатного электрода сравнения.

7.4. Подсчёт средних величин потенциалов, измеренных с помощью медносульфатного, выполняется:

Для всех мгновенных значений измеренных величин положительного и отрицательного знаков, меньших по абсолютной величине, чем 0,55 В, по формуле:

И ср.(+) - среднее положительное значение потенциала ПМС по отношению к земле В;

И i - все мгновенные значения измеренного потенциала положительного или отрицательного знака, меньшие по абсолютной величине, чем 0,55 В;

n - общее число отсчётов.

Для мгновенных значений измеренных величин отрицательного знака, превышающих по абсолютной величине 0,55 В

И ср(-) - среднее отрицательное значение потенциала ПМС по отношению к земле, В;

И i - мгновенные значения измеренного потенциала отрицательного знака, превышающие по абсолютной величине 0,55 В;

m - число отсчётов отрицательного знака, превышающих по абсолютной величине 0,55 В;

n - общее число отсчётов.

7.5. Определение средних значений потенциалов и токов по лентам записи регистрирующими приборами выполняется масштабной линейкой прибора или методом планометрирования лент.

Методика планометрирования площадей приводится в инструкции прилагаемой к планиметру.

8. Электроды сравнения

8.1. В качестве электродов сравнения при измерениях потенциалов "ПМС - земля" используются стальные и неполяризующиеся медносульфатные электроды.

8.2. Стальной электрод, изготавливаемый из той же стали, что и ПМС, забивается в грунт на глубину 15 - 20 см над сооружением.

8.3. Медносульфатный электрод устанавливается на поверхности земли.

8.4. Перед измерениями с медносульфатным электродом требуется:

очистить медный стержень от загрязнений и окисных пленок;

за сутки до измерений залить электрод насыщенным раствором чистого медного купороса в дистиллированной или кипяченой воде;

залитый и собранный электрод установить в сосуд (стеклянный или эмалированный) с насыщенным раствором медного купороса так, чтобы пористая пробка была полностью погружена в раствор.

8.5. Электроды изготавливаются в соответствии с рекомендациями, изложенными в "Инструкции по защите городских подземных трубопроводов от электрохимической коррозии " или в соответствии с приложением Рис. № 3.

9. Техника безопасности при электроизмерениях и эксплуатации установок электрозащиты

9.1. К эксплуатации станций катодной защиты и дренажей допускаются лица, имеющие право производства работ с электроустановками напряжением до 1000 В. К электроизмерениям на подземных металлических сооружениях, рельсовых путях и отсасывающих кабелях допускаются лица не моложе 18 лет, знающие правила техники безопасности в газовом хозяйстве и правила техники безопасности при проведении электрометрических работ. В частности, работающий должен хорошо знать следующие правила техники безопасности:

Электрические измерения на подземных металлических сооружениях, рельсовых путях электрифицированного транспорта и т.п. производятся только группой в составе не менее двух человек;

Открывать и закрывать крышки люков, колодцев и коверов следует только специальными крючками;

При производстве работ в коллекторах, колодцах и на проезжей части устанавливать ограждения, препятствующие движению в этом месте;

При работах в колодцах и коллекторах на поверхности обязательно должны быть люди для наблюдения, связи и, в случае необходимости, оказания помощи;

При измерениях потенциалов на отсасывающих кабелях тяговых подстанций, клеммы приборов подключаются только работниками тяговых подстанций;

При измерениях потенциалов на рельсах электрифицированного транспорта, тяговых подстанциях и ТП запрещается приближаться ближе чем на 2 м к контактной сети, неогражденным проводникам и другим токоведущим частям контактной сети, прикасаться к оборванным проводам контактной сети, подниматься на опоры контактной сети, производить монтажные работы, связанные с воздушным переходом через провода контактной сети;

Измерения на рельсовых путях для обеспечения безопасности движения производятся только после согласования с соответствующими службами;

Измерения на проезжей части производят два человека, один из которых должен следить за безопасностью работ, ведя наблюдение за движением транспорта; при длительном измерении и интенсивном движении транспорта приборы выносятся в безопасную зону.

9.2. Измерение потенциалов в газовых колодцах выполняются с помощью штанги или бригадой не менее трех человек: один работающий в колодце и двое наблюдающих за ним с поверхности земли, наблюдающие держат веревку, привязанную к защитному поясу работающего в колодце, чтобы можно было, в случае необходимости, быстро поднять его наверх.

Работа в газовых колодцах в одиночку запрещается:

9.2.1. Перед спуском рабочего крышка колодца должна быть открыта для вентиляции не менее пяти минут. Проверка наличия газа производится газоанализатором и по запаху.

9.2.2. Пользоваться в колодцах открытым огнем категорически запрещается! Включать и выключать переносные электролампы и фонари, питаемые от батарей и аккумуляторов разрешается только на поверхности земли.

9.2.3. При работах, связанных с разъединением газопровода, имеющаяся электрическая защита должна быть отключена.

9.3.1. Во избежание искрообразования при выполнении работ на указанных объектах, связанных с разрывом цепи трубопроводов (установка задвижек, разъем фланцевых соединений и т.п.), необходимо предусматривать следующие меры безопасности:

Отключить все электрозащитные установки;

Разъемные части трубопроводов соединяются кабельной перемычкой, перемычка заземляется. Снятие перемычки допускается только после полного окончания работ;

При включении электрозащитных установок вначале подключается нагрузка, а затем переменный ток, отключение производится в обратном порядке;

Пакетные переключатели регулируются только при обесточенной защитной установке.

1 - ПМС; 2 - КИП; 3 - прибор М-231; 4 - электрод сравнения.

Рис. № 1. Схема измерения разности потенциалов "ПМС - земля"
(а) - в точке подключения КИП; б) - методом переносного электрода)

1 - прибор М-416 (MС-08); 2 - заземлитель

Рис. № 2. Схема измерения удельного сопротивления грунта

Рис. № 3. Медносульфатный и стальной электроды сравнения

6.8.1. Техническое обслуживание и ремонт средств электрохимической защиты подземных газопроводов от коррозии, контроль за эффективностью ЭХЗ и разработка мероприятий по предотвращению коррозионных повреждений газопроводов осуществляются персоналом специализированных структурных подразделений эксплуатационных организаций или специализированными организациями.

6.8.2. Периодичность выполнения работ по техническому обслуживанию, ремонту и проверке эффективности ЭХЗ устанавливается ПБ 12-529. Разрешается совмещать измерения потенциалов при проверке эффективности ЭХЗ с плановыми измерениями электрических потенциалов на газопроводах в зоне действия средств ЭХЗ.

6.8.3. Техническое обслуживание и ремонт изолирующих фланцев и установок ЭХЗ производятся по графикам, утверждаемым в установленном порядке техническим руководством организаций - владельцев электрозащитных установок. При эксплуатации средств ЭХЗ ведется учет их отказов в работе и времени простоя.

6.8.4. Техническое обслуживание катодных установок ЭХЗ включает в себя:

Проверку состояния контура защитного заземления (повторного заземления нулевого провода) и питающих линий. Внешним осмотром проверяется надежность видимого контакта проводника заземления с корпусом электрозащитной установки, отсутствие обрыва питающих проводов на опоре воздушной линии и надежность контакта нулевого провода с корпусом электрозащитной установки;

Осмотр состояния всех элементов оборудования катодной защиты с целью установления исправности предохранителей, надежности контактов, отсутствия следов перегревов и подгаров;

Очистку оборудования и контактных устройств от пыли, грязи, снега, проверку наличия и соответствия привязочных знаков, состояния коверов и колодцев контактных устройств;

Измерение напряжения, величины тока на выходе преобразователя, потенциала на защищаемом газопроводе в точке подключения при включенной и отключенной установке электрохимической защиты. В случае несоответствия параметров электрозащитной установки данным пусконаладки следует произвести регулировку ее режима работы;

Внесение соответствующих записей в эксплуатационном журнале.

6.8.5. Техническое обслуживание протекторных установок включает в себя:

Измерение потенциала протектора относительно земли при отключенном протекторе;

Измерение потенциала "газопровод-земля" при включенном и отключенном протекторе;

Величину тока в цепи "протектор - защищаемое сооружение".

6.8.6. Техническое обслуживание изолирующих фланцевых соединений включает в себя работы по очистке фланцев от пыли и грязи, измерении разности потенциалов "газопровод-земля" до и после фланца, падение напряжения на фланце. В зоне влияния блуждающих токов измерение разности потенциалов "газопровод-земля" до и после фланца следует производить синхронно.

6.8.7. Состояние регулируемых и нерегулируемых перемычек проверяют измерением разности потенциалов "сооружение-земля" в местах подключения перемычки (или в ближайших измерительных пунктах на подземных сооружениях), а также измерением величины и направления тока (на регулируемых и разъемных перемычках).

6.8.8. При проверке эффективности работы установок электрохимической защиты, кроме работ, выполняемых при техническом осмотре, производится измерение потенциалов на защищаемом газопроводе в опорных точках (на границах зоны защиты) и в точках, расположенных по трассе газопровода, через каждые 200 м в населенных пунктах и через каждые 500 м на прямолинейных участках межпоселковых газопроводов.

6.8.9. Текущий ремонт ЭХЗ включает в себя:

Все виды работ по техническому осмотру с проверкой эффективности работы;

Измерение сопротивления изоляции токоведущих частей;

Ремонт выпрямителя и других элементов схемы;

Устранение обрывов дренажных линий.

6.8.10. Капитальный ремонт установок ЭХЗ включает в себя работы, связанные с заменой анодных заземлителей, дренажных и питающих линий.

После капитального ремонта основное оборудование электрохимической защиты проверяется в работе под нагрузкой в течение времени, указанного заводом-изготовителем, но не менее 24 ч.


7 Требования к техническому обслуживанию и ремонту установок ЭХЗ в процессе эксплуатации
7.1 Техническое обслуживание и ремонт установок ЭХЗ в процессе эксплуатации проводятся для их содержания в состоянии полной работоспособности, предупреждения преждевременного износа и отказов в работе и осуществляются в соответствии с графиком технического обслуживания и планово-предупредительных ремонтов.

7.2 График технического обслуживания и планово-предупредительных ремонтов должен включать определение видов и объемов технического обслуживания и ремонтных работ, сроки их проведения, указания по организации учета и отчетности о выполненных работах

7.3 На каждой защитной установке необходимо иметь журнал контроля, в который заносятся результаты осмотра и измерений, Приложение Ж.

7.4 Техническое обслуживание и планово-предупредительные ремонты проводятся:


  • техническое обслуживание – 2 раза в месяц для катодных, 4 раза в месяц – для дренажных установок и 1 раз в 3 месяца – для установок гальванической защиты (при отсутствии средств телемеханического контроля). При наличии средств телемеханического контроля сроки проведения технических осмотров устанавливаются руководством ОЭТС с учетом данных о надежности устройств телемеханики;

  • техническое обслуживание с проверкой эффективности – 1 раз в 6 месяцев;

  • текущий ремонт – 1 раз в год;

  • капитальный ремонт –1 раз в 5 лет
7.5 Техническое обслуживание включает:

  • осмотр всех элементов установки с целью выявления внешних дефектов, проверку плотности контактов, исправности монтажа, отсутствия механических повреждений отдельных элементов, отсутствия подгаров и следов перегревов, отсутствия раскопок на трассе дренажных кабелей и анодных заземлений;

  • проверку исправности предохранителей (если они имеются);

  • очистку корпуса дренажного и катодного преобразователя, блока совместной защиты снаружи и внутри;

  • измерение тока и напряжения на выходе преобразователя или между гальваническими анодами (протекторами) и трубами;

  • измерение потенциала трубопровода в точке подключения установки;

  • производство записи в журнале установки о результатах выполненной работы;

  • устранение выявленных в процессе осмотра дефектов и неисправностей, не требующих дополнительных организационно-технических мероприятий.
7.6 Технический обслуживание с проверкой эффективности защиты включает:

  • все работы по техническому осмотру;

  • измерения потенциалов в постоянно закрепленных опорных пунктах.

  • 7.7 Текущий ремонт включает:

  • все работы по техническому осмотру с проверкой эффективности;

  • измерение сопротивления изоляции питающих кабелей;

  • одну или две из указанных ниже работ: ремонт линий питания (до 20% протяженности), ремонт выпрямительного блока, ремонт блока управления, ремонт измерительного блока, ремонт корпуса установки и узлов крепления, ремонт дренажного кабеля (до 20% протяженности), ремонт контактного устройства контура анодного заземления, ремонт контура анодного заземления (в объеме менее 20%).
7.8 Капитальный ремонт включает:

  • все работы по техническому осмотру с проверкой эффективности действия ЭХЗ;

  • более двух работ из перечня ремонтов, перечисленных в пункте 7.7 настоящего стандарта, либо ремонт в объеме более 20% - протяженности линия питания, дренажного кабеля, контура анодного заземления.
7.9 Внеплановый ремонт – вид ремонта, вызванный отказом в работе оборудования и не предусмотренный годовым планом ремонта. При этом отказ в работе оборудования должен быть зафиксирован аварийным актом, в котором указываются причины аварии и подлежащие устранению дефекты.

7.10 С целью оперативного выполнения внеплановых ремонтов и сокращения перерывов в работе ЭХЗ в организациях, эксплуатирующих устройства ЭХЗ, следует иметь резервный фонд преобразователей для катодной и дренажной защиты из расчета - 1 резервный преобразователь на 10 действующих.

8 Требования к методам контроля за эффективностью работы установок ЭХЗ в процессе эксплуатации .
8.1 Контроль эффективности ЭХЗ трубопроводов тепловых сетей производят не реже, чем 2 раза в год (с интервалом не менее 4 месяцев), а также при изменении параметров работы установок ЭХЗ и при изменении коррозионных условий, связанных с:


  • прокладкой новых подземных сооружений;

  • в связи с проведением ремонтных работ на тепловых сетях;

  • установкой ЭХЗ на смежных подземных коммуникациях.
Примечание. Контроль эффективности действия средств ЭХЗ при расположении АЗ и протекторов как в каналах, так и за их пределами, производится лишь при затоплении (заиливании) каналов, достигающих поверхности теплоизоляционной конструкции.

8.2 При проверке параметров электродренажной защиты измеряют дренажный ток, устанавливают отсутствие тока в цепи дренажа при перемене полярности трубопровода относительно рельсов, определяют порог срабатывания дренажа (при наличии реле в цепи дренажа или цепи управления), а также сопротивление в цепи электродренажа.

8.3 При проверке параметров работы катодной станции измеряют ток катодной защиты, напряжение на выходных клеммах катодной станции и потенциал трубопровода на контактном устройстве.

8.4 При проверке параметров установки гальванической защиты (при расположении протекторов в каналах или камерах) измеряют:


  1. силу тока в цепи между секциями протекторов и трубопроводами;

  2. величину смещения разности потенциалов между трубопроводом и измерительными электродами до и после подключения секций протекторов к трубопроводам.
8.5 Контроль эффективности действия средств ЭХЗ на трубопроводах тепловых сетей

бесканальной и канальной прокладок с размещением АЗ за пределами канала осуществляется по разности потенциалов между трубопроводом и МЭС, установленным в стационарном или нестационарном КИПе (в последнем случае с помощью переносного МЭС).

8.6 Схема переносного МЭС приведена на рисунке 4 Приложения А СТО-117-2007 «Трубопроводы тепловых сетей. Защита от коррозии. Условия создания. Нормы и требования», схема и технические характеристики МЭС типа ЭНЕС и ЭСН-МС, устанавливаемых в стационарных КИП, приведены в Приложении П СТО-117-2007 «Трубопроводы тепловых сетей. Защита от коррозии. Условия создания. Нормы и требования».

8.7 Стационарные КИПы должны устанавливаться на участках тепловых сетей, где ожидаются минимально и максимально допустимые значения защитных потенциалов, в местах пересечения тепловых сетей с рельсами электрифицированного транспорта

8.8 При отсутствии стационарных КИПов переносный МЭС устанавливают на поверхности земли между трубопроводами (в плане), на дне тепловой камеры (при наличии в ней воды). Перед установкой электродов грунт должен быть разрыхлен на глубину 4-5 см и из него должны быть удалены твердые включения размером более 3 мм. Если грунт сухой, его следует увлажнить до полного водонасыщения водопроводной водой.Для проведения измерений используют приборы типа ЭВ 2234, 43313.1, ПКИ-02.

8.9 Продолжительность измерений при отсутствии блуждающих токов должна составлять не менее 10 минут с непрерывной регистрацией или с ручной записью результатов через каждые 10 сек. При наличии блуждающих токов трамвая с частотой движения 15-20 пар в час измерения необходимо проводить в часы утренней или вечерней пиковой нагрузки электротранспорта.

В зоне влияния блуждающих токов электрофицированных железных дорог период измерения должен охватывать пусковые моменты и время прохождения электропоездов в обе стороны между двумя ближайшими станциями.

8.10 Значения разности потенциалов между трубопроводами и МЭС в зоне действия защиты могут находиться в пределах от минус 1,1 до минус 3,5 В.

8.11 Среднее значение разности потенциалов U ср (В) вычисляют по формуле:

U ср = U i /n, (8.1)

где U i – сумма значений разности потенциалов; n – общее число отсчетов.

Результаты измерений заносят в протокол (Приложение И настоящего стандарта), а также фиксируют на картах-схемах тепловых сетей.

8.12 При обнаружении неэффективной работы установок катодной или дренажной защиты (сокращены зоны их действия, потенциалы отличаются от допустимых защитных) необходимо произвести регулирование режима работы установок ЭХЗ.

8.13Сопротивление растеканию тока АЗ следует определять во всех случаях, когда режим работы катодной станции резко меняется, но не реже 1 раза в год. Сопротивление растеканию тока АЗ определяют, как частное от деления напряжения на выходе катодной установки на ее выходной ток или при расположении АЗ за пределами канала с помощью приборов типа М-416, Ф-416, Ф 4103-М1 и стальных электродов по схеме, приведенной на рис. 1. Измерения следует производить в наиболее сухое время года. Дренажный провод (6) на время измерений следует отключить. При длине Lаз питающий электрод (5) относят на расстояние в  3Lаз, вспомогательный электрод (4) – на расстояние а  2Lаз.

1 – анодные заземлители; 2 – контрольно-измерительный пункт; 3 – измерительный прибор; 4 – вспомогательный электрод; 5 – питающий электрод; 6 – дренажный провод.

Рисунок 1 -Измерение сопротивления растеканию анодного заземления

При расположении АЗ в каналах сопротивление растеканию тока АЗ определяют при затоплении или заиливании канала до уровня изоляционной конструкции труб. При наличии нескольких плеч АЗ их сопротивление растеканию тока определяют раздельно.

8.14 Контроль эффективности действия средств ЭХЗ на трубопроводах тепловых сетей канальной прокладки при расположении АЗ и гальванических анодов (протекторов) непосредственно в каналах, осуществляется по значению смещения разности потенциалов между трубопроводом и установленным на его поверхности (или теплоизоляционной конструкции) ВЭ в сторону отрицательных значений в пределах от 0,3 до 0,8 В.

При ЭХЗ с помощью протекторов из магниевого сплава смещение разности потенциалов между ВЭ и трубопроводом должно быть не менее 0,2 В.

8.15 До начала проведения измерительных работ в заданной зоне ЭХЗ определяются уровни затопления канала и камер при наличии возможности визуально или инструментальным методом. В последнем случае определяется уровень затопления, достигающий пунктов установки ВЭ на подающем и обратном трубопроводах – на уровне нижней образующей теплоизоляционной конструкции.

8.16 Проверка наличия воды на уровне установки ВЭ производится в такой последовательности:

Отключают станции катодной защиты (протекторы при их применении не отключают);

К проводнику от трубопровода на КИПе и ВЭ подключают мегаомметр;

При снятой на КИПе перемычке между трубопроводом и ВЭ измеряют электрическое сопротивление R.

Значение R  10,0 кОм указывает на наличие воды в канале (камера) на уровне установки ВЭ или выше него.

Аналогичные измерения производят в других пунктах, где установлены ВЭ.

8.17 Измерение потенциала трубопроводов по отношению к ВЭ на участках, где затопление канала на уровне установки ВЭ или выше него (после технического осмотра установок ЭХЗ) производится в такой последовательности:

При выключенной СКЗ подключить вольтметр к клеммам контрольного пункта: положительный зажим вольтметра – к клемме «Т» (трубопровод), отрицательный – к клемме вспомагательного электрода. Для измерений используют вольтметр с входным сопротивлением не ниже 200 кОм на 1,0 В шкалы прибора (мультиметр типа 43313.1, вольтамперметр типа ЭВ 2234). Тумблер или перемычка должны быть разомкнуты.

Не менее, чем через 30 мин после отключения СКЗ зафиксировать исходное значение разности потенциалов между трубопроводом и ВЭ (И исх.) с учетом полярности (знака).

Включить СКЗ, установив режим ее работы при минимальных значениях силы тока и напряжения.

Увеличением силы тока в цепи СКЗ установить ее значение при достижении разности потенциалов между трубопроводом и ВЭ: И’ т-в.э. в пределах от минус 600 до минус 900 мВ (не ранее, чем через 10 мин после установки значения силы тока).

Вычислить И т-в.э. с учетом И исх.

И т-в.э. = И т-в.э. – И исх. , мВ

Пример расчета № 1 .

И исх. = -120 мВ, И’ т-в.э. = -800 мВ.

И т-в.э. = -800 – (-120) = -680 мВ.

Пример расчета № 2 .

И исх. = +120 мВ, И’ т-в.э. = -800 мВ

И т-в.э. –800 – (120) = -920 мВ.

8.18 Если полученные значения И т-в.э. на КИП зоны действия защиты (на участках затопления или заноса канала грунтом) не находятся в пределах значений минус 300 –800 мВ, производится регулировка силы тока преобразователя.

Примечание. Увеличение силы тока преобразователя должно производиться с учетом предельно допустимого значения напряжения на выходе преобразователя, равного 12,0 В.

8.19 По окончании измерительных работ, если ВЭ изготовлен из углеродистой стали, производят замыкание ВЭ с трубопроводом. Если ВЭ изготовлен из нержавеющей стали, ВЭ с трубопроводом не замыкают.

8.20 При неисправностях ВЭ (повреждения проводников, крепления к трубопроводу ВЭ) в доступных пунктах устанавливают у поверхности теплоизоляционной конструкции переносной ВЭ, с помощью которого производят изложенные выше измерительные работы.

8.21 При обнаружении участков трубопроводов, не подверженных затоплению и не контактирующих с грунтом заноса в зоне отдельного плеча анодного заземлителя, указанный участок (плечо) целесообразно отключить из системы ЭХЗ до момента обнаружения затопления канала на этом участке. После отключения указанного участка необходима дополнительная регулировка режима работы СКЗ. Целесообразно переоборудовать СКЗ, применив устройство для автоматического включения или отключения СКЗ (или отдельных участков трубопроводов) в зависимости от уровня затопления канала на этих участках.

8.22 Контроль эффективности действия ЭХЗ с применением гальванических анодов (протекторов) из магниевых сплавов, размещенных на дне или стенках каналов осуществляется после проведения работ, указанных в пунктах 8.15-8.16 настоящего стандарта.

8.23 При фиксации затопления канала на участке установки ВЭ производится проверка действия протекторной защиты измерением:

Силы тока в цепи звена (группы) «протекторы - трубопровод»;

Потенциала протектора или группы протекторов, отключенных от трубопровода, относительно медносульфатного электрода сравнения, установленного на дне канала (при наличии возможности) или над каналом в зоне установки контролируемой группы протекторов;

Потенциала трубопровода по отношению к ВЭ при отключенной и включенной группе протекторов. Данные заносят в протокол, приведенный в Приложении К настоящего стандарта.

Измерения указанных параметров производят лишь при наличии возможности отключения группы протекторов от трубопроводов и подключения измерительных приборов.

Наличие тока в цепи «протекторы – трубопровод» свидетельствует о целостности указанной цепи;

Потенциалы протекторов, отключенных от трубопровода, значения которых (по абсолютной величине) не ниже 1,2 В, характеризуют протекторы, как исправные (потенциалы протекторов измеряют лишь при наличии электролитического контакта протекторов с электролитом - водой на дне канала);

Разность потенциалов между трубопроводом и ВЭ при включенной и выключенной группе протекторов, составляющая не менее 0,2 В, характеризует эффективностью действия протекторной защиты трубопроводов.

8.24 Прямая оценка опасности коррозии и эффективности действия ЭХЗ трубопроводов тепловых сетей канальной прокладки и на участках их прокладки в футлярах может производиться с помощью индикаторов скорости коррозии типа БПИ-1 или БПИ-2. Сущность метода прямой оценки опасности коррозии и эффективности действия ЭХЗ, методов обработки данных при обследовании состояния поверхности БПИ-1, при срабатывании БПИ-2 изложены в разделе 11 СТО-117-2007 «Трубопроводы тепловых сетей. Защита от коррозии. Условия создания. Нормы и требования»

8.25 Исправность ЭИС проверяют не реже 1 раза в год. Для этой цели используют специальные сертифицированные индикаторы качества электроизолирующих соединений. При отсутствии таких индикаторов измеряют падение напряжения на электроизолирующем соединении или синхронно потенциалы трубы по обеим сторонам электроизолирующего соединения. Измерения проводят при помощи двух милливольтметров. При исправном электроизолирующем соединении синхронное измерение показывает скачок потенциала. Результаты проверки оформляют протоколом согласно Приложению Л настоящего стандарта.

8.26 Если на действующей установке ЭХЗ в течение года наблюдалось шесть и более отказов в работе преобразователя, последний подлежит замене. Для определения возможности дальнейшего использования преобразователя необходимо провести его испытание в объеме, предусмотренном требованиями предустановочного контроля.

8.27 В случае, за все время эксплуатации установки ЭХЗ общее количество отказов в ее работе превысит 12, необходимо провести обследование технического состояния трубопроводов по всей длине защитной зоны.

8.28 Суммарная если продолжительность перерывов в работе установок ЭХЗ не должна превышать 14 суток в течение года.

8.29 В тех случаях, когда в зоне действия вышедшей из строя установки ЭХЗ защитный потенциал трубопровода обеспечивается соседними установками ЭХЗ (перекрывание зон защиты), то срок устранения неисправности определяется руководством эксплуатационной организации.

8.30 Организации, осуществляющие эксплуатацию установок ЭХЗ, должны ежегодно составлять отчет об отказах в их работе.
9 Требования к организации контроля и технического обслуживания защитных покрытий в процессе эксплуатации

9.1 В процессе эксплуатации защитных покрытий трубопроводов тепловых сетей осуществляется периодический контроль их состояния

9.2 Контролю и обслуживанию в обязательном порядке подлежат защитные покрытия трубопроводов тепловых сетей расположенных на доступных участках:

Трубопроводы надземной прокладки;

Трубопроводы в тепловых камерах;

Трубопроводы в проходных каналах и коллекторах;

Трубопроводы в смотровых колодцах.

9.3 Контроль состояния защитных покрытий трубопроводов тепловых сетей, расположенных в непроходных, полупроходных каналах а также трубопроводов тепловых сетей бесканальной прокладки осуществляется при контрольных вскрытиях тепловых сетей. Обслуживание и ремонт покрытий на данных участках трубопроводов осуществляется при аварийных ремонтах

9.4 Методы проверки показателей качества и устранения обнаруженных дефектов защитных покрытий в полевых условиях приведены в разделе 9 СТО-117-2007 «Трубопроводы тепловых сетей. Защита от коррозии. Условия создания. Нормы и требования».

9.5 Выбор защитного покрытия для осуществления ремонта определяется назначением * теплопровода (магистральные тепловые сети, квартальные (распределительные)тепловые сети) и видами проводимых работ, которые направлены на обеспечение эксплуатационной надежности тепловых сетей, таблица 1.

9.6 Качество защитных антикоррозионных покрытий, наносимых в процессе выполнения ремонтных работ, проверяется с составлением Актов скрытых работ и с занесением результатов контроля качества в Журнал производства антикоррозионных работ согласно Приложения М настоящего стандарта

Виды защитных покрытий

Таблица 1


Назначение тепловых сетей и вид рекомендуемых покрытий

Виды работ, проводимых на тепловых сетях

Магистральные тепловые сети

Сети центрального отопления

Сети горячего водоснабжения

Антикоррозионная защита вновь сооружаемых тепловых сетей

Лакокрасочные

Силикатноэмалевые**

Металлизационное**

Алюмокерамическое**


Лакокрасочные

Лакокрасочные

Cиликатноэма-левые**


Антикоррозионная защита при реконструкции и капитальном ремонте тепловых сетей

Лакокрасочные

Силикатноэмалевые**

Металлизационное**

Алюмокерамическое**


Лакокрасочные

Лакокрасочные

Cиликатноэма-левые**


Антикоррозионная защита при текущем ремонте и ликвидациях повреждений тепловых сетей

Лакокрасочные

Лакокрасочные

Лакокрасочные

Примечания.

*В рамках данного Стандарта применяется следующее разделение тепловых сетей в зависимости от их назначения:

магистральные тепловые сети, обслуживающие крупные жилые территории и группы промышленных предприятий, – от источника тепла до ЦТП или ИТП;

квартальные (распределительные)тепловые сети (системы горячего водоснабжения и системы центрального отопления), обслуживающие группу зданий или промышленное предприятие, – от ЦТП или ИТП до присоединения к сетям отдельных зданий.

** При применении данных покрытий требуется последующая антикоррозионная защита сварных соединений и элементов трубопроводов тепловых сетей лакокрасочными материалами.

10 Требования безопасности при работах с защитными антикоррозионными

покрытиями и при эксплуатации устройств электрохимической защиты
10.1При выполнении работ по защите трубопроводов тепловой сети от наружной коррозии с помощью защитных антикоррозионных покрытий должны строго соблюдаться требования безопасности, приведенные в технических условиях на антикоррозионные материалы и защитные антикоррозионные покрытия, ГОСТ 12.3.005-75, ГОСТ 12.3.016-87, а также в действующих нормативных документах.

10.2К выполнению работ по нанесению на трубы защитных антикоррозионных покрытий могут допускаться только лица, обученные безопасным методам работы, прошедшие инструктаж и сдавшие экзамен в установленном порядке.

10.3Рабочий персонал должен быть осведомлен о степени токсичности применяемых веществ, способах защиты от их воздействия и мерах оказания первой помощи при отравлениях.

10.4 При применении и испытаниях защитных антикоррозионных покрытий, содержащих токсичные материалы (толуол, сольвент, этилцеллозольв и др.), должны соблюдаться правила техники безопасности и промышленной санитарии, санитарные и гигиенические требования к производственному оборудованию в соответствии с действующими нормативными документами

10.5Содержание вредных веществ в воздухе рабочей зоны при нанесении защитных антикоррозионных покрытий на трубы не должно превышать ПДК, согласно ГОСТ 12.1.005-88:

толуол – 50 мг/м 3 , сольвент – 100 мг/м 3 , алюминий - 2 мг/м 3 , оксид алюминия – 6 мг/м 3 , этилцеллозольв – 10 мг/м 3 , ксилол – 50 мг/м 3 , бензин – 100 мг/м 3 , ацетон – 200 мг/м 3 , уайт-спирит – 300 мг/м 3 ,

10.6Все работы, связанные с нанесением защитных антикоррозионных покрытий, содержащих токсичные вещества, должны производиться в цехах, оборудованных приточно-вытяжной и местной вентиляцией в соответствии с ГОСТ 12.3.005-75.

10.7При работах с защитными антикоррозионными покрытиями, содержащими токсичные вещества, следует применять индивидуальные средства защиты от попадания токсичных веществ на кожные покровы, на слизистые оболочки, в органы дыхания и пищеварения согласно ГОСТ 12.4.011-89 и ГОСТ 12.4.103-83.

10.8 При производстве на тепловых сетях работ по монтажу, ремонту, наладке установок ЭХЗ и электрическим измерениям необходимо соблюдать требования ГОСТ 9.602, Правил производства и приемки работ , санитарных и гигиенических требований .

10.9При проведении технического осмотра установок ЭХЗ должно быть отключено напряжение питающей сети и разомкнута цепь дренажа.

10.10 В течение всего периода работы опытной станции катодной защиты, включаемой на период испытаний (2-3 часа), у контура анодного заземлителя должен находиться дежурный, не допускающий посторонних лиц к анодному заземлителю, и должны быть установлены предупредительные знаки в соответствии с ГОСТ 12.4.026 -76.

10.11При электрохимической защите трубопроводов тепловых сетей с расположением анодных заземителей непосредственно в каналах напряжение постоянного тока на выходе станции катодной защиты (преобразователя, выпрямителя) не должно превышать 12 В.

10.12На участках трубопроводов тепловых сетей, к которым подключена станция катодной защиты, а анодные заземлители установлены непосредственно в каналах, под крышками люков тепловых камер на видном месте должны быть установлены таблички с надписью «Внимание! В каналах действует катодная защита».


  1. Требования к обращению с отходами производства и потребления, образующимися при защите трубопроводов тепловых сетей от наружной коррозии

11.1 Отходами производства и потребления, образующимися при защите трубопроводов тепловых сетей от наружной коррозии на этапе приемки в эксплуатацию и эксплуатации, следует считать:

Материалы, применяемые при производстве противокоррозионных покрытий и утратившие свои потребительские свойства (лакокрасочные материалы, растворители, отвердители);

Провода из цветных металлов, применяемые при производстве устройств электрохимической защиты и утратившие свои потребительские свойства.

11.2 Порядок обращения с отходами, образующимися при защите трубопроводов тепловых сетей от наружной коррозии, определяется в соответствии с разделом «Требования к обращению с отходами производства и потребления на этапах строительства и эксплуатации» СТО-118а-02-2007 «Системы теплоснабжения. Условия поставки. Нормы и требования».

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари