Подпишись и читай
самые интересные
статьи первым!

Элементарная функция. Основные элементарные функции: их свойства и графики Что такое элементарная функция

Полный перечень основных элементарных функций

К классу основных элементарных функций относятся следующие:

  1. Постоянная функция $y=C$, где $C$ -- константа. Такая функция принимает одно и то же значение $C$ при любом $x$.
  2. Степенная функция $y=x^{a} $, где показатель степени $a$ -- действительное число.
  3. Показательная функция $y=a^{x} $, где основание степени $a>0$, $a\ne 1$.
  4. Логарифмическая функция $y=\log _{a} x$, где основание логарифма $a>0$, $a\ne 1$.
  5. Тригонометрические функции $y=\sin x$, $y=\cos x$, $y=tg\, x$, $y=ctg\, x$, $y=\sec x$, $y=A>\sec \, x$.
  6. Обратные тригонометрические функции $y=\arcsin x$, $y=\arccos x$, $y=arctgx$, $y=arcctgx$, $y=arc\sec x$, $y=arc\, \cos ec\, x$.

Степенные функции

Поведение степенной функции $y=x^{a} $ рассмотрим для тех простейших случаев, когда её показатель степени определяет целочисленные возведение в степень и извлечение корня.

Случай 1

Показатель степени функции $y=x^{a} $ -- натуральное число, то есть $y=x^{n} $, $n\in N$.

Если $n=2\cdot k$ -- четное число, то функция $y=x^{2\cdot k} $ -- четная и неограниченно возрастает как при неограниченном возрастании аргумента $\left(x\to +\infty \right)$, так и при неограниченном его убывани $\left(x\to -\infty \right)$. Такое поведение функции можно описать выражениями $\mathop{\lim }\limits_{x\to +\infty } x^{2\cdot k} =+\infty $ и $\mathop{\lim }\limits_{x\to -\infty } x^{2\cdot k} =+\infty $, которые означают, что функция в обоих случаях неограниченно возрастает ($\lim $ -- предел). Пример: график функции $y=x^{2} $.

Если $n=2\cdot k-1$ -- нечетное число, то функция $y=x^{2\cdot k-1} $ -- нечетная, неограниченно возростает при неограниченном возрастании аргумента и неограниченно убывает при неограниченном его убывании. Такое поведение функции можно описать выражениями $\mathop{\lim }\limits_{x\to +\infty } x^{2\cdot k-1} =+\infty $ и $\mathop{\lim }\limits_{x\to -\infty } x^{2\cdot k-1} =-\infty $. Пример: график функції $y=x^{3} $.

Случай 2

Показатель степени функци $y=x^{a} $ -- целое отрицательное число, то есть $y=\frac{1}{x^{n} } $, $n\in N$.

Если $n=2\cdot k$ -- четное число, то функция $y=\frac{1}{x^{2\cdot k} } $ -- четная и асимптотически (постепенно) приближается к нулю как при неограниченном возрастании аргумента, так и при неограниченном его убывании. Такое поведение функции можно описать единым выражением $\mathop{\lim }\limits_{x\to \infty } \frac{1}{x^{2\cdot k} } =0$, которое означает, что при неограниченном возрастании аргумента по абсолютной величине предел функции равен нулю. Кроме того, при стремлении аргумента к нулю как слева $\left(x\to 0-0\right)$, так и справа $\left(x\to 0+0\right)$, функция неограниченно возрастает. Поэтому справедливы выражения $\mathop{\lim }\limits_{x\to 0-0} \frac{1}{x^{2\cdot k} } =+\infty $ и $\mathop{\lim }\limits_{x\to 0+0} \frac{1}{x^{2\cdot k} } =+\infty $, которые означают, что функция $y=\frac{1}{x^{2\cdot k} } $ в обоих случаях имеет бесконечный предел, равный $+\infty $. Пример : график функции $y=\frac{1}{x^{2} } $.

Если $n=2\cdot k-1$ -- нечетное число, то функция $y=\frac{1}{x^{2\cdot k-1} } $ -- нечетная и асимптотически приближается к нулю как при неограниченном возрастании аргумента, так и при неограниченном его убывании. Такое поведение функции можно описать единым выражением $\mathop{\lim }\limits_{x\to \infty } \frac{1}{x^{2\cdot k-1} } =0$. Кроме того, при приближении аргумента к нулю слева функция неограниченно убывает, а при приближении аргумента к нулю справа функция неограниченно возрастает, то есть $\mathop{\lim }\limits_{x\to 0-0} \frac{1}{x^{2\cdot k-1} } =-\infty $ и $\mathop{\lim }\limits_{x\to 0+0} \frac{1}{x^{2\cdot k-1} } =+\infty $. Пример : график функции $y=\frac{1}{x} $.

Случай 3

Показатель степени функции $y=x^{a} $ -- число, обратное к натуральному, то есть $y=\sqrt[{n}]{x} $, $n\in N$.

Если $n=2\cdot k$ -- четное число, то функция $y=\pm \sqrt[{2\cdot k}]{x} $ является двузначной и определена только при $x\ge 0$. При неограниченном возрастании аргумента значение функции $y=+\sqrt[{2\cdot k}]{x} $ неограниченно возрастает, а значение функции $y=-\sqrt[{2\cdot k}]{x} $ неограниченно убывает, то есть $\mathop{\lim }\limits_{x\to +\infty } \left(+\sqrt[{2\cdot k}]{x} \right)=+\infty $ и $\mathop{\lim }\limits_{x\to +\infty } \left(-\sqrt[{2\cdot k}]{x} \right)=-\infty $. Пример: график функции $y=\pm \sqrt{x} $.

Если $n=2\cdot k-1$ -- нечетное число, то функция $y=\sqrt[{2\cdot k-1}]{x} $ -- нечетная, неограниченно возрастает при неограниченном возрастании аргумента и неограниченно убывает при неограниченном его убывает, то есть $\mathop{\lim }\limits_{x\to +\infty } \sqrt[{2\cdot k-1}]{x} =+\infty $ и $\mathop{\lim }\limits_{x\to -\infty } \sqrt[{2\cdot k-1}]{x} =-\infty $. Пример: график функции $y=\sqrt[{3}]{x} $.

Показательная и логарифмическая функции

Показательная $y=a^{x} $ и логарифмическая $y=\log _{a} x$ функции являются взаимно обратными. Их графики симметричны относительно общей биссектрисы первого и третьего координатных углов.

При неограниченном возрастании аргумента $\left(x\to +\infty \right)$ показательная функция или неограниченно возрастает $\mathop{\lim }\limits_{x\to +\infty } a^{x} =+\infty $, если $a>1$, или асимптотически приближается к нулю $\mathop{\lim }\limits_{x\to +\infty } a^{x} =0$, если $a1$, или неограниченно возрастает $\mathop{\lim }\limits_{x\to -\infty } a^{x} =+\infty $, если $a

Характерным значением для функции $y=a^{x} $ является значение $x=0$. При этом все показательные функции, независимо от $a$, обязательно пересекают ось $Oy$ при $y=1$. Примеры: графики функций $y=2^{x} $ и $y = \left (\frac{1}{2} \right)^{x} $.

Логарифмическая функция $y=\log _{a} x$ определена только при $x > 0$.

При неограниченном возрастании аргумента $\left(x\to +\infty \right)$ логарифмическая функция или неограниченно возрастает $\mathop{\lim }\limits_{x\to +\infty } \log _{a} x=+\infty $, если $a>1$, или неограниченно убывает $\mathop{\lim }\limits_{x\to +\infty } \log _{a} x=-\infty $, если $a1$, или неограниченно возрастает $\mathop{\lim }\limits_{x\to 0+0} \log _{a} x=+\infty $, если $a

Характерным значением для функции $y=\log _{a} x$ является значение $y=0$. При этом все логарифмические функции, независимо от $a$, обязательно пересекают ось $Ox$ при $x=1$. Примеры: графики функций $y=\log _{2} x$ и $y=\log _{1/2} x$.

Некоторые логарифмические функции имеют специальные обозначения. В частности, если основание логарифма $a=10$, то такой логарифм называется десятичным, а соответствующая функция записывается как $y=\lg x$. А если основанием логарифма выбирается иррациональное число $e=2,7182818\ldots $, то такой логарифм называется натуральным, а соответствующая функция записывается как $y=\ln x$. Обратной к ней является функция $y=e^{x} $, называемая экспонентой.

Основные элементарные функции, присущие им свойства и соответствующие графики – одни из азов математических знаний, схожих по степени важности с таблицей умножения. Элементарные функции являются базой, опорой для изучения всех теоретических вопросов.

Yandex.RTB R-A-339285-1

Статья ниже дает ключевой материал по теме основных элементарных функций. Мы введем термины, дадим им определения; подробно изучим каждый вид элементарных функций, разберем их свойства.

Выделяют следующие виды основных элементарных функций:

Определение 1

  • постоянная функция (константа);
  • корень n -ой степени;
  • степенная функция;
  • показательная функция;
  • логарифмическая функция;
  • тригонометрические функции;
  • братные тригонометрические функции.

Постоянная функция определяется формулой: y = C (C – некое действительное число) и имеет также название: константа. Данная функция определяет соответствие любому действительному значению независимой переменной x одного и того же значения переменной y – значение C .

График константы – это прямая, которая параллельна оси абсцисс и проходит через точку, имеющую координаты (0 , С) . Для наглядности приведем графики постоянных функций y = 5 , y = - 2 , y = 3 , y = 3 (на чертеже обозначено черным, красным и синим цветами соответственно).

Определение 2

Данная элементарная функция определяется формулой y = x n (n – натуральное число больше единицы).

Рассмотрим две вариации функции.

  1. Корень n -й степени, n – четное число

Для наглядности укажем чертеж, на котором изображены графики таких функций: y = x , y = x 4 и y = x 8 . Эти функции отмечены цветом: черный, красный и синий соответственно.

Похожий вид у графиков функции четной степени при иных значениях показателя.

Определение 3

Свойства функции корень n-ой степени, n – четное число

  • область определения – множество всех неотрицательных действительных чисел [ 0 , + ∞) ;
  • когда x = 0 , функция y = x n имеет значение, равное нулю;
  • данная функция- функция общего вида (не является ни четной, ни нечетной);
  • область значений: [ 0 , + ∞) ;
  • данная функция y = x n при четных показателях корня возрастает на всей области определения;
  • функция обладает выпуклостью с направлением вверх на всей области определения;
  • отсутствуют точки перегиба;
  • асимптоты отсутствуют;
  • график функции при четных n проходит через точки (0 ; 0) и (1 ; 1) .
  1. Корень n -й степени, n – нечетное число

Такая функция определена на всем множестве действительных чисел. Для наглядности рассмотрим графики функций y = x 3 , y = x 5 и x 9 . На чертеже они обозначены цветами: черный, красный и синий цвета кривых соответственно.

Иные нечетные значения показателя корня функции y = x n дадут график аналогичного вида.

Определение 4

Свойства функции корень n-ой степени, n – нечетное число

  • область определения – множество всех действительных чисел;
  • данная функция – нечетная;
  • область значений – множество всех действительных чисел;
  • функция y = x n при нечетных показателях корня возрастает на всей области определения;
  • функция имеет вогнутость на промежутке (- ∞ ; 0 ] и выпуклость на промежутке [ 0 , + ∞) ;
  • точка перегиба имеет координаты (0 ; 0) ;
  • асимптоты отсутствуют;
  • график функции при нечетных n проходит через точки (- 1 ; - 1) , (0 ; 0) и (1 ; 1) .

Степенная функция

Определение 5

Степенная функция определяется формулой y = x a .

Вид графиков и свойства функции зависят от значения показателя степени.

  • когда степенная функция имеет целый показатель a , то вид графика степенной функции и ее свойства зависят от того, четный или нечетный показатель степени, а также того, какой знак имеет показатель степени. Рассмотрим все эти частные случаи подробнее ниже;
  • показатель степени может быть дробным или иррациональным – в зависимости от этого также варьируется вид графиков и свойства функции. Мы разберем частные случаи, задав несколько условий: 0 < a < 1 ; a > 1 ; - 1 < a < 0 и a < - 1 ;
  • степенная функция может иметь нулевой показатель, этот случай также ниже разберем подробнее.

Разберем степенную функцию y = x a , когда a – нечетное положительное число, например, a = 1 , 3 , 5 …

Для наглядности укажем графики таких степенных функций: y = x (черный цвет графика), y = x 3 (синий цвет графика), y = x 5 (красный цвет графика), y = x 7 (зеленый цвет графика). Когда a = 1 , получаем линейную функцию y = x .

Определение 6

Свойства степенной функции, когда показатель степени – нечетный положительный

  • функция является возрастающей при x ∈ (- ∞ ; + ∞) ;
  • функция имеет выпуклость при x ∈ (- ∞ ; 0 ] и вогнутость при x ∈ [ 0 ; + ∞) (исключая линейную функцию);
  • точка перегиба имеет координаты (0 ; 0) (исключая линейную функцию);
  • асимптоты отсутствуют;
  • точки прохождения функции: (- 1 ; - 1) , (0 ; 0) , (1 ; 1) .

Разберем степенную функцию y = x a , когда a – четное положительное число, например, a = 2 , 4 , 6 …

Для наглядности укажем графики таких степенных функций: y = x 2 (черный цвет графика), y = x 4 (синий цвет графика), y = x 8 (красный цвет графика). Когда a = 2 , получаем квадратичную функцию, график которой – квадратичная парабола.

Определение 7

Свойства степенной функции, когда показатель степени – четный положительный:

  • область определения: x ∈ (- ∞ ; + ∞) ;
  • убывающей при x ∈ (- ∞ ; 0 ] ;
  • функция имеет вогнутость при x ∈ (- ∞ ; + ∞) ;
  • очки перегиба отсутствуют;
  • асимптоты отсутствуют;
  • точки прохождения функции: (- 1 ; 1) , (0 ; 0) , (1 ; 1) .

На рисунке ниже приведены примеры графиков степенной функции y = x a , когда a – нечетное отрицательное число: y = x - 9 (черный цвет графика); y = x - 5 (синий цвет графика); y = x - 3 (красный цвет графика); y = x - 1 (зеленый цвет графика). Когда a = - 1 , получаем обратную пропорциональность, график которой – гипербола.

Определение 8

Свойства степенной функции, когда показатель степени – нечетный отрицательный:

Когда х = 0 , получаем разрыв второго рода, поскольку lim x → 0 - 0 x a = - ∞ , lim x → 0 + 0 x a = + ∞ при a = - 1 , - 3 , - 5 , … . Таким образом, прямая х = 0 – вертикальная асимптота;

  • область значений: y ∈ (- ∞ ; 0) ∪ (0 ; + ∞) ;
  • функция является нечетной, поскольку y (- x) = - y (x) ;
  • функция является убывающей при x ∈ - ∞ ; 0 ∪ (0 ; + ∞) ;
  • функция имеет выпуклость при x ∈ (- ∞ ; 0) и вогнутость при x ∈ (0 ; + ∞) ;
  • точки перегиба отсутствуют;

k = lim x → ∞ x a x = 0 , b = lim x → ∞ (x a - k x) = 0 ⇒ y = k x + b = 0 , когда а = - 1 , - 3 , - 5 , . . . .

  • точки прохождения функции: (- 1 ; - 1) , (1 ; 1) .

На рисунке ниже приведены примеры графиков степенной функции y = x a , когда a – четное отрицательное число: y = x - 8 (черный цвет графика); y = x - 4 (синий цвет графика); y = x - 2 (красный цвет графика).

Определение 9

Свойства степенной функции, когда показатель степени – четный отрицательный:

  • область определения: x ∈ (- ∞ ; 0) ∪ (0 ; + ∞) ;

Когда х = 0 , получаем разрыв второго рода, поскольку lim x → 0 - 0 x a = + ∞ , lim x → 0 + 0 x a = + ∞ при a = - 2 , - 4 , - 6 , … . Таким образом, прямая х = 0 – вертикальная асимптота;

  • функция является четной, поскольку y (- x) = y (x) ;
  • функция является возрастающей при x ∈ (- ∞ ; 0) и убывающей при x ∈ 0 ; + ∞ ;
  • функция имеет вогнутость при x ∈ (- ∞ ; 0) ∪ (0 ; + ∞) ;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 , поскольку:

k = lim x → ∞ x a x = 0 , b = lim x → ∞ (x a - k x) = 0 ⇒ y = k x + b = 0 , когда a = - 2 , - 4 , - 6 , . . . .

  • точки прохождения функции: (- 1 ; 1) , (1 ; 1) .

С самого начала обратите внимание на следующий аспект: в случае, когда a – положительная дробь с нечетным знаменателем, некоторые авторы принимают за область определения этой степенной функции интервал - ∞ ; + ∞ , оговаривая при этом, что показатель a – несократимая дробь. На данный момент авторы многих учебных изданий по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции, где показатель – дробь с нечетным знаменателем при отрицательных значениях аргумента. Далее мы придержемся именно такой позиции: возьмем за область определения степенных функций с дробными положительными показателями степени множество [ 0 ; + ∞) . Рекомендация для учащихся: выяснить взгляд преподавателя на этот момент во избежание разногласий.

Итак, разберем степенную функцию y = x a , когда показатель степени – рациональное или иррациональное число при условии, что 0 < a < 1 .

Проиллюстрируем графиками степенные функции y = x a , когда a = 11 12 (черный цвет графика); a = 5 7 (красный цвет графика); a = 1 3 (синий цвет графика); a = 2 5 (зеленый цвет графика).

Иные значения показателя степени a (при условии 0 < a < 1) дадут аналогичный вид графика.

Определение 10

Свойства степенной функции при 0 < a < 1:

  • область значений: y ∈ [ 0 ; + ∞) ;
  • функция является возрастающей при x ∈ [ 0 ; + ∞) ;
  • функция имеет выпуклость при x ∈ (0 ; + ∞) ;
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;

Разберем степенную функцию y = x a , когда показатель степени – нецелое рациональное или иррациональное число при условии, что a > 1 .

Проиллюстрируем графиками степенную функцию y = x a в заданных условиях на примере таких функций: y = x 5 4 , y = x 4 3 , y = x 7 3 , y = x 3 π (черный, красный, синий, зеленый цвет графиков соответственно).

Иные значения показателя степени а при условии a > 1 дадут похожий вид графика.

Определение 11

Свойства степенной функции при a > 1:

  • область определения: x ∈ [ 0 ; + ∞) ;
  • область значений: y ∈ [ 0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • функция является возрастающей при x ∈ [ 0 ; + ∞) ;
  • функция имеет вогнутость при x ∈ (0 ; + ∞) (когда 1 < a < 2) и выпуклость при x ∈ [ 0 ; + ∞) (когда a > 2);
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;
  • точки прохождения функции: (0 ; 0) , (1 ; 1) .

Обращаем ваше внимание!Когда a – отрицательная дробь с нечетным знаменателем, в работах некоторых авторов встречается взгляд, что область определения в данном случае – интервал - ∞ ; 0 ∪ (0 ; + ∞) с оговоркой, что показатель степени a – несократимая дробь. На данный момент авторы учебных материалов по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Далее мы придерживаемся именно такого взгляда: возьмем за область определения степенных функций с дробными отрицательными показателями множество (0 ; + ∞) . Рекомендация для учащихся: уточните видение вашего преподавателя на этот момент во избежание разногласий.

Продолжаем тему и разбираем степенную функцию y = x a при условии: - 1 < a < 0 .

Приведем чертеж графиков следующий функций: y = x - 5 6 , y = x - 2 3 , y = x - 1 2 2 , y = x - 1 7 (черный, красный, синий, зеленый цвет линий соответственно).

Определение 12

Свойства степенной функции при - 1 < a < 0:

lim x → 0 + 0 x a = + ∞ , когда - 1 < a < 0 , т.е. х = 0 – вертикальная асимптота;

  • область значений: y ∈ 0 ; + ∞ ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • точки перегиба отсутствуют;

На чертеже ниже приведены графики степенных функций y = x - 5 4 , y = x - 5 3 , y = x - 6 , y = x - 24 7 (черный, красный, синий, зеленый цвета кривых соответственно).

Определение 13

Свойства степенной функции при a < - 1:

  • область определения: x ∈ 0 ; + ∞ ;

lim x → 0 + 0 x a = + ∞ , когда a < - 1 , т.е. х = 0 – вертикальная асимптота;

  • область значений: y ∈ (0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • функция является убывающей при x ∈ 0 ; + ∞ ;
  • функция имеет вогнутость при x ∈ 0 ; + ∞ ;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 ;
  • точка прохождения функции: (1 ; 1) .

Когда a = 0 и х ≠ 0 , получим функцию y = x 0 = 1 , определяющую прямую, из которой исключена точка (0 ; 1) (условились, что выражению 0 0 не будет придаваться никакого значения).

Показательная функция имеет вид y = a x , где а > 0 и а ≠ 1 , и график этой функции выглядит различно, исходя из значения основания a . Рассмотрим частные случаи.

Сначала разберем ситуацию, когда основание показательной функции имеет значение от нуля до единицы (0 < a < 1) . Наглядным примером послужат графики функций при a = 1 2 (синий цвет кривой) и a = 5 6 (красный цвет кривой).

Подобный же вид будут иметь графики показательной функции при иных значениях основания при условии 0 < a < 1 .

Определение 14

Свойства показательной функции, когда основание меньше единицы:

  • область значений: y ∈ (0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • показательная функция, у которой основание меньше единицы, является убывающей на всей области определения;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 при переменной x , стремящейся к + ∞ ;

Теперь рассмотрим случай, когда основание показательной функции больше, чем единица (а > 1) .

Проиллюстрируем этот частный случай графиком показательных функций y = 3 2 x (синий цвет кривой) и y = e x (красный цвет графика).

Иные значения основания, большие единицы, дадут аналогичный вид графика показательной функции.

Определение 15

Свойства показательной функции, когда основание больше единицы:

  • область определения – все множество действительных чисел;
  • область значений: y ∈ (0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • показательная функция, у которой основание больше единицы, является возрастающей при x ∈ - ∞ ; + ∞ ;
  • функция имеет вогнутость при x ∈ - ∞ ; + ∞ ;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 при переменной x , стремящейся к - ∞ ;
  • точка прохождения функции: (0 ; 1) .

Логарифмическая функция имеет вид y = log a (x) , где a > 0 , a ≠ 1 .

Такая функция определена только при положительных значениях аргумента: при x ∈ 0 ; + ∞ .

График логарифмической функции имеет различный вид, исходя из значения основания а.

Рассмотрим сначала ситуацию, когда 0 < a < 1 . Продемонстрируем этот частный случай графиком логарифмической функции при a = 1 2 (синий цвет кривой) и а = 5 6 (красный цвет кривой).

Иные значения основания, не большие единицы, дадут аналогичный вид графика.

Определение 16

Свойства логарифмической функции, когда основание меньше единицы:

  • область определения: x ∈ 0 ; + ∞ . Когда х стремится к нулю справа, значения функции стремятся к + ∞ ;
  • область значений: y ∈ - ∞ ; + ∞ ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • логарифмическая
  • функция имеет вогнутость при x ∈ 0 ; + ∞ ;
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;

Теперь разберем частный случай, когда основание логарифмической функции больше единицы: а > 1 . На чертеже ниже –графики логарифмических функций y = log 3 2 x и y = ln x (синий и красный цвета графиков соответственно).

Иные значения основания больше единицы дадут аналогичный вид графика.

Определение 17

Свойства логарифмической функции, когда основание больше единицы:

  • область определения: x ∈ 0 ; + ∞ . Когда х стремится к нулю справа, значения функции стремятся к - ∞ ;
  • область значений: y ∈ - ∞ ; + ∞ (все множество действительных чисел);
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • логарифмическая функция является возрастающей при x ∈ 0 ; + ∞ ;
  • функция имеет выпуклость при x ∈ 0 ; + ∞ ;
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;
  • точка прохождения функции: (1 ; 0) .

Тригонометрические функции – это синус, косинус, тангенс и котангенс. Разберем свойства каждой из них и соответствующие графики.

В общем для всех тригонометрических функций характерно свойство периодичности, т.е. когда значения функций повторяются при разных значениях аргумента, отличающихся друг от друга на величину периода f (x + T) = f (x) (T – период). Таким образом, в списке свойств тригонометрических функций добавляется пункт «наименьший положительный период». Помимо этого, будем указывать такие значения аргумента, при которых соответствующая функция обращается в нуль.

  1. Функция синус: y = sin (х)

График данной функции называется синусоида.

Определение 18

Свойства функции синус:

  • область определения: все множество действительных чисел x ∈ - ∞ ; + ∞ ;
  • функция обращается в нуль, когда x = π · k , где k ∈ Z (Z – множество целых чисел);
  • функция является возрастающей при x ∈ - π 2 + 2 π · k ; π 2 + 2 π · k , k ∈ Z и убывающей при x ∈ π 2 + 2 π · k ; 3 π 2 + 2 π · k , k ∈ Z ;
  • функция синус имеет локальные максимумы в точках π 2 + 2 π · k ; 1 и локальные минимумы в точках - π 2 + 2 π · k ; - 1 , k ∈ Z ;
  • функция синус вогнутая, когда x ∈ - π + 2 π · k ; 2 π · k , k ∈ Z и выпуклая, когда x ∈ 2 π · k ; π + 2 π · k , k ∈ Z ;
  • асимптоты отсутствуют.
  1. Функция косинус: y = cos (х)

График данной функции называется косинусоида.

Определение 19

Свойства функции косинус:

  • область определения: x ∈ - ∞ ; + ∞ ;
  • наименьший положительный период: Т = 2 π ;
  • область значений: y ∈ - 1 ; 1 ;
  • данная функция – четная, поскольку y (- x) = y (x) ;
  • функция является возрастающей при x ∈ - π + 2 π · k ; 2 π · k , k ∈ Z и убывающей при x ∈ 2 π · k ; π + 2 π · k , k ∈ Z ;
  • функция косинус имеет локальные максимумы в точках 2 π · k ; 1 , k ∈ Z и локальные минимумы в точках π + 2 π · k ; - 1 , k ∈ z ;
  • функция косинус вогнутая, когда x ∈ π 2 + 2 π · k ; 3 π 2 + 2 π · k , k ∈ Z и выпуклая, когда x ∈ - π 2 + 2 π · k ; π 2 + 2 π · k , k ∈ Z ;
  • точки перегиба имеют координаты π 2 + π · k ; 0 , k ∈ Z
  • асимптоты отсутствуют.
  1. Функция тангенс: y = t g (х)

График данной функции называется тангенсоида.

Определение 20

Свойства функции тангенс:

  • область определения: x ∈ - π 2 + π · k ; π 2 + π · k , где k ∈ Z (Z – множество целых чисел);
  • Поведение функции тангенс на границе области определения lim x → π 2 + π · k + 0 t g (x) = - ∞ , lim x → π 2 + π · k - 0 t g (x) = + ∞ . Таким образом, прямые x = π 2 + π · k k ∈ Z – вертикальные асимптоты;
  • функция обращается в нуль, когда x = π · k при k ∈ Z (Z – множество целых чисел);
  • область значений: y ∈ - ∞ ; + ∞ ;
  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция является возрастающей при - π 2 + π · k ; π 2 + π · k , k ∈ Z ;
  • функция тангенс является вогнутой при x ∈ [ π · k ; π 2 + π · k) , k ∈ Z и выпуклой при x ∈ (- π 2 + π · k ; π · k ] , k ∈ Z ;
  • точки перегиба имеют координаты π · k ; 0 , k ∈ Z ;
  1. Функция котангенс: y = c t g (х)

График данной функции называется котангенсоида.

Определение 21

Свойства функции котангенс:

  • область определения: x ∈ (π · k ; π + π · k) , где k ∈ Z (Z – множество целых чисел);

Поведение функции котангенс на границе области определения lim x → π · k + 0 t g (x) = + ∞ , lim x → π · k - 0 t g (x) = - ∞ . Таким образом, прямые x = π · k k ∈ Z – вертикальные асимптоты;

  • наименьший положительный период: Т = π ;
  • функция обращается в нуль, когда x = π 2 + π · k при k ∈ Z (Z – множество целых чисел);
  • область значений: y ∈ - ∞ ; + ∞ ;
  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция является убывающей при x ∈ π · k ; π + π · k , k ∈ Z ;
  • функция котангенс является вогнутой при x ∈ (π · k ; π 2 + π · k ] , k ∈ Z и выпуклой при x ∈ [ - π 2 + π · k ; π · k) , k ∈ Z ;
  • точки перегиба имеют координаты π 2 + π · k ; 0 , k ∈ Z ;
  • наклонные и горизонтальные асимптоты отсутствуют.

Обратные тригонометрические функции – это арксинус, арккосинус, арктангенс и арккотангенс. Зачастую, в связи с наличием приставки «арк» в названии, обратные тригонометрические функции называют аркфункциями.

  1. Функция арксинус: y = a r c sin (х)

Определение 22

Свойства функции арксинус:

  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция арксинус имеет вогнутость при x ∈ 0 ; 1 и выпуклость при x ∈ - 1 ; 0 ;
  • точки перегиба имеют координаты (0 ; 0) , она же – нуль функции;
  • асимптоты отсутствуют.
  1. Функция арккосинус: y = a r c cos (х)

Определение 23

Свойства функции арккосинус:

  • область определения: x ∈ - 1 ; 1 ;
  • область значений: y ∈ 0 ; π ;
  • данная функция - общего вида (ни четная, ни нечетная);
  • функция является убывающей на всей области определения;
  • функция арккосинус имеет вогнутость при x ∈ - 1 ; 0 и выпуклость при x ∈ 0 ; 1 ;
  • точки перегиба имеют координаты 0 ; π 2 ;
  • асимптоты отсутствуют.
  1. Функция арктангенс: y = a r c t g (х)

Определение 24

Свойства функции арктангенс:

  • область определения: x ∈ - ∞ ; + ∞ ;
  • область значений: y ∈ - π 2 ; π 2 ;
  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция является возрастающей на всей области определения;
  • функция арктангенс имеет вогнутость при x ∈ (- ∞ ; 0 ] и выпуклость при x ∈ [ 0 ; + ∞) ;
  • точка перегиба имеет координаты (0 ; 0) , она же – нуль функции;
  • горизонтальные асимптоты – прямые y = - π 2 при x → - ∞ и y = π 2 при x → + ∞ (на рисунке асимптоты – это линии зеленого цвета).
  1. Функция арккотангенс: y = a r c c t g (х)

Определение 25

Свойства функции арккотангенс:

  • область определения: x ∈ - ∞ ; + ∞ ;
  • область значений: y ∈ (0 ; π) ;
  • данная функция – общего вида;
  • функция является убывающей на всей области определения;
  • функция арккотангенс имеет вогнутость при x ∈ [ 0 ; + ∞) и выпуклость при x ∈ (- ∞ ; 0 ] ;
  • точка перегиба имеет координаты 0 ; π 2 ;
  • горизонтальные асимптоты – прямые y = π при x → - ∞ (на чертеже – линия зеленого цвета) и y = 0 при x → + ∞ .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Рассматривая функции комплексного переменного, Лиувилль определил элементарные функции несколько шире. Элементарная функция y переменной x - аналитическая функция , которая может быть представлена как алгебраическая функция от x и функций , причем является логарифмом или экспонентой от некоторой алгебраической функции g 1 от x .

Например, sin(x ) - алгебраическая функция от e i x .

Не ограничивая общности рассмотрения, можно считать функции алгебраически независимы, то есть если алгебраическое уравнение выполняется для всех x , то все коэффициенты полинома равны нулю.

Дифференцирование элементарных функций

где z 1 "(z ) равно или g 1 " / g 1 или z 1 g 1 " в зависимости от того, логарифм ли z 1 или экспонента и т. д. На практике удобно использовать таблицу производных .

Интегрирование элементарных функций

Теорема Лиувилля является основой для создания алгоритмов символьного интегрирования элементарных функций, реализуемых, напр., в

Вычисление пределов

Теория Лиувилля не распространяется на вычисление пределов . Не известно, существует ли алгоритм, который по заданной элементарной формулой последовательности дает ответ, имеет ли она предел или нет. Например, открыт вопрос о том, сходится ли последовательность .

Литература

  • J. Liouville. Mémoire sur l’intégration d’une classe de fonctions transcendantes // J. Reine Angew. Math. Bd. 13, p. 93-118. (1835)
  • J.F. Ritt. Integration in Finite Terms . N.-Y., 1949// http://lib.homelinux.org
  • А. Г. Хованский. Топологическая теория Галуа: разрешимость и неразрешимость уравнений в конечном виде Гл. 1. M, 2007

Примечания


Wikimedia Foundation . 2010 .

  • Элементарное возбуждение
  • Элементарный исход

Смотреть что такое "Элементарная функция" в других словарях:

    элементарная функция - Функция, которая, если ее разделить на более мелкие функции, не сможет быть однозначно определена в иерархии цифровой передачи. Следовательно, с точки зрения сети она является неделимой (МСЭ T G.806). Тематики электросвязь, основные понятия EN adaptation functionA … Справочник технического переводчика

    функция взаимодействия между уровнями сети - Элементарная функция, которая обеспечивает взаимодействие характеристической информации между двумя уровнями сети. (МСЭ T G.806). Тематики электросвязь, основные понятия EN layer… … Справочник технического переводчика

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари