Подпишись и читай
самые интересные
статьи первым!

Какие вещества участвуют в круговороте. Круговорот веществ в природе

Вопрос 1. В чём заключается главная функция биосферы?

Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами.

Вопрос 2. Расскажите о круговороте воды в природе.

Вода испаряется и воздушными течениями переносится на большие расстояния. Выпадая на поверхность суши в виде осадков, она способствует разрушению горных пород, делает их доступными для растений и микроорганизмов, размывает верхний почвенный слой и уходит вместе с растворёнными в ней химическими соединениями и взвешенными органическими частицами в моря и океаны. Циркуляция воды между океаном и сушей представляет собой важнейшее звено в поддержании жизни на Земле.

Вопрос 3. Участвуют ли живые организмы в круговороте воды? Если да, то дополните схему, изображённую на рисунке 113, обозначив на ней участие живых организмов в круговороте.

Растения участвуют в круговороте воды двояким способом: извлекают её из почвы и испаряют в атмосферу; часть воды в клетках растений расщепляется в процессе фотосинтеза. При этом водород фиксируется в виде органических соединений, а кислород поступает в атмосферу.

Животные потребляют воду для поддержания осмотического и солевого равновесия в организме и выделяют её во внешнюю среду вместе с продуктами обмена веществ.

Вопрос 4. Какие организмы поглощают диоксид углерода из атмосферы?

В процессе фотосинтеза зелёные растения используют углерод диоксида углерода и водород воды для синтеза органических соединений, а освободившийся кислород поступает в атмосферу.

Вопрос 5. Каким путём связанный углерод возвращается в атмосферу?

Кислородом дышат различные животные и растения, а конечный продукт дыхания – СО2 – выделяется в атмосферу.

Вопрос 6. Изобразите схематично круговорот азота в природе.

Вопрос 7. Подумайте и приведите примеры, свидетельствующие о том, что микроорганизмы играют важную роль в круговороте серы.

Находящиеся глубоко в почве и в морских осадочных породах соединения серы с металлами – сульфиды – переводятся микроорганизмами в доступную форму – сульфаты, которые и поглощаются растениями. С помощью бактерий осуществляются отдельные реакции окисления – восстановления. Глубоко залегающие сульфаты восстанавливаются до H2S, который поднимается вверх и окисляется аэробными бактериями до сульфатов. Разложение трупов животных или растений обеспечивает возврат серы в круговорот.

Вопрос 8. В пищевой рацион каждого человека обязательно должны входить блюда из рыбы. Объясните, почему это важно.

Вместе с выловленной рыбой на сушу возвращается примерно 60 тыс. т элементарного фосфора. 70% всего фосфора, который содержится в нашем организме, сосредоточено в костных тканях и зубах. Он, вместе с кальцием, формирует правильную структуру костей и обеспечивает их механическую прочность. Идеальным соотношением количества фосфора и кальция считается 1 к 2 или 3 к 4. И если их будет, скажем, поровну, то кость, постепенно теряя кальций, станет твердой, но хрупкой, как стекло, оно на первый взгляд достаточно твердое, хотя при этом его легко разбить.

Фосфор – основной энергоноситель, он входит в состав аденозинтрифосфата (сокращенно АТФ), который всасывается в кровь и доставляет энергию всем клеткам, которым она необходима.

Вопрос 9. Обсудите в классе, как изменился бы круговорот веществ в природе, если бы на планете исчезли все живые организмы.

В круговороте веществ принимают участие все живые организмы, поглощающие из внешней среды одни вещества и выделяющие в нее другие. Так, растения потребляют из внешней среды углекислый газ, воду и минеральные соли и выделяют в нее кислород. Животные вдыхают кислород, выделенный растениями, а поедая их, усваивают синтезированные из воды и углекислого газа органические вещества и выделяют углекислый газ, воду и вещества непереваренной части пищи. При разложении бактериями и грибами отмерших растений и животных образуется дополнительное количество углекислого газа, а органические вещества превращаются в минеральные, которые попадают в почву и снова усваиваются растениями. Таким образом, атомы основных химических элементов постоянно совершают миграцию из одного организма в другой, из почвы, атмосферы и гидросферы - в живые организмы, а из них - в окружающую среду, пополняя таким образом неживое вещество биосферы. Эти процессы повторяются бесконечное число раз. Так, например, весь атмосферный кислород проходит через живое вещество за 2 тыс. лет, весь углекислый газ - за 200-300 лет.

Непрерывная циркуляция химических элементов в биосфере по более или менее замкнутым путям называется биогеохимическим циклом. Необходимость такой циркуляции объясняется ограниченностью их запасов на планете. Чтобы обеспечить бесконечность жизни, химические элементы должны совершать движение по кругу. С исчезновением живых организмом произошел бы сбой в круговороте веществ и энергии, и, как следствие, гибель биосферы.

  • Вводный урок бесплатно ;
  • Большое число опытных преподавателей (нейтивов и русскоязычных);
  • Курсы НЕ на определенный срок (месяц, полгода, год), а на конкретное количество занятий (5, 10, 20, 50);
  • Более 10 000 довольных клиентов.
  • Стоимость одного занятия с русскоязычным преподавателем - от 600 рублей , с носителем языка - от 1500 рублей

Круговорот веществ в биосфере

Основой самоподдержания жизни на Земле являются биогеохимические круговороты . Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения, переходя из живых тел в соединения неживой природы и обратно. Возможность многократного использования одних и тех же атомов делает жизнь на Земле практически вечной при условии постоянного притока нужного количества энергии.

Типы круговоротов веществ. Биосфера Земли характеризуется определенным образом сложившимися круговоротом веществ и потоком энергии. Круговорот веществ многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. Круговорот веществ осуществляется при непрерывном поступлении (потоке) внешней энергии Солнца и внутренней энергии Земли.

В зависимости от движущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты. До возникновения человека на Земле осуществлялись только первые два.

Геологический круговорот (большой круговорот веществ в природе) круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы.

Эндогенные процессы (процессы внутренней динамики) происходят под влиянием внутренней энергии Земли. Это энергия, выделяющаяся в результате радиоактивного распада, химических реакций образования минералов, кристаллизации горных пород и т. д. К эндогенным процессам относятся: тектонические движения, землетрясения, магматизм, метаморфизм. Экзогенные процессы (процессы внешней динамики) протекают под влиянием внешней энергии Солнца. Экзогенные процессы включают выветривание горных пород и минералов, удаление продуктов разрушения с одних участков земной коры и перенос их на новые участки, отложение и накопление продуктов разрушения с образованием осадочных пород. К экзогенным процессам относятся геологическая деятельность атмосферы, гидросферы (рек, временных водотоков, подземных вод, морей и океанов, озер и болот, льда), а также живых организмов и человека.

Крупнейшие формы рельефа (материки и океанические впадины) и крупные формы (горы и равнины) образовались за счет эндогенных процессов, а средние и мелкие формы рельефа (речные долины, холмы, овраги, барханы и др.), наложенные на более крупные формы, – за счет экзогенных процессов. Таким образом, эндогенные и экзогенные процессы противоположны по своему действию. Первые ведут к образованию крупных форм рельефа, вторые – к их сглаживанию.

Магматические горные породы в результате выветривания преобразуются в осадочные. В подвижных зонах земной коры они погружаются вглубь Земли. Там под влиянием высоких температур и давлений они переплавляются и образуют магму, которая, поднимаясь на поверхность и застывая, образует магматические породы.

Таким образом, геологический круговорот веществ протекает без участия живых организмов и осуществляет перераспределение вещества между биосферой и более глубокими слоями Земли.

Биологический (биогеохимический) круговорот (малый круговорот веществ в биосфере) круговорот веществ, движущей силой которого является деятельность живых организмов. В отличие от большого геологического малый биогеохимический круговорот веществ совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. В экосистеме органические вещества синтезируются автотрофами из неорганических веществ. Затем они потребляются гетеротрофами. В результате выделения в процессе жизнедеятельности или после гибели организмов (как автотрофов, так и гетеротрофов) органические вещества подвергаются минерализации, то есть превращению в неорганические вещества. Эти неорганические вещества могут быть вновь использованы для синтеза автотрофами органических веществ.

В биогеохимических круговоротах следует различать две части:

1) резервный фонд – это часть вещества, не связанная с живыми организмами;

2) обменный фонд – значительно меньшая часть вещества, которая связана прямым обменом между организмами и их непосредственным окружением. В зависимости от расположения резервного фонда биогеохимические круговороты можно разделить на два типа:

1) Круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота).

2) Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.).

Круговороты газового типа более совершенны, так как обладают большим обменным фондом, а значит, способны к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, так как основная масса вещества содержится в резервном фонде земной коры в «недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом. Однако извлечь нужные живым организмам вещества из земной коры гораздо сложнее, чем из атмосферы.

Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.

С появлением человека возник антропогенный круговорот, или обмен, веществ. Антропогенный круговорот (обмен) круговорот (обмен) веществ, движущей силой которого является деятельность человека. В нем можно выделить две составляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей (техногенный круговорот).

Геологический и биологический круговороты в значительной степени замкнуты, чего нельзя сказать об антропогенном круговороте. Поэтому часто говорят не об антропогенном круговороте, а об антропогенном обмене веществ. Незамкнутость антропогенного круговорота веществ приводит к истощению природных ресурсов и загрязнению природной среды – основным причинам всех экологических проблем человечества.

Круговороты основных биогенных веществ и элементов. Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов. Круговорот воды относится к большому геологическому, а круговороты биогенных элементов (углерода, кислорода, азота, фосфора, серы и других биогенных элементов) – к малому биогеохимическому.

Круговорот воды между сушей и океаном через атмосферу относится к большому геологическому круговороту. Вода испаряется с поверхности Мирового океана и либо переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока, либо выпадает в виде осадков на поверхность океана. В круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды. Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле весь запас воды на Земле распадается и восстанавливается за 2 млн. лет.

Круговорот углерода. Продуценты улавливают углекислый газ из атмосферы и переводят его в органические вещества, консументы поглощают углерод в виде органических веществ с телами продуцентов и консументов низших порядков, редуценты минерализуют органические вещества и возвращают углерод в атмосферу в виде углекислого газа. В Мировом океане круговорот углерода усложнен тем, что часть углерода, содержащегося в мертвых организмах, опускается на дно и накапливается в осадочных породах. Эта часть углерода выключается из биологического круговорота и поступает в геологический круговорот веществ.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд. т этого элемента,чтосоставляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания СО2 в атмосфере и развитию парникового эффекта.

Скорость круговорота СО2, то есть время, за которое весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.

Круговорот кислорода. Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. В основном свободный кислород (0^) поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными, растениями и микроорганизмами и при минерализации органических остатков. Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации. Большое количество кислорода расходуется на окислительные процессы в земной коре, при извержении вулканов и т.д. Основная доля кислорода продуцируется растениями суши – почти 3/4, остальная часть – фотосинтезирующими организмами Мирового океана. Скорость круговорота – около 2 тыс. лет.

Установлено, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который образуется в процессе фотосинтеза, и эта цифра постоянно возрастает.

Круговорот азота. Запас азота (N2) в атмосфере огромен (78% от ее объема). Однако растения поглощать свободный азот не могут, а только в связанной форме, в основном в виде NН4+ или NО3–. Свободный азот из атмосферы связывают азотфиксирующие бактерии и переводят его в доступные растениям формы. В растениях азот закрепляется в органическом веществе (в белках, нуклеиновых кислотах и пр.) и передается по цепям питания. После отмирания живых организмов редуценты минерализуют органические вещества и превращают их в аммонийные соединения, нитраты, нитриты, а также в свободный азот, который возвращается в атмосферу.

Нитраты и нитриты хорошо растворимы в воде и могут мигрировать в подземные воды и растения и передаваться по пищевым цепям. Если их количество излишне велико, что часто наблюдается при неправильном применении азотных удобрений, то происходит загрязнение вод и продуктов питания, и вызывает заболевания человека.

Круговорот фосфора. Основная масса фосфора содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот фосфор включается в результате процессов выветривания горных пород. В наземных экосистемах растения извлекают фосфор из почвы (в основном в форме РО43–) и включают его в состав органических соединений (белков, нуклеиновых кислот, фосфолипидов и др.) или оставляют в неорганической форме. Далее фосфор передается по цепям питания. После отмирания живых организмов и с их выделениями фосфор возвращается в почву.

При неправильном применении фосфорных удобрений, водной и ветровой эрозии почв большие количества фосфора удаляются из почвы. С одной стороны, это приводит к перерасходу фосфорных удобрений и истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и др.). С другой стороны, поступление из почвы в водоемы больших количеств таких биогенных элементов, как фосфор, азот, сера и др., вызывает бурное развитие цианобактерий и других водных растений («цветение» воды) и эвтрофикацию водоемов. Но большая часть фосфора уносится в море.

В водных экосистемах фосфор усваивается фитопланктоном и передается по трофической цепи вплоть до морских птиц. Их экскременты либо сразу попадают назад в море, либо сначала накапливаются на берегу, а затем все равно смываются в море. Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин, и заключенный в них фосфор снова попадает в осадочные породы, то есть выключается из биогеохимического круговорота.

Круговорот серы. Основной резервный фонд серы находится в отложениях и почве, но в отличие от фосфора имеется резервный фонд и в атмосфере. Главная роль в вовлечении серы в биогеохимический круговорот принадлежит микроорганизмам. Одни из них восстановители, другие – окислители.

В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах – в форме иона (SO42–), в газообразной фазе в виде сероводорода (Н2S) или сернистого газа (SО2). Внекоторых организмах сера накапливается в чистом виде и при их отмирании на дне морей образуются залежи самородной серы.

В наземных экосистемах сера поступает в растения из почвы в основном в виде сульфатов. В живых организмах сера содержится в белках, в виде ионов и т.д. После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до Н2S, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводород улетучивается в атмосферу, там окисляется и возвращается в почву с осадками.

Сжигание человеком ископаемого топлива (особенно угля), а также выбросы химической промышленности, приводят к накоплению в атмосфере сернистого газа (SO2), который реагируя с парами воды, выпадает на землю в виде кислотных дождей.

Биогеохимические циклы не столь масштабны как геологические и в значительно степени подвержены влиянию человека. Хозяйственная деятельность нарушает их замкнутость, они становятся ацикличными.

В живых клетках протекает множество ферментативных реакций. Всю совокупность этих реакций мы объединяем общим понятием метаболизм, однако неверно было бы думать, что клетка - это не более чем мембранный мешок, в котором ферменты действуют случайным, неупорядоченным образом. Метаболизм представляет собой высококоординированную и целенаправленную клеточную активность, обеспечиваемую участием многих взаимосвязанных мультиферментных систем. Он выполняет четыре специфические функции: 1) снабжение химической энергией, которая добывается путем расщепления богатых энергией пищевых веществ, поступающих в организм из среды, или путем преобразования улавливаемой энергии солнечного света; 2) превращение молекул пищевых веществ в строительные блоки, которые используются в дальнейшем клеткой для построения макромолекул; 3) сборку белков, нуклеиновых кислот, липидов, полисахаридов и прочих клеточных компонентов из этих строительных блоков; 4) синтез и разрушение тех биомолекул, которые необходимы для выполнения каких-либо специфических функций данной клетки.

Хотя метаболизм слагается из сотен различных ферментативных реакций, центральные метаболические пути, которые нас обычно больше всего интересуют, немногочисленны и почги у всех живых форм в принципе едины. В этой обзорной главе мы рассмотрим источники веществ и энергии для метаболизма, центральные метаболические пути, используемые для синтеза и распада главных клеточных компонентов, механизмы, участвующие в передаче химической энергии, и, наконец, те экспериментальные подходы, с помощью которых ведется изучение метаболических путей.

13.1. Живые организмы принимают участие в круговороте углерода и кислорода

Наше рассмотрение мы начнем с макроскопических аспектов метаболизма, с общего метаболического взаимодействия между живыми организмами биосферы. Все живые организмы можно подразделить на две большие группы в зависимости от того, в какой химической форме способны они усваивать поступающий из среды углерод. Автотрофные клетки («сами себя питающие») могут использовать в качестве единственного источника углерода атмосферную , из которой они и строят все свои углеродсодержащие биомолекулы.

К этой группе принадлежат фотосинтезирующие бактерии и клетки листьев зеленых растений. Некоторые автотрофы, например цианобактерии, могут также использовать для синтеза всех своих азотсодержащих компонентов азот атмосферы. Гетеротрофные клетки («питающиеся за счет других») не обладают способностью усваивать атмосферную ; они должны получать углерод в виде достаточно сложных органических соединений, таких, как, например, глюкоза. К гетеротрофам относятся клетки высших животных и большинство микроорганизмов. Автотрофы, сами себя обеспечивающие всем необходимым для жизни, обладают определенной независимостью, тогда как гетеротрофы, нуждающиеся в сложных источниках углерода, питаются продуктами жизнедеятельности других клеток.

Есть между этими двумя группами и еще одно важное различие. Многие автотрофные организмы осуществляют фотосинтез, т. е. обладают способностью использовать энергию солнечного света, тогда как гетеротрофные клетки добывают необходимую им энергию, расщепляя органические соединения, вырабатываемые автотрофами. В биосфере автотрофы и гетеротрофы сосуществуют как участники единого гигантского цикла, в котором автотрофные организмы строят из атмосферной органические биомолекулы и часть их при этом выделяет в атмосферу кислород. Гетеротрофы используют вырабатываемые автотрофами органические продукты в качестве пищи и возвращают в атмосферу . Таким путем совершается непрерывный круговорот углерода и кислорода между животным и растительным миром. Источником энергии для этого колоссального по своим масштабам процесса служит солнечный свет (рис. 13-1).

Автотрофные и гетеротрофные организмы можно в свою очередь разделить на подклассы. Существует, например, два больших подкласса гетеротрофов: аэробы и анаэробы. Аэробы живут в среде, содержащей кислород, и окисляют органические питательные вещества молекулярным кислородом.

Рис. 13-1. Круговорот двуокиси углерода и круговорот кислорода между двумя областями биосферы Земли фотосинтезирующей и гетеротрофной. Масштабы этого круговорота огромны. За год в биосфере совершает круговорот свыше углерода. Баланс между образованием и потреблением один из важных факторов, определяющих климат на Земле. Содержание в атмосфере возросло за последние 100 лет примерно на 25% из-за все более усиливающегося сжигания угля и нефти. Некоторые ученые утверждают, что дальнейшее увеличение количества атмосферной повлечет за собой повышение средней температуры атмосферы («парниковый ); не все, однако, согласны с этим, поскольку трудно определить точно количества образующейся и вовлекаемой в повторные циклы в биосфере, а также поглощаемой океанами. Для того чтобы вся атмосферная была пропущена через растения, требуется около 300 лет.

Анаэробам для окисления питательных веществ кислород не требуется; они обитают в бескислородной среде. Многие клетки, например дрожжевые, могут существовать как в аэробных, так и в анаэробных условиях. Такие организмы называют факультативными анаэробами. Однако для облигатных анаэробов, не способных использовать кислород, последний является ядом. Таковы, например, организмы, обитающие глубоко в почве или на морском дне. Большинство гетеротрофных клеток, в особенности клетки высших -факультативные анаэробы, но при наличии кислорода они используют для окисления питательных веществ аэробные метаболические пути.

У одного и того же организма разные группы клеток могут принадлежать к разным классам.

Например, у высших растений зеленые хлорофиллсодержащие клетки листа - фотосинтезирующие автотрофы, а бесхлорофилльные клетки корня - гетеротрофы. Более того, зеленые клетки листьев только днем ведут автотрофное существование. В темное время суток они функционируют как гетеротрофы и добывают необходимую им энергию путем окисления углеводов, синтезированных ими на свету.

Круговорот веществ в биосфере – это «путешествие» определённых химических элементов по пищевой цепи живых организмов, благодаря энергии Солнца. В процессе «путешествия» некоторые элемент, по разным причинам, выпадают и остаются как правила, в земле. Их место занимают такие же, которые, обычно, попадают из атмосферы. Это максимально упрощенное описание того, что является гарантией жизни на планете Земля. Если такое путешествие почему-то прервется, то и существование всего живого прекратится.

Чтобы описать кратко круговорот веществ в биосфере необходимо поставить несколько отправных точек. Во-первых, из более чем девяноста химических элементов, известных и встречающихся в природе, для живых организмов, необходимо около сорока. Во-вторых, количество этих веществ ограничено. В-третьих, речь идет только о биосфере, то есть о жизнь содержащей оболочке земли, а, значит, о взаимодействиях между живыми организмами. В-четвертых, энергией, которая способствует круговороту, является энергия, поступающая от Солнца. Энергия, рождающаяся в недрах Земли в результате различных реакций, в рассматриваемом процессе участия не принимает. И последнее. Необходимо опередить точку отсчета этого «путешествия». Она условна, так как не может быть конца и начала у круга, но это необходимо для того, чтобы с чего-то начать описывать процесс. Начнем с самого нижнего звена трофической цепи – с редуцентов или могильщиков.

Ракообразные, черви, личинки, микроорганизмы, бактерии и прочие могильщики, потребляя кислород и используя энергию, перерабатывают неорганические химические элементы в органическую субстанцию, пригодную для питания живыми организмами и дальнейшего ее движения по пищевой цепи. Далее эти, уже органические вещества, едят консументы или потребители, к которым относятся не только животные, птицы, рыбы и тому подобное, но и растения. Последние являются продуцентами или производителями. Они, используя эти питательные вещества и энергию, вырабатывают кислород, который является основным элементом, пригодным для дыхания всего живого на планете. Консументы, продуценты и, даже редуценты погибают. Их останки, вместе с органическими веществами, находящимися в них, «падают» в распоряжение могильщиков.

И все повторяется вновь. Например, весь кислород, существующий в биосфере, делает свой оборот за 2000 лет, а углекислый газ за 300. Такой кругооборот принято называть биогеохимическим циклом.

Некоторые органические вещества в процессе своего «путешествия» вступают в реакции и взаимодействия с другими веществами. В результате образуются смеси, которые в том виде, в каком они есть, не могут быть переработаны редуцентами. Такие смеси остаются «храниться» в земле. Не все органические вещества, попадающие на «стол» могильщиков, не могут ими переработаться. Не все могут перегнить при помощи бактерий. Такие неперегнившие остатки попадают на хранение. Все, что остается на хранении или в резерве, выбывает из процесса и в круговорот веществ в биосфере не входят.

Таким образом, в биосфере круговорот веществ, движущей силой которого является деятельность живых организмов, можно разделить на две составляющие. Одна – резервный фонд – это часть вещества, которая не связана с деятельностью живых организмов и до времени в обороте не участвует. И вторая – это оборотный фонд. Он представляет собой лишь небольшую часть вещества, которая активно используется живыми организмами.

Атомы каких основных химических элементов столь необходимы для жизни на Земле? Это: кислород, углерод, азот, фосфор и некоторые другие. Из соединений, основным в кругообороте, можно назвать воду.

Кислород

Круговорот кислорода в биосфере следует начать с процесса фотосинтеза, в результате которого миллиарды лет назад он и появился. Он выделяется растениями из молекул воды под воздействием солнечной энергии. Кислород образуется также в верхних слоях атмосферы в ходе химических реакций в парах воды, где химические соединения разлагаются под воздействие электромагнитного излучения. Но это незначительный источник кислорода. Основным является фотосинтез. Кислород содержится и в воде. Хотя его там, в 21 раз меньше, чем в атмосфере.

Образовавшийся кислород используется живыми организмами для дыхания. Он также является окислителем для различных минеральных солей.

И человек является потребителем кислорода. Но с началом научно-технической революции, это потребление многократно возросло, так как кислород сжигается или связывается при работе многочисленных промышленных производств, транспорта, для удовлетворения бытовых и иных нужд в ходе жизнедеятельности людей. Существовавший до этого так называемый обменный фонд кислорода в атмосфере в размере 5% общего его объема, то есть вырабатывалось в процессе фотосинтеза столько кислорода, сколько его потреблялось. То теперь этого объема становиться катастрофически мало. Происходит потребление кислорода, так сказать, из неприкосновенного запаса. Оттуда, куда его уже некому добавить.

Незначительно смягчает эту проблему, что некоторая часть органических отходов не перерабатывается и не попадает под воздействие гнилостных бактерий, а остается в осадочных породах, образуя торф, уголь и тому подобные ископаемые.

Если результатом фотосинтеза является кислород, то его сырьем – углерод.

Азот

Круговорот азота в биосфере связан с образованием таких важнейших органических соединений, как: белки, нуклеиновые кислоты, липопротеиды, АТФ, хлорофилл и другие. Азот, в молекулярной форме, содержится в атмосфере. Вместе с живыми организмами — это всего около 2% всего, имеющего на Земле азота. В таком виде он может употребляться только бактериями и сине-зелёными водорослями. Для остального растительного мира в молекулярной форме азот не может служить питанием, а может перерабатываться лишь в виде неорганических соединений. Некоторые виды таких соединений образуются во время гроз и с дождевыми осадками попадают в воду и почву.

Самыми активными «переработчиками» азота или азотофиксаторами являются клубеньковые бактерии. Они поселяются в клетках корней бобовых и преобразовывают молекулярный азот в его соединения, пригодные для растений. После их отмирания, азотом обогащается и почва.

Гнилостные бактерии расщепляют азотосодержащие органические соединения до аммиака. Часть его уходит в атмосферу, а другая иными видами бактерий окисляется до нитритов и нитратов. Те, в свою очередь, поступают в качестве питания для растений и нитрифицирующими бактериями восстанавливаются до оксидов и молекулярного азота. Которые вновь попадают в атмосферу.

Таким образом, видно, что основную роль в кругообороте азота, играют различные виды бактерий. И если уничтожить хотя бы 20 таких видов, то жизнь на планете прекратится.

И опять установленный кругооборот был разорван человеком. Он для целей увеличения урожайности сельскохозяйственных культур, стал активно применять азотосодержащие удобрения.

Углерод

Круговорот углерода в биосфере неразрывно связан с кругооборотом кислорода и азота.

В биосфере схема круговорота углерода базируется на жизнедеятельности зеленых растений и их способности к превращению углекислого газа в кислород, то есть фотосинтезе.

Углерод взаимодействует с другими элементами различными способами и входит в состав практически всех классов органических соединений. Например, он входит в состав углекислого газа, метана. Он растворен в воде, где его содержание значительно больше чем в атмосфере.

Хотя по распространённости углерод не входит в десятку, но в живых организмах он составляет от 18 до 45% сухой массы.

Мировой океан служит регулятором содержания углекислого газа. Как только его доля в воздухе повышается, вода выравнивает положения, поглощая углекислый газ. Еще одним потребителем углерода в океане являются морские организмы, которые используют его для строительства раковин.

Круговорот углерода в биосфере основывается на наличии в атмосфере и гидросфере углекислого газа, который является своеобразным обменным фондом. Пополняется он за счет дыхания живых организмов. Бактерии, грибы и другие микроорганизмы, принимающие участие в процессе разложения органических остатков в почве, также участвуют в пополнении углекислым газом атмосферы.Углерод «консервируется» в минерализованных неперегнивших органических остатках. В каменном и буром угле, торфе, горючих сланцах и тому подобных отложениях. Но основным резервным фондом углерода являются известняки и доломиты. Содержащийся в них углерод «надежно спрятан» в глубине планеты и высвобождается лишь при тектонических сдвигах и выбросах вулканических газов при извержениях.

Благодаря тому, что процесс дыхания с выделение углерода и процесс фотосинтеза с его поглощением проходит через живые организмы очень быстро, в кругообороте участвует лишь незначительная доля всего углерода планеты. Если бы этот процесс был невзаимным, то растения только суши использовали весь углерод всего в течение 4-5 лет.

В настоящее время, благодаря деятельности человека, растительный мир не имеет недостатка с углекислым газом. Он пополняется сразу и одновременно из двух источников. Путем сжигания кислорода при работе промышленности производств и транспорта, а также в связи с использованием для работы этих видов человеческой деятельности тех «консервов» — угля, торфа, сланцев и так далее. Отчего содержание углекислого газа в атмосфере возросло на 25%.

Фосфор

Круговорот фосфора в биосфере неразрывно связан с синтезом таких органических веществ, как: АТФ, ДНК, РНК и другие.

В почве и воде содержание фосфора очень мало. Основные его запасы в горных породах, образовавшихся в далеком прошлом. С выветриванием этих пород начинается кругооборот фосфора.

Растениями фосфор усваивается лишь в виде ионов ортофосфорной кислоты. В основном это продукт переработки могильщиками органических остатков. Но если почвы имеют повышенный щелочной или кислотный фактор, то фосфаты практически в них не растворяются.

Фосфор является прекрасным питательным веществом для различного вида бактерий. Особенно сине-зеленой водоросли, которая при увеличенном содержании фосфора бурно развивается.

Тем не менее большая часть фосфора уносится с речными и другими водами в океан. Там он активно поедается фитопланктоном, а с ним морским птицам и другим видам животных. Впоследствии фосфор попадает на океаническое дно и формирует осадочные породы. То есть возвращается в землю, лишь под слоем морской воды.

Как видно кругооборот фосфора специфичен. Его трудно и назвать кругооборотом, так как он не замкнут.

Сера

В биосфере круговорот серы необходим для образования аминокислот. Он создает трехмерную структуру белков. В нем участвуют бактерии и организмы, потребляющие кислород для синтеза энергии. Они окисляют серу до сульфатов, а одноклеточные доядерные живые организмы, восстанавливают сульфаты до сероводорода. Кроме них, целые группы серобактерий, окисляют сероводород до серы и далее до сульфатов. Растения могут потреблять из почвы лишь ион серы — SO 2- 4. Таким образом, одни микроорганизмы являются окислителями, а другие восстановителями.

Местами накопления серы и ее производных в биосфере является океан и атмосфера. В атмосферу сера поступает с выделением сероводорода из воды. Кроме того, сера попадает в атмосферу в виде диоксида при сжигании на производствах и в бытовых нуждах горючего ископаемого топлива. В первую очередь угля. Там она окисляется и, превращаясь в серную кислоту в дождевой воде, с ней же выпадает на землю. Кислотные дожди сами по себе наносят существенный вред всему растительному и животному миру, а кроме этого, с ливневыми и талыми водами, попадают в реки. Реки несут ионы сульфатов серы в океан.

Содержится сера также в горных породах в виде сульфидов, в газообразном виде — сероводород и сернистый газ. На дне морей имеются залежи самородной серы. Но это все «резерв».

Вода

В биосфере нет более распространенного вещества. Его запасы в основном в солено-горьком виде вод морей и океанов – это около 97%. Остальное пресные воды, ледники и подземные и грунтовые воды.

Круговорот воды в биосфере условно начинается с ее испарения с поверхности водоемов и листьев растений и составляет примерно 500 000 куб. км. Обратно она возвращается в виде осадков, которые попадают либо непосредственно обратно в водоемы, либо, пройдя через почву и подземные воды.

Роль воды в биосфере и истории ее эволюции такова, что вся жизнь с момента своего появления, была полностью зависима от воды. В биосфере вода многократно через живые организмы прошла циклы разложения и рождения.

Кругооборот воды имеет под собой в большей степени физический процесс. Однако, животный и, особенно, растительный мир принимает в этом немаловажное участие. Испарения воды с поверхностных участков листьев деревьев таков, что, например, гектар леса испаряет в сутки до 50 тонн воды.

Если испарение воды с поверхностей водоемов естественно для ее кругооборота, то для континентов с их лесными зонами, такой процесс – единственный и главный способ его сохранения. Здесь кругооборот идет как бы в замкнутом цикле. Осадки образуются из испарений с поверхностей почвы и растений.

В процессе фотосинтеза растения используют водород, содержащийся в молекуле воды, для создания нового органического соединения и выделения кислорода. И, наоборот, в процессе дыхания, живые организмы, происходит процесс окисления и вода образуется снова.

Описывая кругооборот различный видов химических веществ, мы сталкиваемся с более активным влиянием человека на эти процессы. В настоящее время природа, за счет многомиллиардной истории своего выживания, справляется с регулированием и восстановлением нарушенных балансов. Но первые симптомы «болезни» уже есть. И это «парниковый эффект». Когда две энергии: солнечная и отраженная Землей, не защищают живые организмы, а, наоборот, усиливают одна другую. В результате чего повышается температура окружающей среды. Какие последствия такого повышения могут быть, кроме ускоренного таяния ледников, испарения воды с поверхностей океана, суши и растений?

Видео — Круговорот веществ в биосфере

Все вещества на нашей планете находятся в состоянии постоянного круговорота. вызывает на Земле два круговорота веществ: один, большой, охватывающий всю , называется биосферным, а другой - малый - протекает внутри и называется биологическим.

Биосферному круговороту веществ предшествует геологический, который обусловливает разрушение, миграцию и аккумуляцию химических соединений и веществ. В такой миграции ведущая роль принадлежит солнечной энергии, от которой зависят скорость и масштабность развития экзогенных процессов. В них главенствующая роль принадлежит гравитационным и особенно термическим свойствам поверхности суши и водной оболочки, которые поглощают и отражают солнечные лучи, обладают теплопроводностью и теплоемкостью. Неустойчивый гидротермический режим вместе с планетарной системой циркуляции атмосферы обусловил геологический круговорот веществ, который вместе с эндогенными процессами - спредингом, субдукцией, вулканизмом, тектоническими движениями - вызывает формирование и развитие океанов и континентов. Продукты выветривания транспортируются воздушными массами и водными потоками. С появлением биосферы в большой круговорот веществ включились продукты жизнедеятельности организмов, и, таким образом, геологический круговорот приобрел совершенно новые черты. Он становится поставщиком живым организмам питательных веществ, во многом определяет условия их существования и при этом наряду с механической и химической дифференциацией и аккумуляцией вещества стала осуществляться биологическая дезинтеграция и биологическая аккумуляция вещества.

Большой круговорот веществ в биосфере характеризуется двумя важными особенностями. Во-первых, он осуществляется на протяжении всей истории существования биосферы, т. е. начиная по крайней мере с 3,8-4,0 млрд. лет назад. Во-вторых, он представляет собой современный планетарный процесс, играющий важную роль в дальнейшем существовании и развитии биосферы.

Перемещающееся в геологическом круговороте неорганическое вещество является своеобразным резервным фондом для биологической ветви биосферного круговорота. Этот резервный фонд сосредоточен в атмосфере в виде газов и термодинамически активных веществ, в - в виде растворенных химических и их соединений, в литосфере - в виде минеральных и органоминеральных веществ, часть из которых находится в верхних горизонтах и почвах. С атмосферой и гидросферой связан в основном транзитный цикл круговорота, а с литосферой и частично с гидросферой - аккумулятивный, или осадочный.

Малый, или биологический, круговорот веществ развивается на фоне геологического, охватывающего всю биосферу. Хотя он происходит внутри отдельных экосистем, он не замкнут, а это вызвано тем, что в экосистему вещество и поступают извне.

Растения, животные и почвенный покров на суше образуют сложную глобальную систему, которая формирует биомассу, связывает и перераспределяет солнечную энергию, углерод атмосферы, влагу, кислород, азот, фосфор, серу, кальций и другие элементы, участвующие в жизнедеятельности организмов, которые называются биогенными элементами. Растения, животные и микроорганизмы водной среды, которые выполняют ту же функцию связывания и перераспределения солнечной энергии и биологического круговорота веществ, образуют другую глобальную систему.

Особенность биологического круговорота заключается в течении трех противоположных, но взаимосвязанных процессов: формирование органического вещества, его разрушение и перераспределение. Начальный этап возникновения органического вещества обусловлен жизнедеятельностью продуцентов и связан с фотосинтезом растений, т. е. с образованием органического вещества из углекислого газа, воды и простых минеральных веществ с использованием солнечной энергии. Растения извлекают из почвы в растворенном виде серу, фосфор, кальций, калий, магний, марганец, кремний, алюминий, медь, цинк и другие жизненно необходимые элементы и микроэлементы. Консументы первого порядка, т. е. растительноядные животные, поглощают созданное органическое вещество и вместе с пищей растительного происхождения усваивают необходимые для жизнедеятельности биогенные элементы. Консументы второго порядка - хищники- питаются растительноядными животными и таким образом употребляют в пищу органические вещества более сложного состава, включая , жиры, аминокислоты, а вместе с ними также необходимые для последующей жизнедеятельности микроэлементы.

В процессе разрушения микроорганизмами органического вещества растительного или животного происхождения в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениями. Таким образом, начинается новый цикл биологического круговорота.

В отличие от большого малый круговорот имеет несомненно меньшую, но неодинаковую продолжительность. Различают сезонные, годовые, многолетние и вековые малые круговороты. При рассмотрении биологического круговорота веществ основное внимание уделяют годовому ритму, определяемому годичной динамикой развития растительного покрова.

Обмен веществом и энергией, осуществляющийся между различными структурными частями биосферы и определяющийся жизнедеятельностью микроорганизмов, называется биогеохимическим циклом. Это понятие ввел в мировую науку В. И. Вернадский, и только после этого перестало существовать представление о круговороте веществ как о замкнутой системе. Все биогеохимические циклы составляют современную динамическую основу существования жизни. Они взаимосвязаны между собой, и в то же время каждый из них играет свою неповторимую роль в эволюции биосферы.

Отдельные циклические процессы вместе с тем не являются полностью обратимыми. Одна часть элементов и соединений в процессе миграции и превращения рассеивается или связывается в новых системах и, следовательно, выпадает из круговорота. Другая часть веществ способна возвратиться в круговорот, но довольно часто он приобретает новые качества, и при этом изменяется количественный состав веществ, участвующих в круговороте. Часть веществ вследствие геологических процессов, в частности субдукции, может извлекаться из круговорота и, перемещаясь в нижние горизонты литосферы, видоизменяться, а часть, в основном в газообразном состоянии, - удаляться из атмосферы в космическое пространство.

Продолжительность круговоротов тех или иных веществ в разных системах чрезвычайно различна. Установлено, что полный оборот углекислого газа в атмосфере через фотосинтез составляет около 300 лет, кислорода атмосферы и тоже через фотосинтез - 2000-2500 лет, азота атмосферы через биологическую фиксацию и фотохимическим путем - примерно 100 млн. лет, а воды через испарение - около 1 млн. лет.

В биосферном и биологическом круговоротах участвует огромное количество химических элементов и соединений, но важнейшими из них являются те, которые определяют современный этап развития биосферы, связанный с хозяйственной деятельностью человека. К ним относятся круговороты углерода, серы, азота и фосфора. Оксиды первых трех являются главными загрязнителями атмосферы, а фосфаты - загрязнителями водных бассейнов. Большое значение имеет знание круговоротов ряда токсичных элементов и, в частности, ртути (загрязнитель пищевых продуктов) и свинца (компонент бензина, который выступает как загрязнитель почвы и атмосферы). В круговороты вовлекаются многие вещества антропогенного происхождения (ДДТ, пестициды, радионуклиды и др.), которые наносят вред биоте и здоровью человека.

Круговорот углерода

Этот круговорот - один из важнейших круговоротов веществ в биосфере. Изменения глобального масштаба круговорота углерода, вызванные антропогенной деятельностью, приводят к неблагоприятным для биосферы последствиям. С процессом круговорота углерода напрямую связаны содержание кислорода в атмосфере и его круговорот в биосфере, изменения климата и погодных условий на земной поверхности и т. д.

Углерод участвует в большом и малом круговоротах вещества. Его соединения в биосфере постоянно возникают, испытывают превращения и разлагаются. Основной путь миграции углерода - от углекислого газа в атмосфере в живое вещество и из живого вещества в атмосферную углекислоту. При этом часть углерода выходит из круговорота, растворяясь в гидросфере и осаждаясь в форме карбонатных пород, а часть остается в почве.

В биологическом круговороте углерода выделяют три стадии. На первой стадии зеленые растения поглощают углекислый газ из воздуха, создают органическое вещество, главной составной частью которого является углерод. В дальнейшем животные, питаясь растениями, из содержащихся в органическом веществе соединений, в том числе соединений углерода, продуцируют другие соединения. На конечной стадии после отмирания организмов растительного или животного происхождения их мертвые разрушаются микроорганизмами, которые освобождают углерод. Он снова попадает в атмосферу в форме углекислого газа. Кроме того, источником углерода является углекислый газ, поступающий в атмосферу при дыхании растений в темное время суток, выделяемый при дыхании животных и человека, а также поступающий в атмосферу в результате вулканических извержений и при выветривании горных пород, содержащих углерод в связанном виде.

Часть углерода накапливается в виде омертвевших органических веществ и там, где отсутствуют условия для их разложения, т. е. в восстановительных условиях. В этом случае органический углерод переходит в ископаемое состояние и накапливается в виде торфа, и газа и в дальнейшем перерабатывается в каменный уголь и горючие сланцы, а при метаморфизме переходит в графит.

Рассматривая глобальное преобразование органического углерода и интенсивное его захоронение в болотах, пойменно-старичных условиях, лагунах, манграх, морских бассейнах и пресноводных водоемах, надо признать, что данный процесс осуществлялся на Земле в период всей биологической эволюции биосферы, причем этот процесс в течение длительного геологического времени протекал с большой интенсивностью, но с различной скоростью. В геологическом прошлом, когда существовала ландшафтно-климатическая обстановка, благоприятствующая развитию растительного покрова, а в атмосфере концентрация углекислого газа почти на порядок превышала современную, избыток органического углерода захоронялся в недрах Земли, образовав месторождения полезных ископаемых. Общая масса углерода, которая захоронена в форме горючих полезных ископаемых, оценивается более чем в 100 000 трлн. т.

Современная растительность, включая водоросли, ежегодно продуцирует около 1,5 трлн. Т. углерода. Согласно расчетам М. И. Будыко, весь запас углекислого газа в атмосфере, если бы он не возобновлялся, был бы исчерпан растениями за восемь лет.

Кроме биосферы углекислый газ продуцируется косными системами, в частности вулканическими извержениями. Весьма существенным источником и потребителем углекислоты выступают водные массы гидросферы. Углекислый газ представлен в ней в виде разбавленных растворов угольной кислоты и главным образом в форме гидрокарбонатов . Существует глобальный обмен между атмосферой и гидросферой не только энергией, но и веществом в форме газов. Повышение концентрации и парциального давления СO 2 в атмосфере, региональное или сезонное охлаждение вод - все это сопровождается немедленным увеличением концентрации углекислого газа в воде и растворов гидрокарбоната кальция. Необходимые количества углекислоты изымаются из атмосферы.

Известно, что многие гидробионты, поглощая углекислый кальций, строят свои скелеты, а после смерти формируют донные известковые отложения, в дальнейшем преобразуемые в процессе литогенеза в толщи органогенных известняков. Осаждаясь, карбонат кальция связывает часть углекислого газа в форме известковых осадков на дне Мирового океана и пресноводных водоемов, но при этом часть углекислоты вновь возвращается в атмосферу.

Между атмосферным углекислым газом и углекислым газом, растворенным в Мировом океане, существует равновесие. Уменьшение углекислого газа в атмосфере неизбежно вызывает дегазацию вод океана и приводит к поступлению углекислого газа в атмосферу. В качестве нарушителя равновесного процесса нередко выступает температурный фактор.

Постоянно действующим фактором поглощения углекислого газа из атмосферы, а также газов, растворенных в водной среде, выступает фотосинтез в гидросфере. Причем этот процесс протекает с соответствующим освобождением кислорода.

Таким образом, и представляют собой единую систему, которая регулирует взаимное распределение диоксида углерода. Ряд исследователей считают, что в современную эпоху, несмотря на повышение концентрации углекислого газа в атмосфере, Мировой океан продолжает эффективно выполнять функцию захвата и связывания избыточного количества углекислого газа, переводя его в растворимые бикарбонаты и осаждая в виде карбоната кальция, а также путем образования биомассы живого вещества с карбонатным скелетом.

Круговорот углерода продолжает контролировать содержание кислорода в атмосфере. При этом общую массу кислорода М. И. Будыко и А. Б. Ронов оценивают в 1,2*10 6 млрд. т. Общепланетарный расход кислорода на сжигание органического топлива составляет около 15 млрд. т ежегодно. Это почти на порядок меньше, чем ежегодное поступление в атмосферу кислорода, освобожденного при фотосинтезе (140-200 млрд. т.). Выделяемый кислород почти полностью используется при дыхании организмов и минерализации отмершей органической массы, а также частично консервируется в литосфере в виде оксидов металлов и соединений.

На сжигание минерального топлива используется кислород, уже накопленный атмосферой, и ежегодное его уменьшение составляет примерно одну десятитысячную часть его массы в атмосфере. Полное сжигание углеродного топлива уменьшает содержание кислорода в атмосфере только на доли процента. Значительные изменения массы кислорода могут проявиться за очень длительные промежутки времени, исчисляемые миллионами лет. Исходя из этого считают, что наибольшую опасность для биосферы представляет нарушение круговорота углерода.

В современную эпоху, в отличие от прошлых геологических периодов, поток углерода в атмосферу увеличился за счет антропогенных выбросов, а растительность полностью его усвоить оказалась не в состоянии. Вследствие этого снизилось самоочищение атмосферы от оксида углерода, т.е. от угарного газа.

Самоочищение воздуха от оксида углерода происходит в результате миграции СО в верхние слои атмосферы, где в присутствии диоксида азота и озона он окисляется до СO 2 . Установлено, что если бы прекратилось постоянное поступление в атмосферу техногенного оксида углерода, то она бы очистилась от него в течение нескольких лет.

Круговорот азота

Азот, как и углерод, участвует в большом и малом круговоротах. Источником азота в биологическом круговороте являются нитраты и нитриты, которые поглощаются растениями из почвы и воды. У растений отсутствует возможность извлекать азот непосредственно из атмосферы. Растительноядные животные создают из аминокислот растительных белков протоплазму своих клеток. Гнилостные бактерии переводят соединения азота в отмерших остатках растений и животных в аммиак. Затем нитрифицирующие бактерии превращают аммиак в нитриты и нитраты. Часть азота благодаря денитрифицирующимся бактериям вновь поступает в атмосферу. Если бы отсутствовал дополнительный источник пополнения запасов азота в почве, то произошло бы азотное голодание растений и как следствие - разрушение биосферы, так как в процессе денитрификации свободный азот выводится из биологического цикла.

Существуют два пути вовлечения азота атмосферы в биологический круговорот. Один из них связан с атмосферными осадками, а второй - с биологической фиксацией азота прокариотными организмами.

В результате вулканических извержений, а также происходящих фотохимических реакций и возникающего при грозовых разрядах и ионизации электрического окисления азота в атмосфере всегда присутствуют оксиды азота, которые вместе с атмосферными осадками попадают в почвенные слои. Кроме того, в атмосферном воздухе всегда содержится аммиак. В нормальном состоянии он составляет 0,02-0,04 мг/м 3 , но его количество возрастает при грозовых разрядах. Подсчитано, что суммарное поступление азота в почву таким путем составляет 10-15 кг/га.

Биологическая фиксация азота связана с деятельностью прокариот. Они способны превращать биологически бесполезный газообразный азот в соединения, необходимые для корневого питания растений. Фиксация азота требует больших затрат энергии, которая расходуется в основном на разрыв тройной связи в молекуле азота, чтобы затем с добавлением водорода из воды превратить ее в две молекулы аммиака.

Азот фиксируется свободно живущими аэробными (Asotobacter) и анаэробными (Clostridium) бактериями, некоторыми сине-зелеными водорослями (Anabaena, Nostos), симбиотическими клубеньковыми бактериями бобовых растений (Rhizobium) и другими микроорганизмами. Особенно активны клубеньковые бактерии бобовых культур. Общее количество азота, фиксированного ими, может достигать 350 кг/га, а это в 100 раз выше показателя у свободно живущих азотфиксирующих организмов.

Основная часть фиксированного азота почвы поглощается растениями, но часть его соединений выносится в реки и поступает в водоемы, в том числе в моря. Больше всего солей аммония, нитратов и нитритов находится в водах устьев рек и у берегов морей, в глубинных частях водоемов суши, куда они поступают в процессе гниения органического вещества. Находящийся в поверхностных водах азот потребляется растительными микроорганизмами. Потеря азота непрерывно восполняется поступлением его с суши, в результате постоянного перемешивания вод, выпадения аммиака из атмосферы и разложения остатков растений и животных в поверхностных частях водоемов.

Антропогенные нарушения круговорота азота в биосфере связаны со сжиганием минерального топлива в наземном и воздушном транспорте, на тепловых электростанциях и с производством азотных удобрений. Поступление в атмосферу азота антропогенного происхождения в 70-е годы XX в. было в 15 раз, а в 80-е годы - в 12 раз меньше, чем от естественных источников. Однако в связи с развитием промышленности и транспорта количество техногенного азота в атмосфере имеет тенденцию к увеличению.

При сжигании топлива в атмосферу поступает дополнительное количество оксидов азота, которые участвуют в фотохимических реакциях. Одна из таких реакций приводит к возникновению фотохимического смога, содержащего формальдегид и другие токсичные компоненты.

Загрязнение стратосферы оксидами азотами в результате полетов самолетов, космических и простых ракет нарушает естественный круговорот азота и приводит к нарастающему разрушению озонового экрана. В тропосфере оксиды азота, контактируя с парами воды, образуют аэрозоли азотной кислоты, которая вместе с аэрозолями серной кислоты выпадает в форме кислотных дождей.

Существенные изменения в круговорот азота вносят производство и применение азотных удобрений. В XX в. химический синтез азотных удобрений на основе связывания азота атмосферы стал главным источником питания культурных растений. В мире ежегодно вносится свыше 40 млн. т. азота в виде минеральных удобрений. Кроме того, в почвенный покров и водные системы поступает трудно учитываемое количество азота с животноводческих комплексов и фермерских хозяйств.

Круговорот фосфора

Биологическое значение фосфора в жизнедеятельности организмов исключительно велико. Его соединения входят в состав нуклеиновых кислот, клеточных мембран, систем переноса энергии, в состав мозга и костной ткани. Содержание фосфора в тканях растений составляет 250-350, морских животных - 400-1800, наземных животных - 170-4400, бактерий - около 3000 мг на 100 г сухого вещества. Как и углерод, фосфор участвует в биологическом и геологическом круговороте вещества.

Резервуаром фосфора в биологическом круговороте служит литосфера, в частности фосфорсодержащие горные породы, какими являются фосфориты, апатиты, нефелиновые сиениты. В процессе выветривания соединения фосфора попадают в почвенный покров, выносятся поверхностными водами в конечные бассейны стока, где они или медленно оседают на дно и литифицируются, или рассеиваются глубинными водами.

Из почвы фосфор извлекается растениями в виде растворимых фосфатов, которые поглощаются с почвенными растворами и превращаются в ионы РO 4 -2 . Скорость усвоения растениями фосфора зависит от кислотности почвенного раствора. В щелочной среде фосфаты кальция и натрия практически нерастворимы, а в нейтральной - малорастворимы. По мере повышения кислотности они превращаются в хорошо растворимую фосфорную кислоту. Находящийся в растительности фосфор переходит к животным, потребляющим растительную пищу.

Органический фосфор, находящийся в растительном опаде, отмерших растительных и животных остатках в результате бактериальных преобразований в почве, трансформируется в фосфаты. Воздействующие на них фосфаторазрушающие бактерии продолжают биологический круговорот фосфора, переводя его в растворимую форму, которая, попадая в водную среду, принимает участие в геологическом круговороте.

Круговорот фосфора в биосфере не замкнут, так как часть его поступает в литосферу. Лишь небольшое количество фосфора безвозвратно теряется при геологических процессах, а часть - аккумулируется вместе с осадками. С речными стоками, согласно сделанным подсчетам, в Мировой океан поступает ежегодно около 3-4 млн. т. фосфора, который исключается из круговорота.

В морях и океанах фосфор концентрируется в виде фосфатных конкреций, которые в процессе седиментогенеза с течением времени превращаются в фосфориты. В зоне апвеллинга, когда происходит подъем глубинных вод, фосфор вместе с другими биогенными элементами и питательными веществами выносится на поверхность и поэтому зоны апвеллинга необычайно богаты организмами.

В почве и природных водах фосфор всегда находится в дефиците. Соотношение фосфора и азота в природных водах составляет в среднем 1:23 (в реках и ручьях 1:28), в биомассе 1:16. Это определенным образом тормозит биологическую продуктивность Земли. Хотя часть фосфора из Мирового океана естественным путем возвращается на сушу птицами и с выловленной рыбой, общий объем возврата фосфора явно меньше количества выноса его в гидросферу.

В течение XX в. в результате хозяйственной деятельности человека цепочка круговорота фосфора в биосфере оказалась нарушенной. Этому способствовали производство фосфорных удобрений и широкое их применение в сельском хозяйстве, получение в промышленных масштабах различных фосфорсодержащих препаратов, производство продовольствия и кормов, развитие рыбного промысла, добыча морских и водорослей. Эти действия прямым образом отразились на круговороте фосфора и привели к перераспределению содержания фосфатов на суше и в гидросфере. Наблюдается также крайне неравномерная концентрация фосфора на земной поверхности. Его больше в местах развития сельского хозяйства, где происходит малообратимая аккумуляция органических соединений фосфора. Эрозия почв, смыв удобрений, органических отходов и экскрементов поверхностными водами, сбросы канализационных стоков приводят к сильнейшему фосфорному загрязнению рек, озер и прибрежных областей Мирового океана. Происходит фосфатизация почв, рек, водоемов суши, прибрежных участков морей, особенно в области дельт, заливов и эстуариев.

Круговорот серы

Сера имеет важное биологическое значение, так как она входит в состав аминокислот, белков и других сложных органических соединений. В пересчете на сухое вещество в наземных растениях содержание серы составляет 0,3%, у наземных животных - 0,5, в морских растениях - 1,2, у морских животных - до 2%.

В большом, геологическом, круговороте сера переносится с океана на материки атмосферными осадками и возвращается с речным стоком обратно в Мировой океан. Одновременно ее запасы пополняются за счет вулканической деятельности и при процессах выветривания. выбрасывают серу в виде триоксида (серного ангидрида SO 3), диоксида (сернистого газа SO 2), сероводорода Н 2 S и элементарной серы. В литосфере имеются в большом количестве сульфиды различных металлов: железа, цинка, свинца, меди и др. В биосфере сульфидная сера с участием многочисленных микроорганизмов окисляется до сульфатной серы SO 4 -2 , которая находится в почве и водоемах. В малом круговороте сульфаты поглощаются растениями. Растительноядные животные получают необходимую для жизнедеятельности серу. В результате сложных превращений и видоизменений при разрушении остатков организмов, растительного опада сера попадает в почвенные воды и в илы водоемов суши, морей и океанов. При разрушении белков с участием микроорганизмов образуется сероводород, который в дальнейшем окисляется или до элементарной серы, или до сульфатов. В первом случае формируются залежи чистой серы, а во втором - залежи гипса. При разрушении последних во время добычи или выветривания сера вновь вовлекается в круговорот.

Сероводородное заражение вод Черного моря - это результат жизнедеятельности серо-разлагающих бактерий в анаэробных условиях. Сероводород нередко возникает в пресноводных водоемах, загрязненных промышленными стоками. На заключительном этапе геологического круговорота сера выпадает в осадок в анаэробных условиях в присутствии железа и других металлов и медленно накапливается в виде конкреций или тонкораспыленного вещества в земных недрах.

Промышленное загрязнение приводит к нарушению круговорота серы, так же как и других вышеперечисленных элементов, участвующих в других круговоротах. Дополнительным поставщиком серы в большой круговорот являются теплоэнергетические установки, которые при сжигании минерального топлива выбрасывают сернистый газ.

Атмосфера Земли способна самоочищаться от сернистого ангидрида при выпадении атмосферных осадков: он преобразуется газовыми выделениями растительности или осаждается в форме сульфатных аэрозолей.

Экологическая опасность сернистого ангидрида заключается в том, что при фотохимическом окислении в присутствии диоксида азота и углеводородов сначала образуется серный ангидрид SO 3 , который соединяясь с водяными парами, превращается в аэрозоли серной кислоты Н 2 SO 4 . Продолжительность всего цикла от момента естественных или техногенных выбросов SO 2 до удаления из атмосферы паров серной кислоты составляет до 14 суток. С воздушными потоками аэрозоли серной кислоты разносятся на значительные расстояния от источника выброса и выпадают в виде кислотных дождей. Об этом подробнее изложено в разделах, касающих асидификации атмосферы и гидросферы.

Круговорот ртути

Этот редко встречаемый химический элемент очень токсичен. Сильной токсичностью обладают и соединения ртути. В природе ртуть рассеяна в земной коре и очень редко встречается в таких минералах, как киноварь, где она содержится в концентрированном виде. Ртуть участвует в круговороте веществ, мигрируя в газообразном состоянии и в водных растворах.

В атмосферу ртуть поступает из гидросферы при испарении, вместе с вулканическими газами и газами из термальных источников. Часть газообразной ртути переходит в твердую фазу и удаляется из воздушной среды. Выпавшая вместе с атмосферными осадками ртуть поглощается почвенными растворами и глинистыми породами. Ртуть в небольших количествах содержится в нефти и каменном угле (до 1 мг/кг). В водной массе океанов ее количество составляет около 1,6 млрд. т., в донных осадках заключено около 500 млрд. т., а в планктонных организмах находится до 2 млн. т. ртути и ее соединений. Речными водами ежегодно с суши выносится около 40 тыс. т. ртути, что на порядок меньше, чем поступает в атмосферу при испарении.

В результате усилившихся техногенных выбросов в атмосферу и гидросферу ртуть из естественного компонента природной среды, участвующего во всех круговоротах, превратилась в весьма опасный компонент для здоровья человека и живого вещества. Ртуть применяют в металлургической, химической, электротехнической, электронной, целлюлозно-бумажной и фармацевтической промышленности, используют для производства взрывчатых веществ, люминесцентных ламп, лаков и красок. Промышленные стоки и атмосферные выбросы, горно-обогатительные фабрики при ртутных рудниках, теплоэнергетические установки, использующие минеральное топливо, являются главными источниками загрязнения биосферы этим токсичным компонентом. Кроме того, ртуть входит в состав некоторых пестицидов, которые используют в сельском хозяйстве для протравливания семян и защиты их от вредителей. В организм человека ртуть и ее соединения поступают вместе с пищей.

Круговорот свинца

Несмотря на то что свинца в земной коре содержится всего 0,0016%, он присутствует во всех компонентах природной среды. Важнейшим в круговороте свинца является его атмосферно-гидросферный перенос. Находящийся в атмосфере свинец вместе с пылью осаждается атмосферными осадками и начинает концентрироваться в почвах. Растения получают свинец из почв, природных вод и атмосферных выпадений, а животные - при потреблении растений и воды. В организм человека свинец попадает вместе с пищей, водой и пылью.

Основными источниками загрязнения биосферы свинцом являются разнообразные , выхлопные газы которых содержат тетраэтилсвинец, теплоэнергетические установки, сжигающие каменный уголь, горнодобывающая, металлургическая и химическая промышленность. Значительное количество свинца вносится в почву сточными водами.

У жителей промышленно развитых стран содержание свинца в организме в несколько раз больше, чем у жителей аграрных стран, а у горожан выше, чем у сельских жителей. Увеличение концентрации свинца в природных средах приводит к необратимым процессам в костях и печени людей.

Биосфера - это область распространения живого вещества. В ее истории имеются важнейшие рубежи, свидетельствующие о влиянии на ее развитие и эволюцию различных геосферных факторов. Живое вещество обладает весьма своеобразными экологическими функциями. Важное геоэкологическое значение имеют энергетическая, газовая, почвенно-элювиальная, водоочистная, водорегулирующая, концентрационная, транспортная и деструктивная функции. Биосфера многолика в результате исключительно огромного таксономического разнообразия. Каждый организм или группа организмов в силу своих физиологических особенностей и условий существования способны служить инструментом индикации загрязненности природной среды. В биосфере существует круговорот веществ, которому предшествует геологический круговорот, подготовляющий вещества для жизнедеятельности организмов. Более низкий уровень биосферного круговорота составляет биологический круговорот. В природе существуют круговороты углерода, азота, фосфора, серы, ртути, свинца и других химических элементов и соединений.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари