Подпишись и читай
самые интересные
статьи первым!

Современная теория тектоники плит. Теории дрейфа материков и литосферных плит

Возможно, некоторые читатели слышали рассуждения на тему отождествления планеты Земля с неким живым сверхорганизмом. В частности, обычно утверждается, что Земля способна сама по себе контролировать процессы, происходящие на ней и с ней, помимо этого отвечая за существование жизни. Речь идёт о теории Геи . Гея в свою очередь являлась древнегреческой богиней Земли. По большому счёту совершенно не важно будет ли жизнь на планете следствием «осознанной» деятельности самой планеты как организма, стечением ряда «случайных» обстоятельств или же следствием существования вселенского закона о благоприятных для жизни зонах.

Так или иначе, жизнь на планете существует, и вполне вероятно, что для того чтобы она возникла, необходимы были множество различных по своей природе совпадений или допущений. Одним из которых, безусловно, является геология планеты.

За геологическую активность на Земле отвечают тектонические или литосферные плиты.

Литосферные плиты нашей планеты

Для более наглядного представления можно посмотреть 3D-модель:

Считается, что движение плит может влиять на существование жизни на планете. Так, геологическая активность свойственна не только Земле, но и небесным телам Солнечной системы. Впрочем, Земля уникальна не наличием землетрясений, которые есть даже на или Марсе (которые называются лунотрясения и марсотрясения, соответственно), а скорее наличием развитой и сильной тектонической активности.

Сейсмометр на Луне

Также Земля единственная планета в Солнечной системе, внешняя кора которой разбивается на плиты. Тектонические плиты достигают десятков километров толщины.

Мощность (толщина) слоёв Земли

Причину движения тектонических плит и материков пытались описать расширением радиуса Земли. Это очень красивая гипотеза, которая вряд ли имеет что-то общее с действительностью.

Модели Кристофа Хильгенберга, демонстрирующие расширяющуюся Землю

На самом деле, основной причиной активного движения литосферных плит является тепловая конвекция. Нижние слои при нагревании становятся легче и всплывают, а верхние вдали от источника тепла остывают и, тяжелея, опускаются вниз. Конвекцию можно наблюдать при движении ветра, когда в одних частях Земли воздух нагревается, а в других охлаждается в месте соприкосновения и создаётся движение. И если наблюдать ветер и воздушные потоки мы, по сути, не можем (их возможно только почувствовать), то на явление конвекции в лавовой лампе можно посмотреть.

Конечно масло в лавовой лампе - это не магматические горные породы в мантии, но не стоит забывать и про такой фактор как время. А именно, тот факт, что в масштабе секунд (в котором по сути живёт и мыслит отдельный человек) вещество мантии Земли твёрдое, но в масштабе лет и десятилетий это вещество приобретает жидкие свойства. Возможно, также это зависит от размеров рассматриваемого объекта.

Сравнение конвекции в мантии Земли и в лавовых лампах

Отчасти это говорит и о том, что жизнь и скорость восприятия окружающего пространства предпочтительнее всего именно в масштабе секунд (или максимум минут). Тогда как глобальные и космические процессы должны существовать в более медленном масштабе времени. Получается, что помимо необходимости существования благоприятных зон для жизни, существует необходимость и некоторого временного окна определённого масштаба. Но об этом мы поговорим позже.

Интересно будет посмотреть на явление конвекции в мантии по результатам современных исследований Шмеллинга , которые отображают холодные (синим) и горячие (красным) области в мантии Земли.

Конвективное движение в мантии Земли, цвет отображает температуру. Координата z отображает глубину до границы мантии с ядром (разрыв Гутенберга), а координата x отображает часть длины окружности ядра (или разрыва Гутенберга)

На данном изображении хорошо видно конвективное движение внутри мантии. Движение, вызываемое конвекцией, приводит к ряду процессов, а именно движению тектонических плит и его последствиям.

Движение между двумя плитами очевидно может быть либо сходящимся и сталкивающимся, либо же расходящимся с образованием разлома. Схождение или конвергенция приводит к субдукции (одна плита залезает под другую) или коллизии (смятие двух плит с образованием горных цепей). Расхождение или дивергенция приводит к спредингу (раздвижению плит с образованием хребтов в океанах) и рифтингу (с образованием разлома континентальной коры). Также существует третий тип движения плит - трансформный, когда плиты двигаются вдоль разлома. Так или иначе о характере движения плит стоит поговорить отдельно, особенно учитывая большое количество терминологии.

Скорость движения тектонических плит Земли, и типы движения этих плит у их границ

Также стоит упомянуть о толщине плит, или их мощности. Земная кора бывает материковой и океанической; океаническая земная кора достигает 5–15 км, тогда как материковая земная кора достигает 15–80 км. Это говорит о том, что по сравнению с мантией земная кора крайне «тонка». Поэтому движение плит и их стабильное состояние даже в масштабе секунд крайне сложно себе вообразить (если это вообще возможно). И поэтому движение тектонических плит само по себе может вызвать крайнее удивление своей невозможностью структуры, сложностью реализации и кажущейся ненадёжностью. Так или иначе, ничего лучшего нам не дано.

Результатом движения плит, помимо существующей жизни (хотя это и не доказано), можно назвать землетрясения и вулканизм. Если вулканы распространены не только на границах плит, то карта землетрясений за последние десятки лет чётко вырисовывает границы тектонических плит, и зависимость здесь видимо прямая. Кольцо вулканов вокруг Тихоокеанской плиты называют «Тихоокеанское огненное кольцо».

Карта недавних землетрясений и активных вулканов

К чему же приведёт движение тектонических плит на Земле в будущем, и что из этого получится, мы расскажем в последующих материалах.

Литосферные плиты Земли представляют собой огромные глыбы. Их фундамент образован сильно смятыми в складки гранитными метаморфизированными магматическими породами. Названия литосферных плит будут приведены в статье ниже. Сверху они прикрыты трех-четырехкилометровым "чехлом". Он сформирован из осадочных пород. Платформа имеет рельеф, состоящий из отдельных горных хребтов и обширных равнин. Далее будет рассмотрена теория движения литосферных плит.

Появление гипотезы

Теория движения литосферных плит появилась в начале двадцатого столетия. Впоследствии ей суждено было сыграть основную роль в исследованиях планеты. Ученый Тейлор, а после него и Вегенер, выдвинул гипотезу о том, что с течением времени происходит дрейф литосферных плит в горизонтальном направлении. Однако в тридцатые годы 20-го века утвердилось другое мнение. Согласно ему, перемещение литосферных плит осуществлялось вертикально. В основе этого явления лежал процесс дифференциации мантийного вещества планеты. Оно стало называться фиксизмом. Такое наименование было обусловлено тем, что признавалось постоянно фиксированное положение участков коры относительно мантии. Но в 1960-м году после открытия глобальной системы срединно-океанических хребтов, которые опоясывают всю планету и выходят в некоторых районах на сушу, произошел возврат к гипотезе начала 20-го столетия. Однако теория обрела новую форму. Тектоника глыб стала ведущей гипотезой в науках, изучающих структуру планеты.

Основные положения

Было определено, что существуют крупные литосферные плиты. Их количество ограниченно. Также существуют литосферные плиты Земли меньшего размера. Границы между ними проводят по сгущению в очагах землетрясений.

Названия литосферных плит соответствуют расположенным над ними материковым и океаническим областям. Глыб, имеющих огромную площадь, всего семь. Наибольшие литосферные плиты - это Южно- и Северо-Американские, Евро-Азиатская, Африканская, Антарктическая, Тихоокеанская и Индо-Австралийская.

Глыбы, плывущие по астеносфере, отличаются монолитностью и жесткостью. Приведенные выше участки - это основные литосферные плиты. В соответствии с начальными представлениями считалось, что материки прокладывают себе дорогу через океаническое дно. При этом движение литосферных плит осуществлялось под воздействием невидимой силы. В результате проведенных исследований было выявлено, что глыбы плывут пассивно по материалу мантии. Стоит отметить, что их направление сначала вертикально. Мантийный материал поднимается под гребнем хребта вверх. Затем происходит распространение в обе стороны. Соответственно, наблюдается расхождение литосферных плит. Данная модель представляет океаническое дно в качестве гигантской Она выходит на поверхность в рифтовых областях срединно-океанических хребтов. Затем скрывается в глубоководных желобах.

Расхождение литосферных плит провоцирует расширение океанических лож. Однако объем планеты, несмотря на это, остается постоянным. Дело в том, что рождение новой коры компенсируется ее поглощением в участках субдукции (поддвига) в глубоководных желобах.

Почему происходит движение литосферных плит?

Причина состоит в тепловой конвекции мантийного материала планеты. Литосфера подвергается растяжению и испытывает подъем, что происходит над восходящими ветвями от конвективных течений. Это провоцирует движение литосферных плит в стороны. По мере удаления от срединно-океанических рифтов происходит уплотнение платформы. Она тяжелеет, ее поверхность опускается вниз. Этим объясняется увеличение океанической глубины. В итоге платформа погружается в глубоководные желоба. При затухании от разогретой мантии она охлаждается и опускается с формированием бассейнов, которые заполняются осадками.

Зоны столкновения литосферных плит - это области, где кора и платформа испытывают сжатие. В связи с этим мощность первой повышается. В результате начинается восходящее движение литосферных плит. Оно приводит к формированию гор.

Исследования

Изучение сегодня осуществляется с применением геодезических методов. Они позволяют сделать вывод о непрерывности и повсеместности процессов. Выявляются также зоны столкновения литосферных плит. Скорость подъема может составлять до десятка миллиметров.

Горизонтально крупные литосферные плиты плывут несколько быстрее. В этом случае скорость может составить до десятка сантиметров в течение года. Так, к примеру, Санкт-Петербург поднялся уже на метр за весь период своего существования. Скандинавский полуостров - на 250 м за 25 000 лет. Мантийный материал движется сравнительно медленно. Однако в результате происходят землетрясения, и прочие явления. Это позволяет сделать вывод о большой мощности перемещения материала.

Используя тектоническую позицию плит, исследователи объясняют множество геологических явлений. Вместе с этим в ходе изучения выяснилась намного большая, нежели это представлялось в самом начале появления гипотезы, сложность процессов, происходящих с платформой.

Тектоника плит не смогла объяснить изменения интенсивности деформаций и движения, наличие глобальной устойчивой сети из глубоких разломов и некоторые другие явления. Остается также открытым вопрос об историческом начале действия. Прямые признаки, указывающие на плитно-тектонические процессы, известны с периода позднего протерозоя. Однако ряд исследователей признает их проявление с архея или раннего протерозоя.

Расширение возможностей для исследования

Появление сейсмотомографии обусловило переход этой науки на качественно новый уровень. В середине восьмидесятых годов прошлого века глубинная геодинамика стала самым перспективным и молодым направлением из всех существовавших наук о Земле. Однако решение новых задач осуществлялось с использованием не только сейсмотомографии. На помощь пришли и прочие науки. К ним, в частности, относят экспериментальную минералогию.

Благодаря наличию нового оборудования появилась возможность изучать поведение веществ при температурах и давлениях, соответствующих максимальным на глубинах мантии. Также в исследованиях использовались методы изотопной геохимии. Эта наука изучает, в частности, изотопный баланс редких элементов, а также благородных газов в различных земных оболочках. При этом показатели сравниваются с метеоритными данными. Применяются методы геомагнетизма, с помощью которых ученые пытаются раскрыть причины и механизм инверсий в магнитном поле.

Современная картина

Гипотеза тектоники платформы продолжает удовлетворительно объяснять процесс развития коры в течение хотя бы последних трех миллиардов лет. При этом имеются спутниковые измерения, в соответствии с которыми подтвержден факт того, что основные литосферные плиты Земли не стоят на месте. В результате вырисовывается определенная картина.

В поперечном сечении планеты присутствует три самых активных слоя. Мощность каждого из них составляет несколько сотен километров. Предполагается, что исполнение главной роли в глобальной геодинамике возложено именно на них. В 1972 году Морган обосновал выдвинутую в 1963-м Вилсоном гипотезу о восходящих мантийных струях. Эта теория объяснила явление о внутриплитном магнетизме. Возникшая в результате плюм-тектоника становится с течением времени все более популярной.

Геодинамика

С ее помощью рассматривается взаимодействие достаточно сложных процессов, которые происходят в мантии и коре. В соответствии с концепцией, изложенной Артюшковым в его труде "Геодинамика", в качестве основного источника энергии выступает гравитационная дифференциация вещества. Этот процесс отмечается в нижней мантии.

После того как от породы отделяются тяжелые компоненты (железо и прочее), остается более легкая масса твердых веществ. Она опускается в ядро. Расположение более легкого слоя под тяжелым неустойчиво. В связи с этим накапливающийся материал собирается периодически в достаточно крупные блоки, которые всплывают в верхние слои. Размер подобных образований составляет около ста километров. Этот материал явился основой для формирования верхней

Нижний слой, вероятно, представляет собой недифференцированное первичное вещество. В ходе эволюции планеты за счет нижней мантии происходит рост верхней и увеличение ядра. Более вероятно, что блоки легкого материала поднимаются в нижней мантии вдоль каналов. В них температура массы достаточно высока. Вязкость при этом существенно снижена. Повышению температуры способствует выделение большого объема потенциальной энергии в процессе подъема вещества в область силы тяжести примерно на расстояние в 2000 км. По ходу движения по такому каналу происходит сильный нагрев легких масс. В связи с этим в мантию вещество поступает, обладая достаточно высокой температурой и значительно меньшим весом в сравнении с окружающими элементами.

За счет пониженной плотности легкий материал всплывает в верхние слои до глубины в 100-200 и менее километров. С понижением давления падает температура плавления компонентов вещества. После первичной дифференциации на уровне "ядро-мантия" происходит вторичная. На небольших глубинах легкое вещество частично подвергается плавлению. При дифференциации выделяются более плотные вещества. Они погружаются в нижние слои верхней мантии. Выделяющиеся более легкие компоненты, соответственно, поднимаются вверх.

Комплекс движений веществ в мантии, связанных с перераспределением масс, обладающих разной плотностью в результате дифференциации, называют химической конвекцией. Подъем легких масс происходит с периодичностью примерно в 200 млн лет. При этом внедрение в верхнюю мантию отмечается не повсеместно. В нижнем слое каналы располагаются на достаточно большом расстоянии друг от друга (до нескольких тысяч километров).

Подъем глыб

Как было выше сказано, в тех зонах, где происходит внедрение крупных масс легкого нагретого материала в астеносферу, происходит частичное его плавление и дифференциация. В последнем случае отмечается выделение компонентов и последующее их всплытие. Они достаточно быстро проходят сквозь астеносферу. При достижении литосферы их скорость снижается. В некоторых областях вещество формирует скопления аномальной мантии. Они залегают, как правило, в верхних слоях планеты.

Аномальная мантия

Ее состав приблизительно соответствует нормальному мантийному веществу. Отличием аномального скопления является более высокая температура (до 1300-1500 градусов) и сниженная скорость упругих продольных волн.

Поступление вещества под литосферу провоцирует изостатическое поднятие. В связи с повышенной температурой аномальное скопление обладает более низкой плотностью, чем нормальная мантия. Кроме того, отмечается небольшая вязкость состава.

В процессе поступления к литосфере аномальная мантия довольно быстро распределяется вдоль подошвы. При этом она вытесняет более плотное и менее нагретое вещество астеносферы. По ходу движения аномальное скопление заполняет те участки, где подошва платформы находится в приподнятом состоянии (ловушки), а глубоко погруженные области она обтекает. В итоге в первом случае отмечается изостатическое поднятие. Над погруженными же областями кора остается стабильной.

Ловушки

Процесс охлаждения мантийного верхнего слоя и коры до глубины примерно ста километров происходит медленно. В целом он занимает несколько сотен миллионов лет. В связи с этим неоднородности в мощности литосферы, объясняемые горизонтальными температурными различиями, обладают достаточно большой инерционностью. В том случае, если ловушка располагается неподалеку от восходящего потока аномального скопления из глубины, большое количество вещества захватывается сильно нагретым. В итоге формируется достаточно крупный горный элемент. В соответствии с данной схемой происходят высокие поднятия на участке эпиплатформенного орогенеза в

Описание процессов

В ловушке аномальный слой в ходе охлаждения подвергается сжатию на 1-2 километра. Кора, расположенная сверху, погружается. В сформировавшемся прогибе начинают скапливаться осадки. Их тяжесть способствует еще большему погружению литосферы. В итоге глубина бассейна может составить от 5 до 8 км. Вместе с этим при уплотнении мантии в нижнем участке базальтового слоя в коре может отмечаться фазовое превращение породы в эклогит и гранатовый гранулит. За счет выходящего из аномального вещества теплового потока происходит прогревание вышележащей мантии и понижение ее вязкости. В связи с этим наблюдается постепенное вытеснение нормального скопления.

Горизонтальные смещения

При образовании поднятий в процессе поступления аномальной мантии к коре на континентах и океанах происходит увеличение потенциальной энергии, запасенной в верхних слоях планеты. Для сброса излишков вещества стремятся разойтись в стороны. В итоге формируются добавочные напряжения. С ними связаны разные типы движения плит и коры.

Разрастание океанического дна и плавание материков являются следствием одновременного расширения хребтов и погружения платформы в мантию. Под первыми располагаются крупные массы из сильно нагретого аномального вещества. В осевой части этих хребтов последнее находится непосредственно под корой. Литосфера здесь обладает значительно меньшей мощностью. Аномальная мантия при этом растекается в участке повышенного давления - в обе стороны из-под хребта. Вместе с этим она достаточно легко разрывает кору океана. Расщелина наполняется базальтовой магмой. Она, в свою очередь, выплавляется из аномальной мантии. В процессе застывания магмы формируется новая Так происходит разрастание дна.

Особенности процесса

Под срединными хребтами аномальная мантия обладает сниженной вязкостью вследствие повышенной температуры. Вещество способно достаточно быстро растекаться. В связи с этим разрастание дна происходит с повышенной скоростью. Относительно низкой вязкостью также обладает океаническая астеносфера.

Основные литосферные плиты Земли плывут от хребтов к местам погружения. Если эти участки находятся в одном океане, то процесс происходит со сравнительно высокой скоростью. Такая ситуация характерна сегодня для Тихого океана. Если разрастание дна и погружение происходит в разных областях, то расположенный между ними континент дрейфует в ту сторону, где происходит углубление. Под материками вязкость астеносферы выше, чем под океанами. В связи с возникающим трением появляется значительное сопротивление движению. В результате снижается скорость, с которой происходит расширение дна, если отсутствует компенсация погружения мантии в той же области. Таким образом, разрастание в Тихом океане происходит быстрее, чем в Атлантическом.


При взгляде из космоса совсем не очевидно, что Земля кишит жизнью. Чтобы понять, что она здесь есть, нужно приблизиться достаточно близко к планете. Но даже из космоса наша планета все равно кажется живой. Ее поверхность разделена на семь континентов, которые омываются огромными океанами. Ниже этих океанов, в невидимых глубинах нашей планеты, тоже есть жизнь.

Десяток холодных, жестких пластин медленно скользят поверх горячей внутренней мантии , ныряя друг под друга и время от времени сталкиваясь. Этот процесс, называемый тектоникой плит, является одним из определяющих характеристики планеты Земля. Люди в основном ощущают его, когда происходят землетрясения и извергаются вулканы.

Но тектоника плит ответственна за что – то более важное, чем землетрясения и извержения. Новые исследования говорят о том, что тектоническая активность Земли может иметь важное значение для другой определяющей черты нашей планеты: жизни. Наша Земля имеет движущуюся, все время трансформирующуюся внешнюю кору, и это может быть основной причиной того, что Земля настолько удивительна, и никакая другая планета не может сравниться с ее изобилием.

За полтора миллиарда лет до кембрийского взрыва, еще в архейской эпохе, на Земле почти не было кислорода, которым мы дышим сейчас. Водоросли уже начали использовать фотосинтез для производства кислорода, но большая часть этого кислорода потреблялась богатыми железом породами, которые использовали кислород для своего превращения в ржавчину.

Согласно исследованиям, опубликованным в 2016 году, тектоника плит инициировала двухэтапный процесс, который привел к более высоким уровням кислорода. На первом этапе субдукция заставила мантию Земли меняться и вырабатывать два типа коры – океаническую и континентальную. В континентальной версии было меньше минералов, богатых железом, и больше богатых кварцем пород, которые не вытягивают кислород из атмосферы.

Затем в течение следующих миллиардов лет – с 2,5 миллиарда лет назад до 1,5 миллиарда лет назад – камни накачивали углекислым газом воздух и океаны. Дополнительный углекислый газ помог водорослям, которые стали производить еще больше кислорода – достаточно много для того, чтобы в конечном итоге вызвать кембрийский взрыв.

Тектонические плиты на других планетах

Получается тектоника важна для жизни?

Проблема состоит в том, что у нас есть один образец. У нас есть одна планета, одно место с водой и скользящей внешней корой, одно место, которое изобилует жизнью. Другие планеты или луны могут иметь активность, напоминающую земную тектонику, но она не похожа на ту, которую что мы видим на Земле.

Земля в конечном итоге остынет настолько, что тектоника плит будет ослабевать, и планета в итоге перейдет в застывшее состояние. Новые суперконтиненты будут расти и исчезать, прежде чем это произойдет, но в какой-то момент землетрясения прекратятся. Вулканы будут выключены навсегда. Земля умрет, как . Будут ли какие – либо формы жизни населять ее к этому времени – это вопрос .

Бесспорным доказательством того, что тектонические плиты пришли в движение, стало беспрецедентное наводнение в истории Пакистана в 2010 году. Погибли более 1600 человек, пострадало 20 млн., под водой оказалась пятая часть страны.

Earth Observatory, подразделение НАСА, признало, что если сравнивать с изображениями годичной давности, то высота Пакистана над уровнем моря уменьшилась.


Индийская плита наклоняется, от этого Пакистан потерял несколько метров высоты.

На противоположной стороне Индо-Австралийской плиты происходит подъем океанического дна, о чем свидетельствуют показания бакена около Австралии. Наклон плиты направляет воду на восточное побережье Австралии, поэтому в январе 2011 года Австралия пережила "библейский потоп", территория затопления превысила общую площадь Франции и Германии, наводнение признано самым разрушительным в истории страны.

Рядом со станцией 55012 находится станция 55023, которая в июне 2010 года уже регестрировала беспрецедентный подъем океанического дна на 400 (!!!) метров.

Бакен 55023 впервые начал показывать подъем морского дна в апреле 2010 года, указывая не только на устойчивый подъем восточного края Индо-Австралийской плиты, но и о гибких частях этой плиты, которые могут гнуться, когда положение плиты изменяется. Плиты тяжелые и когда они опрокидываются, они могут изгибаться в точке, где они становятся подвешенными, изгибаясь под весом скалы, более не поддерживаемой магмой. В сущности пустота создается под этй частью плиты. Внезапное стремительное опускание высоты воды 25 июня 2010 г . на самом деле имело связь с землетрясением силой 7,1 балла на Соломоновых островах днем позже. Эта активность, подъем плиты, стала сильнее, и в ближайшем будущем эта тенденция только усилится.

С конца 2010 года плита Сунда показывает устойчивое погружение. Все страны, которые находятся на плите - Мьянма, Таиланд, Камбоджа, Вьетнам, Лаос, Китай, Малайзия, Филиппины и Индонезия испытали рекордные наводнения в этом году. На фото побережье городов на острове Ява в Индонезии - Джакарта, Семаранг и Сурабайа. На фото хорошо видно, что океан поглотил береговую линию и побережье уходит под воду. Джакарта лежит в низком, плоском речном бассейне, средняя высота которого над уровнем моря составляет 7 метров. Результаты исследований JCDS (Консорциума Береговой Охраны и Стратегии Джакарты) показывают, что около 40 процентов территории Джакарты уже находятся ниже уровня моря. Соленая вода просачивается в город с угрожающей скоростью, - заявил Хери. Жители северной Джакарты вынуждены были столкнуться с воздействием соленой воды.

К востоку от индонезийского острова Ява, в море между Явой и Бали, в течение нескольких дней вырос новый остров. Между восточной частью острова Ява и Бали, где плита Сунда находится под давлением, поскольку она заталкивается вниз под границу Индо-Австралийской платформы, появился новый остров. Когда платформа сдавливается, сжимаясь, тонкие места на ней могут дать начало деформации, при этом также обнаруживаются слабые места на платформе, которая может деформироваться таким образом, что должна будет подняться.

Фотография Бали, Индонезия, порт на побережье под водой. Это погружение было внезапным, в пределах часа. Аналогично на северном побережье Явы погружение Семаранга.

Понижение Плиты Сунда достигло такой стадии, когда прибрежные города, такие как Джакарта, Манила и Бангкок упоминаются в новостях в связи с тяжелыми проблемами из-за наводнения. Бангкок, который должен потерять 12 метров высоты от погружения плиты Сунда, объявил "войну" подъему воды, который они приписывают стоку осадков с гор, но на самом деле никакая дождевая вода не способна стекать, поскольку реки заперты обратным течением из моря. Местные новости откровенно ссылаются на понижение , утверждая, что в зоне храма Аюттхая, которая отдалена вглубь суши от Бангкока, присутствует "повышение уровня моря". И власти Манилы, отказывающиеся признать то, что произошло, говорят своему населению, сидящему на крышах домов, что нужно просто переждать. Ученые предупреждают о затоплении земель в Маниле и Центральном Лусоне, вызванным усилившимися наводнениями. Причиной затопления территорий земли в Большой Маниле и близлежащих провинциях могут быть геологические подвижки, связанные с процессами в долине линии разлома западная Маркина.

В Таиланде от наводнений погибли более 800 человек, пострадавших более 3 миллионов. Наводнение уже признано самым сильным за 100 лет.


10.08. Жители острова Лусон сообщают, что затопление такого масштаба они еще никогда не видели, а реки в этом регионе по прежнему держат высокий уровень воды, которая почему-то не уходит в океан.

Реальность того, что происходит погружение Плиты Сунда, на которой также находятся Вьетнам и Камбоджа, начинает появляться в прессе. В сообщениях в печати из Вьетнама неоднократно упоминается, что они погружаются в морскую воду - "Проливные дожди сверху и снизу по течению за прошлые два дня привели к тому, что город Хюэ погрузился в морскую воду". "Событие этого года аномальное," - сказала Кирстен Милдрен, представительница регионального Управления по координации гуманитарных вопросов ООН. "Тут Вы находитесь недели или месяцы в воде, и это лишь продолжает усугубляться."

30.09. В долине реки Меконг на территории южного Вьетнама и Камбоджи произошло мощнейшее за последние десять лет наводнение . В результате погибли более ста человек , разрушены мосты и дома сотен тысяч жителей .

Бакен около Марианской впадины погрузился в воду на 15 !!! метров. Марианская плита наклоняется и движется под Филиппинскую, а Марианская впадина сворачивается. Марианские острова наклонятся и подвинутся ближе к Филиппинским островам на 47 миль.

В море у Таманского полуострова появилась полоса суши длиной 800 м и шириной 50 м. Пласты глины поднялись на 5 м над уровнем моря. В этом районе слабое место в земной коре и рывки плит происходят в трех направлениях, от сжатия земля поднялась.

На юге России в последние годы резко усилилась сейсмическая активность. В зоне особого внимания Азовское и Черное море. Линии их побережья постоянно меняются. Возникают новые острова, или же, наоборот, участки суши уходят под воду. Ученые установили, такие явления связаны с движением тектонических плит. Недавно линия азовского побережья стала резко меняться. Ни одного растения, только потрескавшаяся почва, камни и песок. Совсем недавно эта земля была глубоко под водой, но буквально за одну ночь значительный участок дна поднялся на пять метров вверх и образовался полуостров. Чтобы понять, какая сила подняла кусок земли весом в сотни тонн, специалисты ежедневно берут пробы грунта. После всех измерений вывод один - тектонические плиты в этом районе начали активное движение.
http://www.vesti.ru/doc.html?id=623831&cid=7

Последние модели землетрясений (монитор http://www.emsc-csem.org/Earthquake/) указывают на то, что платформы освобождены, поэтому регулярно происходит их движение в целом - на примере недавних землетрясений на границах антарктической, филиппинской и карибской плит. В результате чего эпицентры землетрясений часто располагаются со всех сторон контура платформ. На сейсмическом мониторе IRIS 13 ноября 2011 г. землетрясения, окаймляющие Антарктическую Плиту, демонстрируют явную тенденцию. Антарктическая Плита двигается!

Сильное землетрясение 8 ноября 2011 г. на границе филиппинской Плиты указывает на движение этой плиты. Землетрясение произошло точно на границе филиппинской Плиты, а на следующий день было другое, меньшее землетрясение на противоположной стороне плиты. Эта плита также двигается.

Произошедшие 12-13 ноября 2011 г. землетрясения, окаймляющие Карибскую Плиту, показывают, что плита целиком движется, находясь под давлением внизу, у соединения близ Венесуэлы, у островов Тринидад и Тобаго, поднимаемая у Виргинских островов, и сильно дробимая там, где Гватемала встречается с Плитой Кокос. Карибская Плита движется , как одно целое.

Основой теоретической геологии начала XX века была контракционная гипотеза . Земля остывает подобно испечённому яблоку, и на ней появляются морщины в виде горных хребтов. Развивала эти идеи теория геосинклиналей , созданная на основании изучения складчатых сооружений. Эта теория была сформулирована Джеймсом Даной , который добавил к контракционной гипотезе принцип изостазии . Согласно этой концепции Земля состоит из гранитов (континенты) и базальтов (океаны). При сжатии Земли в океанах -впадинах возникают тангенциальные силы, которые давят на континенты. Последние вздымаются в горные хребты, а затем разрушаются. Материал, который получается в результате разрушения, откладывается во впадинах.

Кроме того, Вегенер стал искать геофизические и геодезические доказательства. Однако в то время уровень этих наук был явно не достаточен, чтобы зафиксировать современное движение континентов. В 1930 году Вегенер погиб во время экспедиции в Гренландии , но перед смертью уже знал, что научное сообщество не приняло его теорию.

Изначально теория дрейфа материков было принята научным сообществом благосклонно, но в 1922 году она подверглась жёсткой критике со стороны сразу нескольких известных специалистов. Главным аргументом против теории стал вопрос о силе , которая двигает плиты. Вегенер полагал, что континенты двигаются по базальтам океанического дна, но для этого требовалось огромное усилие, и источника этой силы никто назвать не мог. В качестве источника движения плит предлагались сила Кориолиса , приливные явления и некоторые другие, однако простейшие расчёты показывали, что всех их абсолютно недостаточно для перемещения огромных континентальных блоков.

Критики теории Вегенера поставили во главу угла вопрос о силе, двигающей континенты, и проигнорировали всё множество фактов, безусловно подтверждавших теорию. По сути, они нашли единственный вопрос, в котором новая концепция была бессильна, и без конструктивной критики отвергли основные доказательства. После смерти Альфреда Вегенера теория дрейфа материков была отвергнута, получив статус маргинальной науки , и подавляющее большинство исследований продолжали проводиться в рамках теории геосинклиналей. Правда, и ей пришлось искать объяснения истории расселения животных на континентах. Для этого были придуманы сухопутные мосты, соединявшие континенты, но погрузившиеся в морскую пучину. Это было ещё одно рождение легенды об Атлантиде . Стоит отметить, что некоторые учёные не признали вердикт мировых авторитетов и продолжили поиск доказательств движения материков. Так дю Туа (Alexander du Toit ) объяснял образование гималайских гор столкновением Индостана и Евразийской плиты .

Вялотекущая борьба фиксистов, как назвали сторонников отсутствия значительных горизонтальных перемещений, и мобилистов, утверждавших, что континенты всё-таки двигаются, с новой силой разгорелась в 1960-х годах, когда в результате изучения дна океанов были найдены ключи к пониманию «машины» под названием Земля.

К началу 1960-х годов была составлена карта рельефа дна Мирового океана, которая показала, что в центре океанов расположены срединно-океанические хребты , которые возвышаются на 1,5-2 км над абиссальными равнинами , покрытыми осадками. Эти данные позволили Р. Дицу и Гарри Хессу в -1963 годах выдвинуть гипотезу спрединга . Согласно этой гипотезе, в мантии происходит конвекция со скоростью около 1 см/год. Восходящие ветви конвекционных ячеек выносят под срединно-океаническими хребтами мантийный материал, который обновляет океаническое дно в осевой части хребта каждые 300-400 лет. Континенты не плывут по океанической коре, а перемещаются по мантии, будучи пассивно «впаяны» в литосферные плиты. Согласно концепции спрединга, океанические бассейны структуры непостоянные, неустойчивые, континенты же - устойчивые.

Эта же движущая сила (перепада высот) определяет степень упругого горизонтального сжатия коры силой вязкого трения потока о земную кору. Величина этого сжатия мала в области восхождения мантийного потока и увеличивается по мере приближения к месту опускания потока (за счёт передачи напряжения сжатия через неподвижную твёрдую кору по направлению от места подъёма к месту спуска потока). Над опускающимся потоком сила сжатия в коре так велика, что время от времени превышается прочность коры (в области наименьшей прочности и наибольшего напряжения), происходит неупругая (пластическая, хрупкая) деформация коры - землетрясение. При этом из места деформации коры выдавливаются целые горные цепи, например, Гималаи (в несколько этапов).

При пластической (хрупкой) деформации очень быстро (в темпе смещения коры при землетрясении) уменьшается и напряжение в ней - сила сжатия в очаге землетрясения и его окрестностях. Но сразу же по окончании неупругой деформации продолжается прерванное землетрясением очень медленное нарастание напряжения (упругой деформации) за счёт очень медленного же движения вязкого мантийного потока, начиная цикл подготовки следующего землетрясения.

Таким образом, движение плит - следствие переноса тепла из центральных зон Земли очень вязкой магмой. При этом часть тепловой энергии превращается в механическую работу по преодолению сил трения, а часть, пройдя через земную кору, излучается в окружающее пространство. Так что наша планета в некотором смысле представляет собой тепловой двигатель .

Относительно причины высокой температуры недр Земли существует несколько гипотез. В начале XX века была популярна гипотеза радиоактивной природы этой энергии. Казалось, она подтверждалась оценками состава верхней коры, которые показали весьма значительные концентрации урана , калия и других радиоактивных элементов , но впоследствии выяснилось, что содержания радиоактивных элементов в породах земной коры совершенно недостаточно для обеспечения наблюдаемого потока глубинного тепла. А содержание радиоактивных элементов в подкоровом веществе (по составу близком к базальтам океанического дна), можно сказать, ничтожно. Однако это не исключает достаточно высокого содержания тяжёлых радиоактивных элементов, генерирующих тепло, в центральных зонах планеты.

Другая модель объясняет нагрев химической дифференциацией Земли. Первоначально планета была смесью силикатного и металлического веществ. Но одновременно с образованием планеты началась её дифференциация на отдельные оболочки. Более плотная металлическая часть устремилась к центру планеты, а силикаты концентрировались в верхних оболочках. При этом потенциальная энергия системы уменьшалась и превращалась в тепловую энергию.

Другие исследователи полагают, что разогрев планеты произошёл в результате аккреции при ударах метеоритов о поверхность зарождающегося небесного тела. Это объяснение сомнительно - при аккреции тепло выделялось практически на поверхности, откуда оно легко уходило в космос, а не в центральные области Земли.

Второстепенные силы

Сила вязкого трения, возникающая вследствие тепловой конвекции, играет определяющую роль в движениях плит, но кроме неё на плиты действуют и другие, меньшие по величине, но также важные силы. Это - силы Архимеда , обеспечивающие плавание более лёгкой коры на поверхности более тяжёлой мантии. Приливные силы , обусловленные гравитационным воздействием Луны и Солнца (различием их гравитационного воздействия на разноудаленные от них точки Земли). Сейчас приливной «горб» на Земле, вызванный притяжением Луны в среднем около 36 см. Раньше, Луна была ближе и это имело большие масштабы, деформация мантии приводит к её нагреву. Например, вулканизм, наблюдаемый на Ио (спутник Юпитера), вызван именно этими силами - прилив на Ио около 120 м. А также силы, возникающие вследствие изменения атмосферного давления на различные участки земной поверхности - силы атмосферного давления достаточно часто изменяются на 3 %, что эквивалентно сплошному слою воды толщиной 0,3 м (или гранита толщиной не менее 10 см). Причём это изменение может происходить в зоне шириной в сотни километров, тогда как изменение приливных сил происходит более плавно - на расстояниях в тысячи километров.

Дивергентные границы или границы раздвижения плит

Это границы между плитами, двигающимися в противоположные стороны. В рельефе Земли эти границы выражены рифтами, в них преобладают деформации растяжения, мощность коры пониженная, тепловой поток максимален, и происходит активный вулканизм. Если такая граница образуется на континенте, то формируется континентальный рифт, который в дальнейшем может превратиться в океанический бассейн с океаническим рифтом в центре. В океанических рифтах в результате спрединга формируется новая океаническая кора.

Океанические рифты

Схема строения срединно-океанического хребта

Континентальные рифты

Раскол континента на части начинается с образования рифта . Кора утончается и раздвигается, начинается магматизм . Формируется протяжённая линейная впадина глубиной порядка сотен метров, которая ограничена серией сбросов . После этого возможно два варианта развития событий: либо расширение рифта прекращается и он заполняется осадочными породами , превращаясь в авлакоген , либо континенты продолжают раздвигаться и между ними, уже в типично океанических рифтах, начинает формироваться океаническая кора.

Конвергентные границы

Конвергентными называются границы, на которых происходит столкновение плит. Возможно три варианта:

  1. Континентальная плита с океанической. Океаническая кора плотнее, чем континентальная и погружается под континент в зоне субдукции .
  2. Океаническая плита с океанической. В таком случае одна из плит заползает под другую и также формируется зона субдукции, над которой образуется островная дуга .
  3. Континентальная плита с континентальной. Происходит коллизия, возникает мощная складчатая область. Классический пример - Гималаи .

В редких случаях происходит надвигание океанической коры на континентальную - обдукция . Благодаря этому процессу возникли офиолиты Кипра , Новой Каледонии , Омана и другие.

В зонах субдукции поглощается океаническая кора, и тем самым компенсируется её появление в срединно-океанических хребтах . В них происходят исключительно сложные процессы, взаимодействия коры и мантии. Так океаническая кора может затягивать в мантию блоки континентальной коры, которые по причине низкой плотности эксгумируются обратно в кору. Так возникают метаморфические комплексы сверхвысоких давлений, один из популярнейших объектов современных геологических исследований.

Большинство современных зон субдукции расположены по периферии Тихого океана , образуя тихоокеанское огненное кольцо. Процессы, идущие в зоне конвергенции плит, по праву считаются одними из самых сложных в геологии. В ней смешиваются блоки разного происхождения, образуя новую континентальную кору.

Активные континентальные окраины

Активная континентальная окраина

Активная континентальная окраина возникает там, где под континент погружается океаническая кора. Эталоном этой геодинамической обстановки считается западное побережье Южной Америки , её часто называют андийским типом континентальной окраины. Для активной континентальной окраины характерны многочисленные вулканы и вообще мощный магматизм. Расплавы имеют три компонента: океаническую кору, мантию над ней и низы континентальной коры.

Под активной континентальной окраиной происходит активное механическое взаимодействие океанической и континентальной плит. В зависимости от скорости, возраста и мощности океанической коры возможны несколько сценариев равновесия. Если плита двигается медленно и имеет относительно малую мощность, то континент соскабливает с неё осадочный чехол. Осадочные породы сминаются в интенсивные складки, метаморфизуются и становятся частью континентальной коры. Образующаяся при этом структура называется аккреционным клином . Если скорость погружающейся плиты высока, а осадочный чехол тонок, то океаническая кора стирает низ континента и вовлекает его в мантию.

Островные дуги

Островная дуга

Островные дуги - это цепочки вулканических островов над зоной субдукции, возникающие там, где океаническая плита погружается под другую океаническую плиту. В качестве типичных современных островных дуг можно назвать Алеутские , Курильские , Марианские острова , и многие другие архипелаги . Японские острова также часто называют островной дугой, но их фундамент очень древний и на самом деле они образованы несколькими разновременными комплексами островных дуг, так что Японские острова являются микроконтинентом .

Островные дуги образуются при столкновении двух океанических плит. При этом одна из плит оказывается снизу и поглощается в мантию. На верхней же плите образуются вулканы островной дуги. Выгнутая сторона островной дуги направлена в сторону поглощаемой плиты. С этой стороны находятся глубоководный желоб и преддуговый прогиб.

За островной дугой расположен задуговый бассейн (типичные примеры: Охотское море , Южно-Китайское море и т.д.) в котором также может происходить спрединг.

Коллизия континентов

Столкновение континентов

Столкновение континентальных плит приводит к смятию коры и образованию горных цепей. Примером коллизии является Альпийско-Гималайский горный пояс, образовавшийся в результате закрытия океана Тетис и столкновения с Евразийской плитой Индостана и Африки . В результате мощность коры значительно увеличивается, под Гималаями она составляет 70 км. Это неустойчивая структура, она интенсивно разрушается поверхностной и тектонической эрозией . В коре с резко увеличенной мощностью идёт выплавка гранитов из метаморфизованных осадочных и магматических пород. Так образовались крупнейшие батолиты , напр., Ангаро-Витимский и Зерендинский .

Трансформные границы

Там, где плиты двигаются параллельным курсом, но с разной скоростью, возникают трансформные разломы - грандиозные сдвиговые нарушения, широко распространённые в океанах и редкие на континентах.

Трансформные разломы

В океанах трансформные разломы идут перпендикулярно срединно-океаническим хребтам (СОХ) и разбивают их на сегменты шириной в среднем 400 км. Между сегментами хребта находится активная часть трансформного разлома. На этом участке постоянно происходят землетрясения и горообразование, вокруг разлома формируются многочисленные оперяющие структуры - надвиги, складки и грабены. В результате, в зоне разлома нередко обнажаются мантийные породы.

По обе стороны от сегментов СОХ находятся неактивные части трансформных разломов. Активных движений в них не происходит, но они чётко выражены в рельефе дна океанов линейными поднятиями с центральной депрессией.

Трансформные разломы формируют закономерную сетку и, очевидно, возникают не случайно, а в силу объективных физических причин. Совокупность данных численного моделирования, теплофизических экспериментов и геофизических наблюдений позволила выяснить, что мантийная конвекция имеет трёхмерную структуру. Кроме основного течения от СОХ, в конвективной ячейке за счёт остывания верхней части потока, возникают продольные течения. Это остывшее вещество устремляется вниз вдоль основного направления течения мантии. В зонах этого второстепенного опускающегося потока и находятся трансформные разломы. Такая модель хорошо согласуется с данными о тепловом потоке: над трансформными разломами наблюдается его понижение.

Сдвиги на континентах

Сдвиговые границы плит на континентах встречаются относительно редко. Пожалуй, единственным ныне активным примером границы такого типа является разлом Сан-Андреас , отделяющий Северо-Американскую плиту от Тихоокеанской . 800-мильный разлом Сан-Андреас - один из самых сейсмоактивных районов планеты: в год плиты смещаются относительно друг друга на 0,6 см, землетрясения с магнитудой более 6 единиц происходят в среднем раз в 22 года. Город Сан-Франциско и большая часть района бухты Сан-Франциско построены в непосредственной близости от этого разлома.

Внутриплитные процессы

Первые формулировки тектоники плит утверждали, что вулканизм и сейсмические явления сосредоточены по границам плит, но вскоре стало ясно, что и внутри плит идут специфические тектонические и магматические процессы, которые также были интерпретированы в рамках этой теории. Среди внутриплитных процессов особое место заняли явления долговременного базальтового магматизма в некоторых районах, так называемые горячие точки.

Горячие точки

На дне океанов расположены многочисленные вулканические острова. Некоторые из них расположены в цепочках с последовательно изменяющимся возрастом. Классическим примером такой подводной гряды стал Гавайский подводный хребет . Он поднимается над поверхностью океана в виде Гавайских островов , от которых на северо-запад идёт цепочка подводных гор с непрерывно увеличивающимся возрастом, некоторые из которых, например, атолл Мидуэй , выходят на поверхность. На расстоянии порядка 3000 км от Гавайев цепь немного поворачивает на север и называется уже Императорским хребтом. Он прерывается в глубоководном желобе перед Алеутской островной дугой .

Для объяснения этой удивительной структуры было сделано предположение, что под Гавайскими островами находится горячая точка - место, где к поверхности поднимается горячий мантийный поток, который проплавляет двигающуюся над ним океаническую кору. Таких точек сейчас на Земле установлено множество. Мантийный поток, который их вызывает, был назван плюмом . В некоторых случаях предполагается исключительно глубокое происхождение вещества плюмов, вплоть до границы ядра - мантии.

Траппы и океанические плато

Кроме долговременных горячих точек, внутри плит иногда происходят грандиозные излияния расплавов, которые на континентах формируют траппы , а в океанах океанические плато . Особенность этого типа магматизма в том, что он происходит за короткое в геологическом смысле время - порядка нескольких миллионов лет, но захватывает огромные площади (десятки тысяч км²); при этом изливается колоссальный объём базальтов, сравнимый с их количеством, кристаллизующимся в срединно-океанических хребтах.

Известны сибирские траппы на Восточно-Сибирской платформе , траппы плоскогорья Декан на Индостанском континенте и многие другие. Причиной образования траппов также считаются горячие мантийные потоки, но в отличие от горячих точек они действуют кратковременно, и разница между ними не совсем ясна.

Горячие точки и траппы дали основания для создания так называемой плюмовой геотектоники , которая утверждает, что значительную роль в геодинамических процессах играет не только регулярная конвекция, но и плюмы. Плюмовая тектоника не противоречит тектонике плит, а дополняет её.

Тектоника плит как система наук

Сейчас тектонику уже нельзя рассматривать как чисто геологическую концепцию. Она играет ключевую роль во всех науках о Земле, в ней выделилось несколько методических подходов с разными базовыми понятиями и принципами.

С точки зрения кинематического подхода , движения плит можно описать геометрическими законами перемещения фигур на сфере . Земля рассматривается как мозаика плит разного размера, перемещающихся относительно друг друга и самой планеты. Палеомагнитные данные позволяют восстановить положение магнитного полюса относительно каждой плиты на разные моменты времени. Обобщение данных по разным плитам привело к реконструкции всей последовательности относительных перемещений плит. Объединения этих данных с информацией, полученной из неподвижных горячих точек, сделало возможным определить абсолютные перемещения плит и историю движения магнитных полюсов Земли.

Теплофизический подход рассматривает Землю как тепловую машину , в которой тепловая энергия частично превращается в механическую. В рамках этого подхода движение вещества во внутренних слоях Земли моделируется как поток вязкой жидкости, описываемый уравнениями Навье - Стокса . Мантийная конвекция сопровождается фазовыми переходами и химическими реакциями, которые играют определяющую роль в структуре мантийных течений. Основываясь на данных геофизического зондирования, результатах теплофизических экспериментов и аналитических и численных расчётах, учёные пытаются детализировать структуру мантийной конвекции, найти скорости потоков и другие важные характеристики глубинных процессов. Особенно важны эти данные для понимания строения самых глубоких частей Земли - нижней мантии и ядра, которые недоступны для непосредственного изучения, но, несомненно, оказывают огромное влияние на процессы, идущие на поверхности планеты.

Геохимический подход . Для геохимии тектоника плит важна как механизм непрерывного обмена веществом и энергией между различными оболочками Земли. Для каждой геодинамической обстановки характерны специфические ассоциации горных пород. В свою очередь, по этим характерным особенностям можно определить геодинамическую обстановку, в которой образовалась порода.

Исторический подход . В смысле истории планеты Земля, тектоника плит - это история соединяющихся и раскалывающихся континентов, рождения и угасания вулканических цепей, появления и закрытия океанов и морей. Сейчас для крупных блоков коры история перемещений установлена с большой детальностью и за значительный промежуток времени, но для небольших плит методические трудности много большие. Самые сложные геодинамические процессы происходят в зонах столкновения плит, где образуются горные цепи, сложенные множеством мелких разнородных блоков - террейнов . При изучении Скалистых гор зародилось особое направление геологических исследований - террейновый анализ , который вобрал в себя комплекс методов, по выделению террейнов и реконструкции их истории.

Тектоника плит на других планетах

В настоящее время нет подтверждений современной тектоники плит на других планетах Солнечной системы . Исследования магнитного поля Марса , проведённые в космической станцией Mars Global Surveyor , указывают на возможность тектоники плит на Марсе в прошлом.

В прошлом [когда? ] поток тепла из недр планеты был больше, поэтому кора была тоньше, давление под намного более тонкой корой было тоже намного ниже. А при существенно более низком давлении и чуть большей температуре вязкость мантийных конвекционных потоков непосредственно под корой была намного ниже нынешней. Поэтому в коре, плывущей на поверхности мантийного потока, менее вязкого, чем сегодня, возникали лишь сравнительно небольшие упругие деформации. И механические напряжения, порождаемые в коре менее вязкими, чем сегодня, конвекционными потоками, были недостаточны для превышения предела прочности пород коры. Поэтому, возможно, и не было такой тектонической активности, как в более позднее время.

Прошлые перемещения плит

Подробнее по этой теме см.: История перемещения плит.

Восстановление прошлых перемещений плит - один из основных предметов геологических исследований. С различной степенью детальности положение континентов и блоков, из которых они сформировались, реконструировано вплоть до архея.

Из анализа перемещений континентов было сделано эмпирическое наблюдение, что континенты каждые 400-600 млн лет собираются в огромный материк, содержащий в себе почти всю континентальную кору - суперконтинент . Современные континенты образовались 200-150 млн лет назад, в результате раскола суперконтинента Пангеи . Сейчас континенты находятся на этапе почти максимального разъединения. Атлантический океан расширяется, а Тихий океан закрывается. Индостан движется на север и сминает Евразийскую плиту, но, видимо, ресурс этого движения уже почти исчерпан, и в скором геологическом времени в Индийском океане возникнет новая зона субдукции, в которой океаническая кора Индийского океана будет поглощаться под Индийский континент.

Влияние перемещений плит на климат

Расположение больших континентальных массивов в приполярных областях способствует общему понижению температуры планеты, так как на континентах могут образовываться покровные оледенения. Чем шире развито оледенение, тем больше альбедо планеты и тем ниже среднегодовая температура.

Кроме того, взаимное расположение континентов определяет океаническую и атмосферную циркуляцию.

Однако простая и логичная схема: континенты в приполярных областях - оледенение, континенты в экваториальных областях - повышение температуры, оказывается неверной при сопоставлении с геологическими данными о прошлом Земли. Четвертичное оледенение действительно произошло, когда в районе Южного полюса оказалась Антарктида , и в северном полушарии Евразия и Северная Америка приблизились к Северному полюсу. С другой стороны, сильнейшее протерозойское оледенение , во время которого Земля оказалась почти полностью покрыта льдом, произошло тогда, когда большая часть континентальных массивов находилась в экваториальной области.

Кроме того, существенные изменения положения континентов происходят за время порядка десятков миллионов лет, в то время как, суммарная продолжительность ледниковых эпох составляет порядка нескольких миллионов лет, и во время одной ледниковой эпохи происходят циклические смены оледенений и межледниковых периодов. Все эти климатические изменения происходят быстро по сравнению со скоростями перемещения континентов, и поэтому движение плит не может быть их причиной.

Из вышесказанного следует, что перемещения плит не играют определяющей роли в климатических изменениях, но могут быть важным дополнительным фактором, «подталкивающим» их.

Значение тектоники плит

Тектоника плит сыграла в науках о Земле роль, сравнимую с гелиоцентрической концепцией в астрономии , или открытием ДНК в генетике . До принятия теории тектоники плит, науки о Земле носили описательный характер. Они достигли высокого уровня совершенства в описании природных объектов, но редко могли объяснить причины процессов. В разных разделах геологии могли доминировать противоположные концепции. Тектоника плит связала различные науки о Земле, дала им предсказательную силу.

См. также

Примечания

Литература

  • Вегенер А. Происхождение материков и океанов /пер. с нем. П. Г. Каминского под ред. П. Н. Кропоткина. - Л.: Наука, 1984. - 285 с.
  • Добрецов Н. Л., Кирдяшкин А. Г. Глубинная геодинамика. - Новосибирск, 1994. - 299 с.
  • Зоненшайн, Кузьмин М. И. Тектоника плит СССР. В 2-х томах.
  • Кузьмин М. И., Корольков А. Т., Дриль С. И., Коваленко С. Н. Историческая геология с основами тектоники плит и металлогении. - Иркутск: Иркут. ун-т, 2000. - 288 с.
  • Кокс А., Харт Р. Тектоника плит. - М.: Мир, 1989. - 427 с.
  • Н. В. Короновский, В. Е. Хаин, Ясаманов Н. А. Историческая геология: Учебник. М.: изд-во Академия, 2006.
  • Лобковский Л. И., Никишин А. М., Хаин В. Е. Современные проблемы геотектоники и геодинамики. - М.: Научный мир, 2004. - 612 c. - ISBN 5-89176-279-X .
  • Хаин, Виктор Ефимович . Основные проблемы современной геологии. М.: Научный Мир, 2003.

Ссылки

На русском языке
  • Хаин, Виктор Ефимович Современная геология: проблемы и перспективы
  • В. П. Трубицын, В. В. Рыков. Мантийная конвекция и глобальная тектоника земли Объединённый институт физики Земли РАН, Москва
  • Причины тектонических разломов, дрейф материков и физический тепловой баланс планеты (USAP)
  • Хаин, Виктор Ефимович Тектоника плит, их структуры, движения и деформации
На английском языке
Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари