Подпишись и читай
самые интересные
статьи первым!

Регуляторы нагрузки. Электрические схемы бесплатно

В последнее пора настоящий ренессанс переживают резисторные и транзисторные регуляторы мощности. Они самые неэкономичные. Повысить КПД регулятора можно так же, как и регулятора включением диода (см.рисунок). При этом достигается более удобный предел регулирования (50-100%). Полупроводниковые приборы можно разместить на одном радиаторе. Ю.И.Бородатый, Ивано-Франковская обл. Литература 1.Данильчук А.А. Регулятор мощности для паяльника / /Радиоаматор-Электрик. -2000. -№9. -С.23. 2.Риштун А Регулятор потужности на шести деталях //Радиоаматор-Электрик. -2000. -№11. -С.15....

Для схемы "РЕГУЛЯТОР МОЩНОСТИ С ОБРАТНОЙ СВЯЗЬЮ"

В нагрузку данного простого регулятора можно включать лампы накаливания, нагревательные устройства различного типа и проч., по соответствующие применяемым тиристорам. Методика настройки регулятора, содержится в подборе переменного регулирующего резистора. Однако, лучше всего подобрать такой потенциометр, последовательно с постоянным резистором, чтобы напряжение на выходе регулятора изменялось в максимально возможных широких пределах. А.АНДРИЕНКО, г.Кострома....

Для схемы "ПРОСТОЙ РЕГУЛЯТОР ТЕМПЕРАТУРЫ ЖАЛА ПАЯЛЬНИКА"

Бытовая электроникаПРОСТОЙ ТЕМПЕРАТУРЫ ЖАЛА ПАЯЛЬНИКАС.ГРИЩЕНКО 394000, г.Воронеж, ул.Мало-Смольнская, 6 -3. Эта схема не является моей собственной разработкой. Я в первый раз увидел ее в журнале "Радио" . Думаю, она заинтересует многих радиолюбителей своей простотой. Устройство позволяет регулировать мощность паяльника от половинной до максимальной. При указанных на схеме элементах мощность нагрузки не должна превышать 50 Вт, но в течение часа схема может перенести и нагрузку 100 Вт без особых последствий.Схема регулятора приведена на рисунке. Если тиристор VD2 заместить на КУ201, а диод VD1 - на КД203В, мощность подключаемой можно немаловажно увеличить. Выходная мощность минимальна в крайнем левом (по схеме) положении движка R2. В моем варианте смонтирован в подставке настольной лампы методом навесного монтажа. При этом экономится одна сетевая розетка, которых, как понятно, вечно не хватает. Этот работает у меня в течение 14 лет без каких-либо нареканий.Литература 1. Радио, 1975,N6,C.53....

Для схемы "Простой регулятор мощности"

Индуктивная нагрузка в цепи регулятора предъявляет жесткие требования к схемам менеджмента симисторов- синхронизация системы менеджмента должна осуществляться непосредственно от питающей сети сигнал должен иметь длительность равную интервалу проводимости симистора. На рисунке приведена схема регулятора удовлетворяющего этим требованиям в котором используется сочетание динистора и симистора Постоянная времени (R4 + R5)C3 определяет угол запаздывания отпирания динистора VS1 а значит и симистора VS2 Перемещением ползунка переменного резистора R5 регулируют мощность потребляемую нагрузкой. Конденсатор С2 и резистор R2 используются для синхронизации и обеспечения длительности сигнала менеджмента Конденсатор СЗ перезаряжается от С2 после переключения так как в конце каждого полупериода на нем оказывается напряжение обратной полярности. Для защиты от помех создаваемых регулятором введены два Фильтра R1C1 - в цепь питания и R7C4 - в цепь нагрузки. Для налаживания устройства нужно резистор R5 поставить в положение максимального сопротивления и резистором R3 установить минимальную мощность на нагрузке Конденсаторы С1 и С4 типа К40П-2Б на 400 В конденсаторы С2 и СЗ типа К73-17 на 250 В Диодный мост VD1 можно сменить диодами КД105Б Выключатель SA1 рассчитан на ток не менее 5 A. В.Ф.Яковлев, г.Шостка, Сумская обл. ...

Для схемы "Симисторный регулятор мощности"

Предлагаемое устройство (рис.1) представляет собой фазовый мощности, способный работать с нагрузкой от нескольких ватт до единиц киловатт. Эта конструкция представляет собой переработку ранее разработанного устройства . Применение иной элементной базы позволило упростить силовой узел конструкции, повысить надежность и улучшить эксплуатационные характеристики регулятора. Как и в прототипе, в этом регуляторе имеется плавная и ступенчатая регулировка поступающей на нагрузку мощности. Кроме того, в любой момент (не трогая ручки регулятора) устройство можно перевести в режим работы, когда на нагрузку поступает почти 100% мощности. При этом практически отсутствуют радиопомехи. Силовой ключ построен на мощном симисторе VS2. Минимальная мощность подключаемой может быть от 3 до 10 Вт. максимальная (1.5 кВт) ограничена типом используемого симистора, условиями его охлаждения и конструкцией помехоподавляющих дросселей. Структурная схема микросхемы 251 1НТ На маломощных транзисторах VT3. VT4 собран аналог однопереходного транзистора, который армирует короткие импульсы, открывающие маломощный высоковольтный тиристор VS1. Мощность, поступающая на нагрузку, зависит от сопротивления переменного резистора R6. Открывшийся маломощный тиристор, в свою очередь, открывает мощный симистор VS2. Через открывшийся симистор на нагрузку поступает напряжение питания.Чтобы иметь вероятность, например, на пора уменьшить яркость свечения лампы или температуру паяльника. а потом вернуться к прежнему установленному значению, на микросхеме DD1 построен узел ступенчатого менеджмента мощностью. При первом нажатии на кнопку SB1 триггер DD1.2 переключается, на выходе 1 DD1.2 появляется большой логический уровень напряжения ("Г), транзистор VT2 открывается и шунтирует цепь ограничения амплитуды сетевого напряжения VD2-HL2. Мощнос...

Электропитание"МЯГКАЯ" НАГРУЗКА В ЭЛЕКТРОСЕТИ При подключении и отключении нагрузки в электросети нередко возникают помехи, которые нарушают нормальную работу чувствительных электронных приборов и электрических систем. Устройство, схема которого показана на рис. 1, реализует "мягкое" подключение и отключение нагрузки. =МЯГКАЯ НАГРУЗКА В ЭЛЕКТРОСЕТИPuc.1При замыкании контактов выключателя SA1 в процессе зарядки конденсатора С1 (через резистор R1), транзистор VT1 постепенно открывается и ток коллектора плавно нарастает до значения, определяемого соотношением сопротивлений резисторов R1 и R2. Соответственно плавно возрастает и ток в нагрузке. При выключении конденсатор разряжается через резистор R2 и переход база-эмиттер транзистора. Ток плавно снижается до нуля. При указанных на схеме значениях элементов и 200 Вт длительность процесса включения составляет 0,1 с, выключения - 0,5с. Как проверить микросхему к174пс1 Потери напряжения в этом устройстве относительно небольшие, они определяются суммой прямого падения на двух диодах и участке коллектор - эмиттер работающего транзистора, которое приблизительно составляет: Uce(B)=0,7+R1*Iн/h21э В зависимости от тока нагрузки и коэффициента передачи тока базы транзистора следует подобрать резистор R) таким образом, чтобы падение напряжения на транзисторе и мощность рассеяния на нем поддерживались бы в включенном состоянии на допустимом уровне. =МЯГКАЯ НАГРУЗКА В ЭЛЕКТРОСЕТИPuc.2В варианте устройства, изображенном на рис. 2, предусмотрена броня...

Для схемы "ПЛАВНОЕ ЗАЖИГАНИЕ ЛАМПЫ НАКАЛИВАНИЯ"

Бытовая электроникаПЛАВНОЕ ЗАЖИГАНИЕ ЛАМПЫ НАКАЛИВАНИЯ Устройство обеспечивает защиту осветительной лампы от бросков тока в момент включения и плавный разогрев ее нити накала, а также регулировку максимальной мощности нагрузки. Преимущество его перед некоторыми подобными, например, опубликованными в - простота, сочетающаяся с довольно высокой надежностью. За основу (см. схему) взят способ фазоимпульсного менеджмента тринистором, описанный в [З]. Принцип действия такого устройства хорошо известен читателям "Радио", а потому рассмотрим подробно лишь работу ещё вводимой цепи автоматического менеджмента мощностью нагрузки, состоящую из диода VD4, конденсатора С1 и резисторов R2, R3. Сразу после включения в сеть конденсатор С1 начинает заряжаться импульсами тока, текущего через резистор R2, диод VD4 и резистор R3. Пиковое роль напряжения в точке А пока недостаточно для открывания однопереходного транзистора VT1, поэтому он закрыт, закрыт, безусловно, и тринистор VS1. В это час ток через нагрузку EL1 не протекает. Т160 схема регулятора тока По мере зарядки конденсатора С1 роль импульсного напряжения в точке А увеличивается. Когда она достигает порога открывания транзистора, конденсатор С1 начинает разряжаться через его переход эмиттер-база, в результате чего на управляющий электрод тринистора поступают открывающие его короткие импульсы. Мощность, рассеиваемая в нагрузке, определяется фазовым сдвигом между управляющим импульсом и началом периода анодного напряжения тринистора, а также частотой следования управляющих импульсов, поскольку в начале процесса один импульс формируется за несколько периодов сетевого напряжения. Эти два параметра, определяющие функционирование тринистора, зависят от скорости зарядки конденсатора С2, т. е. от пикового напряжения в точке А и сопротивления введенной части переменного резистора R4. По мере зарядки конденсатора С1 (спустя 1...2 с) средний ток, протекающий через диод VD4, умень...

Для схемы "ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ ПН-32"

ЭлектропитаниеПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ ПН-32(С) РИНТЕЛСай Олег, (RA3XBJ).Преобразователь предназначен для питания аппаратуры с номинальным напряжением 12 В (СВ радиостанции, магнитолы, телевизоры и т.п.) от бортовой сети автомобилей с напряжением 24 В. Максимальный ток нагрузки преобразователя до 3А кратковременно и 2-2.5 А длительно (определяется площадью радиатора выходного транзистора). КПД 75-90% в зависимости от тока нагрузки. Схема преобразователя не содержит дефицитных деталей. Дроссель намотан на ферритовом кольце диаметром 32 мм и имеет 50 витков провода ПЭТВ-0.63. Габариты преобразователя 65х90х40 мм.Вопросы по конструкции можно задать автору [email protected]...

РЕГУЛИРОВКА МОЩНОСТИ

Чаще всего регуляторы мощности устройств делают на тринисторах, используя его в качестве выходного мощного ключа. Но тринистор в цепи переменного тока неудобен тем, что требует питания через выпрямительный мост, который при большой мощности нагрузки должен быть установлен на радиатор. В этом плане для ключевого элемента более удобен симистор. Основное отличие - это возможность коммутации не только постоянного, но и переменного тока, который может протекать в любом направлении - как от анода к катоду, так и в противоположную сторону.

Для справки: симисторы при положительном напряжении на аноде могут включаться импульсами любой полярности, подаваемыми на управляющий электрод относительно катода, а при отрицательном напряжении на аноде - импульсами только отрицательной полярности. Управление симистором постоянным током требует большой мощности, а при импульсном управлении необходим формирователь, обеспечивающий короткие импульсы в момент прохождения сетевого напряжения через ноль, что снижает уровень помех по сравнению с регуляторами, в которых использован фазоимпульсный метод регулирования.

Устройство регулировки мощности содержит симистор, узел временной (фазовой) задержки, компенсирующую цепь и источник питания. Компенсирующая цепочка R8 C2 к напряжению стабилитрона VD3 добавляет величину напряжения, пропорциональную питающему напряжению. Эта сумма является межбазовым напряжением однопереходного транзистора КТ117. Уменьшение питающего напряжения снижает напряжение питания транзистора и вызывает уменьшение временной задержки. От известной схемы симисторного регулятора мощности на BT136-600 и динисторе DB-3, эта отличается стабилизацией управляющих импульсов и соответственно большей точностью и неизменностью выходного напряжения.

При наладке устройства регулировки мощности, надо включить его в сеть с нагрузкой через , а параллельно нагрузке установить вольтметр. Меняя напряжение переменным резистором R8 на входе регулятора, добиваемся минимального напряжения на нагрузке. Трансформатор выполнен на сердечнике Ш5х6, первичная обмотка 40 витков, вторичная 50 витков ПЭЛ-0,2 - 0.3. В своём варианте устройства регулировки мощности поставил трансформатор на ферритовом кольце К20х10х6 с двумя одинаковыми обмотками по 40 витков - всё отлично заработало. Для визуального контроля напряжения (мощности) на нагрузке, поставил небольшой вольтметр переменного тока собранный из индикатора уровня записи бобинного советского магнитофона. Подключаем его естественно параллельно нагрузке. красного свечения показывают, что устройство регулировки мощности включено в сеть и выполняют подсветку шкалы.

К данному регулятору можно подключать активную нагрузку мощностью до двух киловат - электроплиты, электрочайники, электрокамины, утюги и т. д., а при замене симистора на более мощный, например ТС132-50, до 10 кВт. Реальный пример использования: у соседа постоянно выбивают пробки автоматы на 16 А при эксплуатации электрочайника Тефаль 2 кВт. Замена их невозможна, так как проживает он не в своей квартире. Проблему решило данное устройство для регулировки, установленное на 80% мощности.

Полезные доработки: при работе с индуктивной нагрузкой, параллельно симистору регулятора мощности надо включить RC цепочку для ограничения скорости нарастания анодного напряжения. Любой симисторный регулятор является источником радиопомех, поэтому регулятор мощности желательно снабдить фильтром радиопомех. Фильтр радиопомех LC представляет собой обычный Г-фильтр с катушкой и конденсатором. В качестве дросселя L используется катушка из 100 витков провода, намотанного на ферритовый стержень диаметром 8 мм и длиной 50 мм. Диаметр провода 1 мм соответствует максимальной мощности нагрузки примерно 700 Вт. Предохранитель на номинальный ток нагрузки защищает симистор от короткого замыкания в нагрузке. При настройке соблюдайте меры безопасности, так как все элементы устройства для регулировки мощности гальванически связаны с сетью 220 В.

Вопросы и коментарии по схеме - на

В электротехнике довольно часто приходиться встречаться с задачами регулирования переменного напряжения, тока или мощности. Например, для регулирования частоты вращения вала коллекторного двигателя необходимо регулировать напряжение на его зажимах, для управления температурой внутри сушильной камеры нужно регулировать мощность, выделяемую в нагревательных элементах, для достижения плавного безударного пуска асинхронного двигателя - ограничивать его пусковой ток. Распространенным решением является устройство, называемое тиристорный регулятор.


Устройство и принцип действия однофазного тиристорного регулятора напряжения


Тиристорные регуляторы бывают однофазные и трехфазные соответственно для однофазных и трехфазных сетей и нагрузок. В этой статье мы рассмотрим простейший однофазный тиристорный регулятор, - в других статьях. Итак, на рисунке 1 ниже представлен однофазный тиристорный регулятор напряжения:

Рис.1 Простой однофазный тиристорный регулятор с активной нагрузкой

Сам тиристорный регулятор обведен голубыми линиями и включает в себя тиристоры VS1-VS2 и систему импульсно-фазового управления (далее - СИФУ). Тиристоры VS1-VS2 - полупроводниковые приборы, имеющие свойство быть закрытыми для протекания тока в нормальном состоянии и быть открытыми для протекания тока одной полярности при подаче напряжения управления на его управляющий электрод. Поэтому для работы в сетях переменного тока необходимо два тиристора, включенных разнонаправлено - один для протекания положительной полуволны тока, второй - отрицательной полуволны. Такое включение тиристоров называется встречно-параллельным.

Однофазный тиристорный регулятор с активной нагрузкой

Работает тиристорный регулятор так. В начальный момент времени подается напряжение L-N (фаза и ноль в нашем примере), при этом импульсы управляющего напряжения на тиристоры не подаются, тиристоры закрыты, ток в нагрузке Rн отсутствует. После получения команды на запуск СИФУ начинает формировать импульсы управления по определенному алгоритму (см.рис. 2).



Рис.2 Диаграмма напряжения и тока в активной нагрузке

Сначала система управления синхронизируется с сетью, то есть определяет момент времени, в который напряжение сети L-N равно нулю. Эта точка называется моментом перехода через ноль (в иностранной литературе - Zero Cross). Далее отсчитывается определенное время T1 от момента перехода через ноль и подается импульс управления на тиристор VS1. При этом тиристор VS1 открывается и через нагрузку протекает ток по пути L-VS1-Rн-N. При достижении следующего перехода через ноль тиристор автоматически закрывается, так как не может проводить ток в обратном направлении. Далее начинается отрицательный полупериод сетевого напряжения. СИФУ снова отсчитывает время Т1 относительно уже нового момента перехода напряжения через ноль и формирует второй импульс управления уже тиристором VS2, который открывается, и через нагрузку протекает ток по пути N-Rн-VS2-L. Такой способ регулирования напряжения называется фазо-импульсный .

Время Т1 называется временем задержки отпирания тиристоров, время Т2 - время проводимости тиристоров. Изменяя время задержки отпирания T1 можно регулировать величину выходного напряжения от нуля (импульсы не подаются, тиристоры закрыты) до полного сетевого, если импульсы подаются сразу в момент перехода через ноль. Время задержки отпирания T1 варьируется в пределах 0..10 мс (10 мс - это длительность одного полупериода напряжения стандартной сети 50 Гц). Также иногда говорят о временах T1 и Т2, но оперируют при этом не временем, а электрическими градусами. Один полупериод составляет 180 эл.градусов.

Что представляет выходное напряжение тиристорного регулятора? Как видно из рисунка 2, оно напоминает « обрезки» синусоиды. Причем чем больше время Т1, тем меньше этот „обрезок“ напоминает синусоиду. Из этого следует важный практический вывод - при фазо-импульсном регулировании выходного напряжение несинусоидально. Это обуславливает ограничение области применения — тиристорный регулятор не может быть применен для нагрузок, не допускающих питание несинусоидальным напряжением и током. Так же на рисунке 2 красным цветом показана диаграмма тока в нагрузке. Поскольку нагрузка чисто активная, то форма тока повторяет форму напряжения в соответствии с законом Ома I=U/R.

Случай активной нагрузки является наиболее распространенным. Одно из самых частых применений тиристорного регулятора - регулирование напряжения в ТЭНах. Регулируя напряжение, изменяется ток и выделяемая в нагрузке мощность. Поэтому иногда такой регулятор также называют тиристорным регулятором мощности . Это верно, но все-таки более верное название - тиристорный регулятор напряжения, так как именно напряжение регулируется в первую очередь, а ток и мощность - это величины уже производные.


Регулирование напряжения и тока в активно-индуктивной нагрузке


Мы рассмотрели простейший случай активной нагрузки. Зададимся вопросом, что изменится, если нагрузка будет иметь помимо активной еще и индуктивную составляющую? Например, активное сопротивление подключено через понижающий трансформатор (рис.3). Это кстати очень распространенный случай.


Рис.3 Тиристорный регулятор работает на RL-нагрузку

Посмотрим внимательно на рисунок 2 из случая чисто активной нагрузки. На нем видно, что сразу после включения тиристора ток в нагрузке почти мгновенно нарастает от нуля до своего предельного значения, обусловленного текущим значением напряжения и сопротивления нагрузки. Из курса электротехники известно, что индуктивность препятствует такому скачкообразному нарастанию тока, поэтому диаграмма напряжения и тока будет иметь несколько отличный характер:


Рис.4 Диаграмма напряжения и тока для RL-нагрузки

После включения тиристора ток в нагрузке нарастает постепенно, благодаря чему кривая тока сглаживается. Чем больше индуктивность, тем более сглаженная кривая тока. Что это дает практически?

— Наличие достаточной индуктивности позволяет приблизить форму тока к синусоидальной, то есть индуктивность выполняет роль синус фильтра. В данном случае это наличие индуктивности обусловлено свойствами трансформатора, но часто индуктивность вводят преднамеренно в виде дросселя.

— Наличие индуктивности уменьшает величину помех, распространяемых тиристорным регулятором по проводам и в радиоэфир. Резкое, почти мгновенное (в течение нескольких микросекунд) нарастание тока вызывает помехи которые могут препятствовать нормальной работе другого оборудования. А если питающая сеть « слабая», то бывает и совсем курьез - тиристорный регулятор может „глушить“ сам себя своими же помехами.

— У тиристоров есть важный параметр - величина критической скорости нарастания тока di/dt. Например, для тиристорного модуля SKKT162 эта величина составляет 200 А/мкс. Превышение этой величины опасно, так как может привести к выходу тиристору из строя. Так вот наличие индуктивности дает возможность тиристору остаться в области безопасной работы, гарантированно не превысив предельную величину di/dt. Если же это условие не выполняется, то может наблюдаться интересное явление - выход тиристоров из строя, притом что ток тиристоров не превышает их номинального значения. Например, тот же SKKT162 может выходить из строя при токе в 100 А, хотя он может нормально работать до 200 А. Причиной будет превышение именно скорости нарастания тока di/dt.

Кстати, надо оговориться, что индуктивность в сети есть всегда, даже если нагрузка носит чисто активный характер. Ее наличие обусловлено, во-первых, индуктивностью обмоток питающей трансформаторной подстанции, во вторых, собственной индуктивностью проводов и кабелей и, в третьих, индуктивностью петли, образованной питающими и нагрузочными проводами и кабелями. И чаще всего этой индуктивности хватает, чтобы обеспечить условие непревышения di/dt критического значения, поэтому производители обычно не ставят в тиристорные регуляторы , предлагая их как опцию тем, кого беспокоит « чистота» сети и электромагнитная совместимость устройств к ней подключенных.

Также обратим внимание диаграмму напряжения на рисунке 4. На ней также видно, что после перехода через ноль на нагрузке появляется небольшой выброс напряжения обратной полярности. Причина его возникновения - затягивание спадания тока в нагрузке индуктивностью, благодаря чему тиристор продолжает быть открытым даже при отрицательной полуволне напряжения. Запирание тиристора происходит при спадания тока до нуля с некоторым запаздыванием относительно момента перехода через ноль.


Случай индуктивной нагрузки


Что будет если индуктивная составляющая много больше составляющей активной? Тогда можно говорить о случае чисто индуктивной нагрузки. Например, такой случай можно получить, отключив нагрузку с выхода трансформатора из предыдущего примера:


Рисунок 5 Тиристор регулятор с индуктивной нагрузкой

Трансформатор, работающий в режиме холостого хода - почти идеальная индуктивная нагрузка. В этом случае из-за большой индуктивности момент запирания тиристоров смещается ближе к середине полупериода, а форма кривой тока максимально сглаживается до почти синусоидальной формы:



Рисунок 6 Диаграммы тока и напряжение для случая индуктивной нагрузки

При этом напряжение на нагрузке почти равно полному сетевому, хотя время задержки отпирания составляет всего половину полупериода (90 эл.градусов) То есть при большой индуктивности можно говорить о смещении регулировочной характеристики. При активной нагрузке максимальное выходное напряжение будет при угле задержки отпирания 0 эл.градусов, то есть в момент перехода через ноль. При индуктивной нагрузке максимум напряжения можно получить при угле задержки отпирания 90 эл.градусов, то есть при отпирании тиристора в момент максимума сетевого напряжения. Соответственно, случаю активно-индуктивной нагрузки максимум выходного напряжения соответствует углу задержки отпирания в промежуточном диапазоне 0..90 эл.градусов.

НЕСКОЛЬКО ПРИНЦИПИАЛЬНЫХ СХЕМ РЕГУЛЯТОРОВ МОЩНОСТИ

РЕГУЛЯТОР МОЩНОСТИ НА СИМИСТОРЕ

Особенностями предлагаемого устройства являются использование D - триггера для построения генератора, синхронизированного с сетевым напряжением, и способ управления симистором с помощью одиночного импульса, длительность которого регулируется а втоматически. В отличие от других способов импульсного управления симистором, указанный способ некритичен к наличию в нагрузке индуктивной сос тавляющей. Импульсы генератора следуют с периодом приблизительно 1,3 с.
Питание микросхемы DD 1 производится током, протекающим через защитный диод, находящийся внутри микросхемы между ее выводами 3 и 14. Он течет, когда напряжение на этом выводе, соединенном с сетью через резистор R 4 и диод VD 5, превышает на пряжение стабилизации стабилитрона VD 4.

К. ГАВРИЛОВ, Радио, 2011, №2, с. 41

ДВУХКАНАЛЬНЫЙ РЕГУЛЯТОР МОЩНОСТИ НАГРЕВАТЕЛЬНЫХ ПРИБОРОВ

Регулятор содержит два независимых канала и позволяет поддерживать требуемую температуру для различных нагру зок: температуры жала паяльника, электроутюга, электрообогревателя, электроплиты и др. Глубина регулирования составляет 5...95% мощности питающей сети. Схема регулятора питается выпрямленным напряжением 9...11 В с трансформаторной развязкой от сети 220 В с малым током потребления.


В.Г. Никитенко, О.В. Никитенко, Радiоаматор, 2011, №4, с. 35

СИМИСТОРНЫЙ РЕГУЛЯТОР МОЩНОСТИ

Особенностью этого симисторного регулятора является то, что число подаваемых на нагрузку полупериодов сетевого на пряжения при любом положении органа управления оказывается четным. В результате, не образуется постоянная составляющая потребляемого тока и, следовательно, отсутствует подмагничивание магнитопроводов подклю ченных к регулятору трансформа торов и электродвигателей. Мощность р егулируется изменением числа периодов переменного на пряжения, приложенного к нагруз ке за определенный интервал времени. Регулятор предназначен для ре гулирования мощности приборов, обладающих значительной инерци ей (нагревателей и т. п.).
Для регу лирован ия яркости освещения он не пригоден, т. к. лампы будут сильно мигать.

В. КАЛАШНИК, Н. ЧЕРЕМИСИНОВА, В. ЧЕРНИКОВ, Радиомир, 2011, № 5 , с. 17 - 18

БЕСПОМЕХОВЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ

Большинство регуляторов напряжения (мощности) выполнено на тиристорах по схеме с фазоимпульсным управлением. Как известно, подобные устройства создают заметный уровень радиопомех. Предлагаемый регулятор свободен от этого недостатка. Особенность предлагаемого регулятора - управление амплитудой переменного напряжения, при котором не искажается форма выходного сигнала, в отличие от фазоимпульсного управления.
Регулирующий элемент - мощный транзистор VT1 в диагонали диодного моста VD1-VD4, включенного последовательно с нагрузкой. Основной недостаток устройства - его низкий КПД. Когда транзистор закрыт, ток через выпрямитель и нагрузку не проходит. Если на базу транзистора подать напряжение управления, он открывается, через его участок коллектор-эмиттер, диодный мост и нагрузку начинает проходить ток. Напряжение на выходе регулятора (на нагрузке) увеличивается. Когда транзистор открыт и находится в режиме насыщения, к нагрузке приложено практически все сетевое (входное) напряжение. Управляющий сигнал формирует маломощный блок питания, собранный на трансформаторе Т1, выпрямителе VD5 и сглаживающем конденсаторе С1.
Переменным резистором R1 регулируют ток базы транзистора, а следовательно, и амплитуду выходного напряжения. При перемещении движка переменного резистора в верхнее по схеме положение напряжение на выходе уменьшается, в нижнее - увеличивается. Резистор R2 ограничивает максимальное значение тока управления. Диод VD6 защищает узел управления при пробое коллекторного перехода транзистора. Регулятор напряжения смонтирован на плате из фольгиро- ванного стеклотекстолита толщиной 2,5 мм. Транзистор VT1 следует установить на теплоотвод площадью не менее 200 см2. При необходимости диоды VD1-VD4 заменяют более мощными, например Д245А, и также размещают на теплоотводе.

Если устройство собрано без ошибок, оно начинает работать сразу и практически не требует налаживания. Необходимо лишь подобрать резистор R2.
С регулирующим транзистором КТ840Б мощность нагрузки не должна превышать 60 Вт . Его можно заменить приборами: КТ812Б, КТ824А, КТ824Б, КТ828А, КТ828Б с допустимой рассеиваемой мощностью 50 Вт.; КТ856А -75 Вт.; КТ834А, КТ834Б - 100 Вт.; КТ847А-125 Вт. Мощность нагрузки допустимо увеличить, если регулирующие транзисторы одного типа включить параллельно: коллекторы и эмиттеры соединить между собой, а базы через отдельные диоды и резисторы подключить к движку переменного резистора.
В устройстве применим малогабаритный трансформатор с напряжением на вторичной обмотке 5...8 В. Выпрямительный блок КЦ405Е можно заменить любым другим или собрать из отдельных диодов с допустимым прямым током не менее необходимого тока базы регулирующего транзистора. Эти же требования относятся и к диоду VD6. Конденсатор С1 - оксидный, например, К50-6, К50-16 и т. д., на номинальное напряжение не менее 15 В. Переменный резистор R1 - любой с номинальной мощностью рассеяния 2 Вт. При монтаже и налаживании устройства следует соблюдать меры предосторожности: элементы регулятора находятся под напряжением сети. Примечание: Для уменьшения искажения синусоидальной формы выходного напряжения попробуйте исключить конденсатор С1. А. Чекаров

Регулятор напряжения на MOSFET - транзисторах (IRF540, IRF840)

Олег Белоусов, Электрик, 201 2 , № 12 , с. 64 - 66

Так как физический принцип работы полевого транзистора с изолированным затвором отличается от работы тиристора и симмистора, то его в течение периода сетевого напряжения можно многократно включать и выключать. Частота коммутации мощных транзисторов в данной схеме выбрана 1 к Гц. Достоинством этой схемы является простота и возможность изменять скважность импульсов, мало изменяя при этом частоту повторения импульсов.

В авторской конструкции получены следующие длительности импульсов: 0,08 мс, при периоде следования 1 мс и 0,8 мс при периоде следования 0,9 мс, в зависимости от положения движка резистора R2.
Отключить напряжение на нагрузке можно, замкнув выключатель S 1, при этом на затворах MOSFET - транзисторов устанавливается напряжение, близкое к напряжению на 7 выводе микросхем ы. При разомкнутом тумблере напряжение на нагрузке в авторском экземпляре устройства можно было изменять рези стором R 2 в пределах 18...214 В (измерено прибором типа TES 2712).
Принципиальная схема подобного регулятора показан на рисунке ниже. В регуляторе использется отечественная микросхема К561ЛН2 на двух элементах которой собран генератор с регулируемой суважностью, а четыре эелемента используюся как усилители тока.

Для исключения помех по сети 220 послеловательно нагрузке рекомендуется подключить дроссель намотанный на ферритовом кольце диаметром 20...30 мм до заполнения проводом 1 мм.

Генератор тока нагрузки на биполярных транзисторах (КТ817 , 2SC3987)

Бутов А. Л. , Радиоконструктор, 201 2 , № 7 , с. 11 - 12

Для проверки работоспособности и настройки источников питания удобно использовать имитатор нагрузки в виде регулируемого генератора тока. С помощью такого устройства можно не только быстро настроить блок питания, стабилизатор напряжения, но и, например, использовать его как генератор стабильного тока для зарядки, разрядки аккумуля торных батарей, устройств электролиза, для электрохимического травления печатных плат, как стабилизатор тока питания электроламп, для «мягкого» пуска коллекторных электродвигателей.
Устройство является двухполюсником, не требует дополнитель ного источника питания и может включаться в разрыв цепи питания различных устройств и исполнительных механизмов.
Диапазон регулировки тока от 0...0 , 16 до 3 А, максимальная потребляемая (рассеиваемая) мощность 40 Вт, диапазон питающих напряжений 3...30 В постоянного тока. Ток потребления регулируется переменным резистором R 6. Чем левее по схеме движок резистора R6, тем больший ток потребляет устрой ство. При разомкнутых контактах переключателя SA 1 резистором R6 можно установить ток потребления от 0,16 до 0,8 А. При замкнутых контактах этого переключателя ток регулируется в интервале 0,7... 3 А.



Чертеж печатной платы генератора тока

Имитатор автомобильного аккумулятора (КТ827)

В. МЕЛЬНИЧУК, Радиомир, 201 2 , № 1 2 , с. 7 - 8

При переделке компьютерных импульсных блоков питания (ИБП) подзарядные устройства (ЗУ) для автомобильных аккумуляторов готовые изделия в процессе наладки необходимо чем - то нагружать. Поэтому я решил изготовить аналог мощного стабилитрона с регулируемым напряжением стабилизации, схем а которого показана на рис. 1 . Резистором R 6 можно регулировать напряжение стабилизации от 6 до 16 В. Всего было сделано два таких устройства. В первом варианте в качестве транзис торов VT 1 и VT 2 применены КТ 803.
Внутреннее сопротивление такого стабилитрона оказалось слишком велико. Так, при токе 2 А напряжение стабилизации составило 12 В, а при 8 А - 16 В. Во втором варианте использованы составные транзисторы КТ827. Здесь при токе 2 А напряжение стабилизации составило 12 В, а при 10 А - 12,4 В.

Однако при регулировке более мощных потребителей, например электрокотлов симисторные регуляторы мощности становятся не пригодными - уж слишком большую помеху по сети они будут создавать. Для решения этой проблемы лучше использовать регуляторы с бОльшим периодом режимов ВКЛ-ВЫКЛ, что однозначно исключает возникновение помех. Один из вариантов схемы приведен .

Небольшой полупроводниковый прибор «симистор», или симметричный тринистор (тиристор), за своим сложным названием скрывает достаточно простой принцип действия, сравнимый с работой двери в метро. Обыкновенные тиристоры можно сравнить с простой дверью: если ее закрыть, прохода не будет. И работает такая дверь в одном направлении. Симисторы же работают в обоих направлениях. Именно поэтому сравнение с дверью в метрополитене: куда ее не толкают, она отрывается и пропускает поток пассажиров в любом направлении.

Двухстороннее действие симистора обусловлено его особенной структурой. Его катод и анод способны, в некотором смысле, меняться местами и выполнять функции друг друга, пропуская ток в обратном направлении. Это возможно благодаря тому, что симистор имеет 5 полупроводниковых слоев и управляющий электрод.

Для простоты понимания физических процессов, протекающих в симисторе можно представить его в виде двух встречно-параллельно подключенных тиристоров.

Симисторы применяются в различных схемах в качестве бесконтактных ключей и имеют ряд преимуществ перед контакторами, реле, пускателями и подобными электромеханическими элементами:

  • симисторы долговечны, практически неубиваемы;
  • там где есть электромеханика, есть ограничения по частоте коммутаций, износ, и соответствующие риски и проблемы, а с полупроводниками таких нюансов не возникает;
  • полное отсутствие искрообразования и связанных с ним рисков;
  • возможность проводить коммутацию в моменты нулевого сетевого тока, что снижает помехи и влияние на точность работы схем.

Схема простого регулятора мощности на симисторе

Чаще всего симисторы применяются в схемах регулирования мощности. Один из самых простых и распространенных регуляторов мощности на симисторе КУ208Г показан ниже.

Как видно на рисунке, силовая цепь схемы оснащена симистором типа КУ208, а цепь его управления включает лишь один элемент – транзистор типа П416А. Наладка работы устройства сводится в итоге к подбору номинала резистора R1 и проходит в такой последовательности:

  • движок резистора R4 установить в нижнее положение;
  • вместо резистора R1 установить переменный резистор с сопротивлением 150 Ом;
  • установить переменный резистор в максимальное положение;
  • подключить к нагрузке вольтметр переменного тока;
  • подключить устройство к сети.

Для того, чтобы правильно подключить его должна соответствовать предварительно выбранному месту установки и количеству подключаемых устройств. Очень важно при этом проверить корректность работы осветительных приборов и отрегулировать соответствующие параметры датчика.

Данное оборудование, благодаря своим технологичным качествам, набирает все большую популярность при обустройстве освещения в домашних условиях. Прочитав , можно разобраться в принципе работы различных датчиков движения, что поможет в дальнейшем выборе подходящего прибора для своего дома.

Далее необходимо вращать движок резистора R1 и отслеживать напряжение на нагрузке: необходимо добиться, чтобы оно перестало увеличиваться. В найденном положении необходимо измерить сопротивление переменного резистора, и соответственно будет установлено необходимо сопротивление резистора R1. Именно с таким номиналом необходимо будет установить постоянный резистор R1 в схему на место переменного образца.

Обратная связь в симисторных схемах регулирования

Для управления мощностью (температурой) нагревательных элементов различных приборов, скоростями вращения двигателей и т.д. в последнее время, несмотря на большую стоимость, чем электромеханика, применяется регулятор мощности на симисторе. Необходимость использования дополнительного радиатора для такой схемы – это небольшая плата взамен отсутствию рисков искрения, долгому сроку безотказной работы, стабильности выдаваемых параметров.

Такая схема регулирования распространена в приборах типа паяльников, электродрелей и т.д.

Ниже приведен пример еще одной схемы регулирования мощности на симисторе. Это схема для регулирования скорости двигателя промышленной швейной машины.


Схема собрана на симисторе VS1, выпрямительных вентилях VD1 и VD2, и переменном резисторе R3 в цепи управления. Особенностью и ключевой отличительной чертой такой схемы является обратная связь. Симистор, пропускающий ток в обоих направлениях – это лучшее решение для схем регулирования, где необходимо наличие такой обратной связи.

При выборе типа защитных устройств в первую очередь учитывают их технические возможности монтажа в совокупности индивидуальных предпочтений. Это и является определяющим в решении вопроса: ? Только изучив особенности их работы, можно достичь безопасного функционирования бытовой электросети.

Применяя устройства защитного отключения в домашних условиях, необходимо знать особенности различных его видов — чтобы правильно , а также изучить схемы установки — чтобы верно .

Сравнивая с устаревшими коммутационными технологиями, можно обозначить еще одно явное преимущество схем регулирования мощности на симисторах – это возможность обеспечения качественной обратной связи и соответственно корректировки работы по обратной связи.

Особенности и преимущества схемы:

  1. В данном случае реализована обратная связь по нагрузке , что позволяет усиливать обороты двигателя и обеспечивать плавную бесперебойную работу машины в случае возрастания нагрузочных усилий. При этом все операции выполняются схемой автоматически. Не возникает искрений или перегрева. Как видно из рисунка, теплоотвода не предусмотрено.
  2. Данная схема – это регулирование активной мощности приборов . Не рекомендуется применение таких схем в системах регулирования интенсивности освещения. По ряду причин, осветительные приборы будут сильно мигать.

  3. Коммутация симистора в данной схеме происходит строго в моменты перехода через «0» сетевого напряжения, поэтому можно заявлять о полном отсутствии помех со стороны регулятора.
  4. Приводится в действие, то есть включается симистор от поступающего на управляющий электрод положительного импульса при положительном напряжении на аноде, либо от отрицательного импульса при отрицательном положении на катоде. Катод и анод, учитывая особенности двунаправленной работы симистора тут условные. в зависимости от работы в разных направлениях они будут меняться функциями.
  5. В роли источника импульсов для управления симистором может быть применен двунаправленный динистор . Либо, из соображений удешевления схемы, можно подключить во встречно-параллельном направлении пару обыкновенных динисторов. Для обеспечения большей ширины диапазона регулирования малых напряжений оптимальным выбором станут динисторы типа КНР102А. Еще один вариант ключевого элемента – лавинный транзистор.
  6. Регулирования активной и реактивной мощности имеют некоторые отличительные особенности. Управление индуктивной нагрузкой требует включения в схему RC-цепочки (параллельно симистору). Это позволит сдерживать скорость увеличения напряжения на аноде симистора.

Видео о симисторном регуляторе мощности

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари