Подпишись и читай
самые интересные
статьи первым!

Погрешность косвенных измерений пример. Вычисление ошибок косвенных измерений

В физических экспериментах чаще бывает так, что искомая физическая величина сама на опыте измерена быть не может, а является функцией других величин, измеряемых непосредственно. Например, чтобы определить объём цилиндра, надо измерить диаметр D и высоту h , а затем вычислить объем по формуле

Величины D и h будут измерены с некоторой ошибкой. Следовательно, вычисленная величина V получится также с некоторой ошибкой. Надо уметь выражать погрешность вычисленной величины через погрешности измеренных величин.

Как и при прямых измерениях можно вычислять среднюю абсолютную (среднюю арифметическую) ошибку или среднюю квадратичную ошибку.

Общие правила вычисления ошибок для обоих случаев выводятся с помощью дифференциального исчисления.

Пусть искомая величина φ является функцией нескольких переменных Х, У, Z

φ(Х, У, Z …).

Путем прямых измерений мы можем найти величины , а также оценить их средние абсолютные ошибки … или средние квадратичные ошибки s Х, s У, s Z …

Тогда средняя арифметическая погрешность Dj вычисляется по формуле

где - частные производные от φ по Х, У, Z. Они вычисляются для средних значений …

Средняя квадратичная погрешность вычисляется по формуле



Пример. Выведем формулы погрешности для вычисления объёма цилиндра.

а) Средняя арифметическая погрешность.

Величины D и h измеряются соответственно с ошибкой DD и Dh.

б) Средняя квадратичная погрешность.

Величины D и h измеряются соответственно с ошибкой s D , s h .

Погрешность величины объёма будет равна

Если формула представляет выражение удобное для логарифмирования (то есть произведение, дробь, степень), то удобнее вначале вычислять относительную погрешность. Для этого (в случае средней арифметической погрешности) надо проделать следующее.

1. Прологарифмировать выражение.

2. Продифференцировать его.

3. Объединить все члены с одинаковым дифференциалом и вынести его за скобки.

4. Взять выражение перед различными дифференциалами по модулю.

5. Заменить значки дифференциалов d на значки абсолютной погрешности D.

В итоге получится формула для относительной погрешности

Затем, зная e, можно вычислить абсолютную погрешность Dj

Пример.

Аналогично можно записать относительную среднюю квадратичную погрешность

Правила представления результатов измерения следующие:

1) погрешность должна округляться до одной значащей цифры:

правильно Dj = 0,04,

неправильно - Dj = 0,0382;

2) последняя значащая цифра результата должна быть того же порядка величины, что и погрешность:

правильно j = 9,83±0,03,

неправильно - j = 9,826±0,03;

3) если результат имеет очень большую или очень малую величину, необходимо использовать показательную форму записи - одну и ту же для результата и его погрешности, причем запятая десятичной дроби должна следовать за первой значащей цифрой результата:

правильно - j = (5,27±0,03)×10 -5 ,

неправильно - j = 0,0000527±0,0000003,

j = 5,27×10 -5 ±0,0000003,

j = = 0,0000527±3×10 -7 ,

j = (527±3)×10 -7 ,

j = (0,527±0,003) ×10 -4 .

4) Если результат имеет размерность, ее необходимо указать:

правильно – g=(9,82±0,02) м/c 2 ,

неправильно – g=(9,82±0,02).

Правила построения графиков

1. Графики строятся на миллиметровой бумаге.

2. Перед построением графика необходимо четко определить, какая переменная величина является аргументом, а какая функцией. Значения аргумента откладываются на оси абсцисс (ось х ), значения функции - на оси ординат (ось у ).

3. Из экспериментальных данных определить пределы изменения аргумента и функции.

4. Указать физические величины, откладываемые на координатных осях, и обозначить единицы величин.

5. Нанести на график экспериментальные точки, обозначив их (крестиком, кружочком, жирной точкой).

6. Провести через экспериментальные точки плавную кривую (прямую) так, чтобы эти точки приблизительно в равном количестве располагались по обе стороны от кривой.

Оценка погрешности прямых многократных измерений

При оценке погрешности прямых многократных измерений рекомендуется принять следующий порядок выполнение операций.

. (8)


.

    Задается значение доверительной вероятности Р. В лабораториях практикума принято задавать Р=0,95.

.

    Определяется суммарная погрешность

,

где δх – приборная погрешность, Δх – случайная погрешность.

    Оценивается относительная погрешность результата измерений

.

    Записывается окончательный результат в виде

, с α=… Е=…%.

, Р=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений
рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

Оценка погрешности косвенных многократных измерений

При оценке погрешности косвенных многократных измерений
, являющейся функцией других независимых величин
, можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений
вычисляется
, а затем определяется среднее арифметическое из всех значенийy i

.

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений. В этом случае величина
рассчитывается по средним значениям
.. Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

,

где - приборные ошибки прямых измерений величины,- частные производные функции по переменной.

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y . Задание доверительной вероятности α, нахождение коэффициента Стьюдента , определение случайной и суммарной ошибок осуществляются так же, как и в случае прямых измерений. Аналогичным образом представляется результат всех расчетов в виде

, с Р=… Е=…%.

Пример , получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным d и h будут равны

,
.

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра имеет следующий вид

,

где
и
приборные ошибки при измерении диаметра и высоты цилиндра

Пример : Определить погрешность мощности, которая рассеивается в резисторе по формуле
со следующими величинами тока и сопротивления резистору, которые определяются прямым измерением: R = 1,10 ± 0.05 Ом; I = 1,20 ± 0.05 A. Результаты приведены со средними квадратичными отклонениями средних арифметических R и I . Оценка истинного (среднего) значения мощности:

Вт

Для оценки точности полученного значения вычисляем частичные производные и частичные погрешности косвенных измерений:

= 1,2 2 ·0,05=0,072 А 2 Ом;

=2·1,2·1,1·0,05= 0,132 А 2 Ом

Среднее квадратичное отклонение косвенного измерения мощности, которое вычислено за формулой составляет

=0, 15 А 2 Ом =0,15 Вт.

Р = 1,58 ± 0.15 Вт.

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т.д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т.е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от с до
с. Таким образом, измеряемая величина всегда содержит в себе некоторую погрешность
, где и X – соответственно истинное и измеренное значения исследуемой величины. Величина
называется абсолютной погрешностью (ошибкой) измерения, а выражение
, характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т.д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т.д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т.п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2 . Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна
мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙10 3 кг/м 3 , то абсолютная погрешность в этом случае равна
кг/м 3 .

Некоторые особенности в расчете приборных погрешностей электроизмерительных приборов будут рассмотрены ниже.

При определении систематической (приборной) погрешности косвенных измерений функциональной величины
используется формула

, (1)

где - приборные ошибки прямых измерений величины , - частные производные функции по переменной .

В качестве примера, получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным d и h будут равны

,
.

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с (2. ..) имеет следующий вид

,

где
и
приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

Ля подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса) , выведенный из следующих эмпирических положений.

    погрешности измерений могут принимать непрерывный ряд значений;

    при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

    чем больше величина случайной погрешности, тем меньше вероятность ее появления.

График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

, (2)

где
- функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки
, σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где - результат i -го измерения; - среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде
.

Интервал значений от
до
, в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

. (4)

Распределение вероятностей этой величины не зависит от σ 2 , а существенно зависит от числа опытов n . С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

Таблица 1.

Пользуясь данными таблицы, можно:

    определить доверительный интервал, задаваясь определенной вероятностью;

    выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Х будем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений
рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений

При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

. (8)


.

.

    Определяется суммарная погрешность

    Оценивается относительная погрешность результата измерений

.

    Записывается окончательный результат в виде

, с α=… Е=…%.

5. Погрешность косвенных измерений

При оценке истинного значения косвенно измеряемой величины , являющейся функцией других независимых величин
, можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется
, а затем определяется среднее арифметическое из всех значений y i

. (9)

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений. В этом случае величина рассчитывается по средним значениям . В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y . Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y . Задание доверительной вероятности α, нахождение коэффициента Стьюдента , определение случайной и суммарной ошибок осуществляются так же, как и в случае прямых измерений. Аналогичным образом представляется результат всех расчетов в виде

, с α=… Е=…%.

6. Пример оформления лабораторной работы

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

Порядок выполнения работы

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

где d – диаметр цилиндра; h – высота.

Результаты измерений

Таблица 2.

;

Абсолютная погрешность

;
.

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

, Е = 0,5%.

Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

6. Графическое представление результатов измерений

Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование, интегрирование, решение уравнения и др.

Рафики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т.е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

Документ

От конкретных условий, требований и возможностей оценки погрешности результатов измерений . Согласно общим положениям информационной теории...

  • Погрешности измерений

    Документ

    В.И.Ивероновой. М., Наука, 1967. 4. П.В.Новицкий, И.А.Зограф. Оценка погрешностей результатов измерений . Л., Энергоатомиздат, 1991. 5. Лабораторные работы по...

  • Методические указания по определению погрешностей при измерениях в лабораторном практикуме по физике

    Методические указания

    ... измерения искомой вели­чины в обязательном порядке входит оценка погрешности полу­ченного результата . Без такой оценки результат ... значение абсолютной погрешности и сам результат измерений . Как правило, точность оценки погрешности оказывается очень...

  • № измерения

    Теперь необходимо рассмотреть вопрос о том, как находить погрешность физической величины U , которая определяется путем косвенных измерений. Общий вид уравнения измерения

    Y =f (Х 1 , Х 2 , … , Х n ), (1.4)

    где Х j – различные физические величины, которые получены экспериментатором путем прямых измерений, или физические константы, известные с заданной точностью. В формуле они являются аргументами функции.

    В практике измерений широко используют два способа расчета погрешности косвенных измерений. Оба способа дают практически одинаковый результат.

    Способ 1. Сначала находится абсолютная D, а затем относительная d погрешности. Этот способ рекомендуется для таких уравнений измерения, которые содержат суммы и разности аргументов.

    Общая формула для расчета абсолютной погрешности при косвенных измерениях физической величины Y для произвольного вида f функции имеет вид:

    где частные производные функции Y =f (Х 1 , Х 2 , … , Х n ) по аргументу Х j ,

    Общая погрешность прямых измерений величины Х j .

    Для нахождения относительной погрешности нужно прежде всего найти среднее значение величины Y . Для этого в уравнение измерения (1.4) надо подставить средние арифметические значения величин X j .

    То есть среднее значение величины Y равно: . Теперь легко найти относительную погрешность: .

    Пример: найти погрешность измерения объёма V цилиндра. Высоту h и диаметр D цилиндра считаем определёнными путём прямых измерений, причём пусть количество измерений n= 10.

    Формула для расчета объёма цилиндра, то есть уравнение измерения имеет вид:

    Пусть при Р= 0,68;

    При Р= 0,68.

    Тогда, подставляя в формулу (1.5) средние значения, найдём:

    Погрешность D V в данном примере зависит, как видно, в основном от погрешности измерения диаметра.

    Средний объём равен: , относительная погрешность d V равна:

    Или d V = 19%.

    V =(47±9) мм 3 , d V = 19%, Р= 0,68.

    Способ 2. Этот способ определения погрешности косвенных измерений отличается от первого способа меньшими математическими трудностями, поэтому его чаще используют.

    В начале находят относительную погрешность d , и только затем абсолютную D. Особенно удобен этот способ, если уравнение измерения содержит только произведения и отношения аргументов.

    Порядок действий можно рассмотреть на том же конкретном примере - определение погрешности при измерении объёма цилиндра

    Все численные значения входящих в формулу величин сохраним теми же, что и при расчетах по способу 1.

    Пусть мм , ; при Р= 0,68;

    ; при Р=0,68.

    Погрешность округления числа p (см. рис. 1.1)

    При использовании способа 2 следует действовать так:

    1) прологарифмировать уравнение измерения (берём натуральный логарифм)

    найти дифференциалы от левой и правой частей, считая независимыми переменными,

    2) заменить дифференциал каждой величины на абсолютную погрешность этой же величины, а знаки “минус”, если же они есть перед погрешностями на “плюс”:

    3) казалось бы, что с помощью этой формулы уже можно дать оценку для относительной погрешности , однако это не так. Требуется так оценить погрешность, чтобы доверительная вероятность этой оценки совпадала с доверительными вероятностями оценки погрешностей тех членов, которые стоят в правой части формулы. Для этого, чтобы это условие выполнялось, нужно все члены последней формулы возвести в квадрат, а затем извлечь корень квадратный из обеих частей уравнения:

    Или в других обозначениях относительная погрешность объёма равна:

    причём вероятность этой оценки погрешности объёма будет совпадать с вероятностью оценки погрешностей входящих в подкоренное выражение членов:

    Сделав вычисления, убедимся, что результат совпадает с оценкой по способу 1 :

    Теперь, зная относительную погрешность, находим абсолютную:

    D V =0,19 · 47=9,4 мм 3 , P =0,68.

    Окончательный результат после округления:

    V = (47 ± 9) мм 3 , d V = 19%, P =0,68.

    Контрольные вопросы

    1. В чём заключается задача физических измерений?

    2. Какие типы измерений различают?

    3. Как классифицируют погрешности измерений?

    4. Что такое абсолютная и относительная погрешности?

    5. Что такое промахи, систематические и случайные погрешности?

    6. Как оценить систематическую погрешность?

    7. Что такое среднее арифметическое значение измеренной величины?

    8. Как оценить величину случайной погрешности, как она связана со средним квадратичным отклонением?

    9. Чему равна вероятность обнаружения истинного значение измеренной величины в интервале от Х ср - s до Х ср + s ?

    10. Если в качестве оценки для случайной погрешности выбрать величину 2s или 3s , то с какой вероятностью истинное значение будет попадать в определённые этими оценками интервалы?

    11. Как суммировать погрешности и когда это нужно делать?

    12. Как округлить абсолютную погрешность и среднее значение результата измерения?

    13. Какие способы существуют для оценки погрешностей при косвенных измерениях? Как при этом действовать?

    14. Что нужно записать в качестве результата измерения? Какие величины указать?

    Задача ставится так: пусть искомая величина z определяется через другие величины a, b, c , ..., полученные при прямых измерениях

    z = f (a, b, c,...) (1.11)

    Необходимо найти среднее значение функции и погрешность ее измерений, т.е. найти доверительный интервал

    при надежности a и относительную погрешность .

    Что касается , то оно находится путем подстановки в правую часть (11) вместо a, b, c ,... их средних значений

    Абсолютная погрешность косвенных измерений является функцией абсолютных погрешностей прямых измерений и вычисляется по формуле

    (1.14)

    Здесь частные производные функции f по переменным a, b,

    Если величины a, b, c, ... в функцию Z = f (a, b, c,...) входят в виде сомножителей в той или иной степени, т. е. если

    , (1.15)

    то сначала удобно вычислить относительную погрешность

    , (1.16)

    а затем абсолютную

    Формулы для Dz и e z приводятся в справочной литературе.

    Примечания.

    1. При косвенных измерениях в расчетные формулы могут входить известные физические константы (ускорение свободного падения g , скорость света в вакууме с и т. д.), числа типа дробные множители ... . Эти величины при вычислениях округляются. При этом, естественно, в расчет вносится погрешность ‒ погрешность округления при вычислениях, которая должна учитываться.

    Принято считать, что погрешность округления приближенного числа равна половине единицы того разряда, до которого это число было округлено. Например,p = 3,14159... . Если взять p= 3,1, то Dp = 0,05, если p = 3,14, то Dp = 0,005 ... и т.д. Вопрос о том, до какого разряда округлять приближенное число, решается так: относительная ошибка, вносимая округлением, должна быть того же порядка или на порядок меньше, что и максимальная из относительных ошибок других видов. Таким же образом оценивается абсолютная ошибка табличных данных. Например, в таблице указано r = 13,6×10 3 кг/ м 3 , следовательно,Dr = 0,05×10 3 кг/м 3 .

    Ошибка значений универсальных постоянных часто указывается вместе с их принятыми за средние значения: (с = м/c, где Dс = 0,3×10 3 м/c.

    2. Иногда при косвенных измерениях условия опыта при повторных наблюдениях не совпадают. В этом случае значение функции z вычисляется для каждого отдельного измерения, а доверительный интервал вычисляется через значения z так же, как при прямых измерениях (все погрешности здесь входят в одну случайную погрешность измерения z ). Величины, которые не измеряются, а задаются (если они есть) должны быть указаны при этом с достаточно большой точностью.

    Порядок обработки результатов измерений

    Прямые измерения

    1. Вычислить среднее значение для n измерений

    2. Найти погрешности отдельных измерений .

    3. Вычислить квадраты погрешностей отдельных измерений и их сумму: .

    4. Задать надежностьa (для наших целей принимаем a = 0,95) и по таблице определить коэффициенты Стьюдента t a,n и t a, ¥ .

    5. Произвести оценку систематических погрешностей: приборной Dх пр и ошибки округления при измеренияхDх окр = D/2 (D ‒ цена деления прибора) и найти полную погрешность результата измерений (полуширину доверительного интервала):

    .

    6. Оценить относительную погрешность

    .

    7. Окончательный результат записать в виде

    ε = … % при a = ...

    Косвенные измерения

    1. Для каждой величины, измеренной прямым способом, входящей в формулу для определения искомой величины , провести обработку, как указано выше. Если среди величин a, b, c , ... есть табличные константы или числа типа p, е ,..., то при вычислениях округлять их следует так (если это возможно), чтобы вносимая при этом относительная ошибка была на порядок меньше наибольшей относительной ошибки величин, измеренных прямым способом.

    Определить среднее значение искомой величины

    z = f (,,,...).

    3. Оценить полуширину доверительного интервала для результата косвенных измерений

    ,

    где производные ... вычисляются при

    4. Определить относительную погрешность результата

    5. Если зависимость z от a, b, c ,... имеет вид , где k, l, m ‒ любые действительные числа, то сначала следует найти относительную ошибку

    а затем абсолютную .

    6. Окончательный результат записать в виде

    z = ± Dz , ε = …% при a= … .

    Примечание:

    При обработке результатов прямых измерений нужно следовать следующему правилу: численные значения всех рассчитываемых величин должны содержать на один разряд больше, чем исходные (определенные экспериментально) величины.

    При косвенных измерениях вычисления производить по правилам приближенных вычислений :

    Правило 1. При сложении и вычитании приближенных чисел необходимо:

    а) выделить слагаемое, у которого сомнительная цифра имеет наиболее высокий разряд;

    б) все остальные слагаемые округлить до следующего разряда (сохраняется одна запасная цифра);

    в) произвести сложение (вычитание);

    г) в результате отбросить последнюю цифру путем округления (разряд сомнительной цифры результата при этом совпадает со старшим из разрядов сомнительных цифр слагаемых).

    Пример: 5,4382·10 5 – 2,918·10 3 + 35,8 + 0,064.

    В этих числах последние значащие цифры сомнительные (неверные уже отброшены). Запишем их в виде 543820 – 2918 + 35,8 + 0,064.

    Видно, что у первого слагаемого сомнительная цифра 2 имеет наиболее высокий разряд (десятки). Округлив все другие числа до следующего разряда и сложив, получим

    543820 – 2918 + 36 + 0 = 540940 = 5,4094·10 5 .

    Правило 2. При умножении (делении) приближенных чисел необходимо:

    а) выделить число (числа) с наименьшим количеством значащих цифр (ЗНАЧАЩИЕ – цифры отличные от ноля и ноли стоящие между ними );

    б) округлить остальные числа так, чтобы в них было на одну значащую цифру больше (сохраняется одна запасная цифра), чем выделенном по п. а;

    в) перемножить (разделить) полученные числа;

    г) в результате оставить столько значащих цифр, сколько их было в числе (числах) с наименьшим количеством значащих цифр.

    Пример: .

    Правило 3. При возведении в степень, при извлечении корня в результате сохраняется столько значащих цифр, сколько их в исходном числе.

    Пример: .

    Правило 4. При нахождении логарифма числа мантисса логарифма должна иметь столько значащих цифр, сколько их в исходном числе:

    Пример: .

    В окончательной записиабсолютной погрешности следует оставлять только одну значащую цифру . (Если этой цифрой окажется 1, то после нее сохраняют еще одну цифру).

    Среднее значение округляется до того же разряда, что и абсолютная погрешность.

    Например: V = (375,21 0,03) см 3 = (3,7521 0,0003) см 3 .

    I = (5,530 0,013) А, A = Дж.

    Включайся в дискуссию
    Читайте также
    Салат с кукурузой и мясом: рецепт
    Римские акведуки - водное начало цивилизации С какой целью строили акведуки
    Мыс крестовый лиинахамари