Подпишись и читай
самые интересные
статьи первым!

Электролизные установки для получения водорода. Что такое электролизер и как его сделать своими руками? Модель с нижним расположением контейнера

Электролиз – это явление выделения вещества на электродах при прохождении через электролит тока, процессы окисления и восстановления на электродах, сопровождающиеся приобретением или потерей частицами вещества электронов.


Электролизёр – это ванна, в которой процесс идёт с поглощением электрической энергии.


Принцип действия:



Рис. 1.1.


Основными элементами установки являются: электролит 1, электроды 2 и источник питания 3.


Напряжение на электролизной ванне (U) состоит из трёх составляющих:


U = U1 + Uак + Uэ, (1.1)



Uак – приэлектродное напряжение;


Uэ – напряжение в электролите.


Мощность, выделяющаяся в электролизной ванне (Рэв), определяется выражением:


Рэв = I(U1 + Uа + Uк + Il/σ), (1.2)


где I – ток в ванне, А;


Uа,Uк – падение напряжения на аноде и катоде, В;


l – расстояние между электродами, м;


σ – удельная проводимость электролита, 1/(Ом·м).


Только часть этой мощности расходуется на разложение вещества. Остальная мощность идёт на нагрев электролита и транспортировку ионов через раствор. Эффективность электролизного процесса оценивается выходом по энергии (Аэ, %).


Аэ=α·(Ат/U)·10 2 , (1.3)


где α – электрохимический эквивалент вещества;


Ат – выход металла по току, г/Дж;


U – напряжение на электролизёре, В.


Выход металла по току – это количество металла (г), выделяемое на единицу затраченной энергии (Дж).


Интенсивность процесса определяется электродной плотностью тока



jэ = I/S, (1.4)


где I – ток, А;


S – площадь погружённой в электролит части электрода, м2.


Около поверхности электродов образуется двойной электрический слой, который противодействует подходу и выходу ионов. Для ослабления противодействия применяются:


Циркуляция электролита, для выравнивания температуры;


Вибрация электродов;


Импульсный источник питания.


Электролиз является одним из видов технологических процессов. Сущность его заключается в выделении из электролита при протекании по нему постоянного тока частиц вещества и в осаждении их на погружённых в электролит электродах (электроэкстракция) или переносе вещества с одного электрода через электролит на другой (электролитическое рафинирование).


Электролиз применяется:


В цветной металлургии для получения лёгких металлов (алюминия, магния, кадмия и др.) и рафинирования тяжёлых металлов (меди, серебра, золота, никеля, свинца и др.);


В электрохимии для получения хлора, водорода, тяжёлой воды,


кислорода, фтора, калия, натрия и др.;


В машиностроении для нанесения защитных и декоративных покрытий металлических и неметаллических изделий (цинкование, никелирование, кадмирование, свинцевание, меднение, хромирование, серебрение, оксидирование и др.);


В чёрной металлургии для лужения жести и электролитической очистки.


В металлургии используется две разновидности электролиза: электролиз водных растворов и электролиз расплавленных солей. Первый применяется для получения и электролитического рафинирования металлов с низким нормальным потенциалом (цинк, хром, олово, никель, свинец, серебро) и осуществляется при температуре не выше 100 С, второй – для получения металлов с высоким нормальным потенциалом (магний, алюминий, щелочноземельные металлы) при температуре около 1000 С.


Электролиз проводится в специально оборудованных ваннах - электролизёрах. Напряжение на ванне составляет несколько вольт, а токи достигают десятков и сотен тысяч ампер. В целях экономичной канализации больших токов одинаковые ванны соединяются в серии последовательно, соответственно напряжению преобразовательной установки.


Изменение электрического сопротивления ванн из-за нагрева электролита, изменения его химического состава, утечек тока, нарушений нормального режима эксплуатации, вывода из работы отдельных ванн серии, а также изменений напряжения питающей сети вызывает необходимость регулирования электрических параметров. Для обеспечения заданной производительности электролизной установки применяют автоматическое регулирование напряжения, мощности и силы тока серии. Наиболее распространённым способом регулирования является поддержание постоянства силы тока серии.


В цветной металлургии к наиболее мощным установкам электролиза относятся серии ванн для получения алюминия и магния. Для получения алюминия используют электролизёры напряжением 4–5 В и токами 100–150 кА, напряжения серий составляет 450–850 В. Режимы работы электролизных установок продолжительные и непрерывные. При выводе отдельных ванн в ремонт они шунтируются специальными шинами. По категории надёжности установки относятся к первой категории. Некоторые из них, например установки электролиза алюминия, благодаря большой теплоёмкости ванн, допускают кратковременные (на несколько минут) перерывы, но длительная остановка может привести к застыванию электролита и значительному расстройству технологического процесса, на восстановление которого может понадобиться до 10 суток.


В электрохимии используются электролизёры с напряжениями от 2 до 10–12 В, а в некоторых случаях до 10–220 В (установки для разложения воды, выполненные по принципу фильтр-пресса, в которых все электроды соединяют последовательно). Напряжения серий ванн принимаются 150–850 В. При электролизе хлора ток ванн составляет 100–190 кА. Режим работы установок электрохимии непрерывный. Установки электрохимии относятся к первой категории надёжности. Для установок хлора особенно опасны перерывы в электроснабжении в периоды пуска.


В установках металлопокрытий напряжение ванн колеблется от 3,5 до 9–10 В и максимально 25 В. Токи ванн меняются в пределах 0,1–5 кА и выше. В большинстве случаев требуется регулирование величины тока в широких пределах. Различие в режимах работы отдельных ванн не допускает последовательного их включения. Ванны чаще всего питаются от общих магистралей напряжением 6–12 В через индивидуальные регулировочные реостаты. Установки металлопокрытий, используемые в поточных автоматических линиях, относятся к приёмникам первой категории, отдельные ванны – ко второй категории. Суммарная мощность преобразовательных установок в цехах металлопокрытий составляет 50–200 кВт. Источником питания их являются цеховые сети напряжением 380 В. Режимы работы установок циклические, связанные с загрузкой изделий в ванны и их разгрузкой.


Для промышленного электролиза применяют постоянный ток. Наряду с традиционными методами ведения электролиза на постоянном токе, применяют режимы, связанные с использованием токов сложной формы, периодическими изменениями постоянного тока. Питание установок электролиза постоянным током производится от генераторов постоянного тока, в том числе и униполярных, и от статических полупроводниковых преобразовательных агрегатов.


Преобразовательный агрегат состоит из силового трансформатора, одного, двух или четырех выпрямительных блоков, а также коммутационной, управляющей и вспомогательной аппаратуры (защита, сигнализация). Агрегаты с выпрямленным током до 6,25 кА имеют вентильный трансформатор с одной вторичной обмоткой, при токе 12,5 кА – с двумя, при токе 25 кА – с четырьмя обмотками и соответственно с одним, двумя и четырьмя выпрямительными блоками (рис. 1.1).




Рис. 1.1.


Для преобразовательных агрегатов применяются шестифазная нулевая схема с соединением вторичных обмоток трансформатора по схеме «две обратные звезды с уравнительным реактором» (рис. 1.2 а) и трёхфазная мостовая схема (рис. 1.2 б). Преобразовательные агрегаты малой мощности собираются по трёхфазной нулевой схеме (рис. 1.2 в).





Рис. 1.2.


Большинство электролизных установок требуют регулирования напряжения выпрямленного тока. Необходимость изменения напряжения на зажимах электролизной серии в нормальном режиме ее работы определяется следующими причинами:


а) изменением напряжения в питающей сети переменного тока;


б) изменением количества ванн в электролизной серии вследствие вывода некоторого количества ванн в ремонт либо шунтирования по технологическим причинам;


в) изменением режима работы ванн, в частности, при изменении силы тока или межэлектродного пространства.


В пусковых режимах электролизных установок обычно требуется регулирование напряжения в широких пределах. Причинами этого являются, во-первых, то обстоятельство, что серия электролиза, как правило, пускается не целиком, а частями или даже отдельными ваннами. Во-вторых, пусковой режим работы ванны может существенно отличаться от нормального рабочего. Так, например, алюминиевые ванны перед пуском обжигаются (без электролита) и на них бывает пониженное напряжение, зато в первый период после пуска напряжение на ваннах держится более высоким, чем в нормальном режиме.


Поэтому регулирование напряжения осуществляется двумя способами:


1. ступенчато преобразовательным трансформатором (ТДНПВ – трёхфазный, Д – дутьевое охлаждение, Н – с РПН, ПВ – преобразователь вентильный; ТМНПУ-У – с уравнительным реактором);


2. плавное регулирование осуществляется дросселем насыщения (ДН–6300, предел регулирования 49 В).


В преобразовательных подстанциях каждый вентиль защищается быстродействующим предохранителем.


Быстродействующий предохранитель обладает токоограничивающей способностью, т. е. время плавления FU значительно меньше, чем время нарастания тока к. з. до максимального значения.


В составе преобразовательной подстанции имеются: РУ переменного тока, преобразовательные агрегаты и РУ выпрямленного тока. От РУ переменного тока, помимо агрегатов и трансформаторов собственных нужд преобразовательных подстанций, в ряде случаев питаются и другие потребители электроэнергии предприятия.


Для компенсации реактивной мощности, генерируемой преобразовательными установками, используются продольная емкостная компенсация, резонансные фильтры, многофазные схемы выпрямления и компенсационные выпрямительные агрегаты.


Преобразовательные подстанции, питающие электролизные установки по производству алюминия, магния и хлора характеризуются значительным количеством параллельно работающих выпрямительных агрегатов и большой мощностью.


Выпрямительный агрегат является источником высших гармоник тока и напряжения, вызывающих ухудшение коэффициентов мощности и дополнительные потери электроэнергии, а также помехи в каналах связи и телевидения. Степень влияния высших гармоник обратно пропорциональна числу фаз выпрямления. С ростом мощности агрегата влияние увеличивается.


Увеличение числа фаз выпрямления приводит к исчезновению гармонических составляющих порядка ниже – 1.


Увеличение числа фаз выпрямления достигается специальным выполнением обмоток либо созданием эквивалентного многофазного режима для групп агрегатов, каждый из которых работает в шестифазном режиме выпрямления. В качестве оптимальной принята двенадцатифазная схема выпрямления.


Для других производств, имеющих электролизеры на меньший ток, характерна работа одиночных агрегатов на каждую электролизную серию.


При небольшом количестве (2–4) агрегатов РУ переменного тока подстанции обычно имеет одиночную секционированную систему шин (рис. 1.3).





Рис. 1.3.


При большом числе преобразовательных агрегатов предпочтение отдается РУ с двойной системой шин (рис. 1.4).





Рис. 1.4.


Двойная система шин предпочтительна так же по условиям обеспечения пусковых режимов. Для большинства электролизных установок в пусковом режиме требуется регулирование выпрямленного напряжения в значительных пределах. Если выпрямительные агрегаты не могут обеспечить необходимого диапазона, то для дополнительного снижения напряжения временно, на пусковой период, устанавливают понижающий трансформатор. При двух системах сборных шин на одну из них через автотрансформатор подается пониженное напряжение, необходимое для преобразовательных агрегатов, а на другой системе шин поддерживается нормальное напряжение, необходимое для других потребителей электроэнергии.


Преобразовательные подстанции большой мощности обычно получают питание от понижающих трансформаторов 220/10 кВ мощностью 180–200 МВА, имеющих на стороне низшего напряжения расщепленные обмотки. Для уменьшения токов к. з. на шинах 10 кВ применяют раздельную работу расщепленных обмоток.


Высокие требования к бесперебойности питания электролизных установок вынуждают применять в системах их питания повышенное резервирование, которое достигается за счет секционирования всех звеньев системы электроснабжения, применения двойной системы сборных шин, установки секционных выключателей с устройством АВР.


Преобразовательные агрегаты мощных электролизных установок присоединяют к серии непосредственно без коммутационной аппаратуры. Установки сравнительно небольшой мощности подключают с использованием автоматических выключателей, являющихся одновременно и защитной аппаратурой агрегата. Сильноточная коммутационная аппаратура применяется так же при подпитке током серий или отдельных электролизеров, шунтировании ванн при гашении анодных вспышек, выводе их в ремонт и т. п.


Быстродействующие автоматические выключатели серии ВАБ и ВАТ используются для оперативных отключений без нагрузок и редких отключений под нагрузкой. Они состоят из унифицированных узлов-блоков, укомплектованы однотипными реле и блоками управления. Выключатели серии ВАТ отличаются от серии ВАБ наличием индукционно-динамического привода. Быстродействие привода обеспечивается тем, что удерживающий магнитный поток вытесняется в параллельный участок магнитной цепи.


К электролизным ваннам ток от источников питания подводится по специальным шинопроводам, состоящим из собранных в пакеты отдельных прямоугольных шин. Обычно шинопроводы выполняются из алюминиевых шин, медь применяется только там, где алюминий непригоден вследствие его малой антикоррозионной стойкости.


Сечения шинопроводов определяют, исходя из экономической плотности тока. Рассчитанное сечение шинопровода затем проверяют на допустимое значение потерь напряжения (не более 3 %), допустимый нагрев в установившемся режиме (не выше 343 К) и на механическую прочность.


Поскольку рабочие токи электролизных ванн достигают десятков и сотен килоампер, сечение шинопровода также получается большим – до 15 дм2.


Шинопроводы, подводящие электроэнергию от выпрямительной подстанций к электролизному цеху, монтируются на специальных эстакадах. Между отдельными электролизными ваннами внутри цеха шинопроводы прокладывают в специальных шинных каналах, закрытых железобетонными плитами.


Особенности преобразовательных подстанций:


1. Все преобразовательные агрегаты на подстанции работают параллельно на одну систему выпрямленных шин;


2. Количество трансформаторов на мощных преобразовательных подстанциях может достигать 10–11 штук;


3. Преобразовательные подстанции, располагаются в непосредственной близости от корпуса электролиза и выполняются в виде пристроенных или отдельностоящих.


Пристроенные подстанции:


«+» – малая длина токопровода со стороны выпрямленного тока (снижение потерь);


«–» – ухудшение условий охлаждения.


Отдельностоящие подстанции: всё наоборот.


Выводы: электролиз - физико-химический процесс, который возникает при прохождении электрического тока через раствор либо расплав электролита. Электролиз применяется в цветной и черной металлургии, в электрохимии и машиностроении

ЭЛЕКТРОСПЕЦ

ЭЛЕКТРОСПЕЦ

Электрохимические и электрофизические установки,электролизные установки

Электролиз - это явление выделения вещества на электродах при прохождении через электролит тока, процессы окисления и восстановления на электродах, сопровождающиеся приобретением или потерей частицами вещества электронов.
Электролизер - это ванна, в которой процесс идет с поглощением электрической энергии.
Принцип действия можно рассмотреть на схеме электролизера с анодным растворением и катодным осаждением (рис. 1.3-1) .

Основными элементами установки являются: электролит (1), электроды (2) и источник питания (3).
Напряжение на электролизной ванне (U) состоит из трех состааляющих:



Около поверхности электродов образуется двойной электрический слой, который противодействует подходу и выходу ионов. Для ослабления противодействия применяются:
- циркуляция электролита, для выравнивания температуры;
- вибрация электродов;
- импульсный источник питания.
В промышленности электролиз металлов и исходная среда определяются электрическим потенциалом выделяемого металла.
Металлы с положительным потенциалом выделяют из твердой черновой основы путем ее растворения (например, медь с потенциалом «+0,34 В»).
Металлы с отрицательным потенциалом больше выделяют из растворов их солей (например, цинк с потенциалом «-0,76 В»).
Металлы с отрицательным потенциалом меньше выделяют из расплавов их солей (например, алюминий с потенциалом «-1,43»).
Примечание - Потенциалы металлов определены по отношению к «водороду», у которого электрический потенциал равен «нулю».
Электролиз меди применяется для получения чистой электролитической меди из черновой (полученной после плавки в печах) и дли извлечения ценных металлов, находящихся в ней.
Процесс ведется в электролизных ваннах.
Анодом является литая черновая медь в виде плит толщиной 35...45 мм и массой около 300 кг.
Катодом является электролитическая (чистая) медь в виде пластин толщиной 0,6...0,7 мм, подвешенных на ушках между анодами. Расстояние междусоседними анодами и катодами 35...40 мм.
Электролитом, которым заполняется ванна, является водный раствор медного купороса (CuSO 4), подкисленный серной кислотой (H 2 S0 4) для уменьшения сопротивления.

В целях выравнивания концентрации ионов меди у электродов и обеспечения необходимой температуры применяется прямая циркуляция электролита, который подается снизу и сливается сверху ванны.
Электролиз цинка применяется для получения высококачественного цинка (Zn) из водных растворов его солей.
Катодом являются алюминиевые пластины толщиной 4 мм. Анодом являются свинцовые пластины толщиной 5... 8 мм, с добавкой 1 % серебра для снижения коррозии.
Электролитом является 5...6% водный раствор сернокислого цинка (ZnS0 4) и серной кислоты (H 2 S0 4). Во время электролиза на катоде осаждается металлический цинк (Zn), который периодически снимают.
На аноде выделяется газообразный водород (Н), а в растворе образуется серная кислота (H 2 S0 4).

Снятие цинка с катодов производится до 2 раз в сутки, затем его промывают, формуют в пакеты и переплавляют в печах.
В процессе электролиза износ катодов составляет около 1,5 кг/т цинка, а анодов - 0,8... 1,5 кг/т цинка.
Резкое повышение падения напряжения на ванне (до 3,3...3,6 В) указывает на необходимость очистки анодов от шлама.
Такая необходимость очистки анодов - один раз в 20.. .25 дней, а катодов - один раз в 10 дней.
Шлам удаляется через отверстие в дне ванны.
В электролизном цехе ванны устанавливают рядом длинными бортами по 20...30 штук и соединяют в один блок.
Для поддержания заданной температуры ванны охлаждаются водой, подаваемой по алюминиевым или углеродистым змеевикам.
Для снижения выделения водорода на катоде в раствор добавляют поверхностно-активные вещества.
Электролиз алюминия применяется для получения качественного алюминия (Аl ) из расплавленных солей путем электролиза.
Анодом является угольный электрод, который расходуется в процессе электролиза, так как находится в сильно агрессивной среде.
Анод подвешивается на подвижной раме, которая автоматически перемещается по металлоконструкциям печи. Управляющим сигналом является потеря напряжения в электролите.
Электролитом является раствор оксида алюминия (AI 2 O 3) в расплавленном криолите (Na 3 АlF 6). Присутствие фтора (F 6) придает среде высокую агрессивность.
Катодом являются подовые блоки печи.
Ток к ванне подводится с двух сторон.
К аноду - по пакетам алюминиевых шин, по гибким медным токопроводам, по стальным штырам.
К катоду - по специальным токопроводам (блюмсам).
Размеры анода определяются заданной мощностью ванны и допустимой плотностью тока.

Электролизеры объединяют в серию из 160... 170 шт., причем 4...5 из них являются резервными.
Выливают металл из ванны вакуум-ковшами
Вылитый из ванн алюминий поступает в миксеры литейного корпуса, где он после усреднения и отстаивания разливается в слитки.

Компания «Первый инженер» предлагает оборудование для производства водорода методом электролиза воды в щелочном растворе (30% гидроксид калия) – электролизные установки (промышленные генераторы водорода).

Электролиз – это самый простой и доступный способ получения водорода из существующих.

Преимущества производства водорода методом электролиза:

  • экологическая чистота;
  • широкий диапазон производительности установок (1÷500 Нм 3 /ч и более);
  • высокая чистота производимого водорода (до 99,9999%);
  • наличие ценного побочного продукта – кислорода.

Электролиз – самый распространенный и эффективный промышленный способ получения водорода. Данный метод позволяет производить водород с полезным использованием затрачиваемой электрической энергии примерно 70%.

Процесс электролиза протекает внутри гальванического элемента (камеры), разделённой на положительную и отрицательную стороны, где электрический ток протекает между металлическими электродами через проводящий жидкий электролит (водный раствор щёлочи). Положительный электрод называется анодом, а отрицательный – катодом.

Простой гальванический элемент

Половины элемента разделены смоченной мембраной, которая позволяет электрическому току течь (посредством электролита), но предотвращает перенос выделяющихся газов из одной стороны в другую.

Когда подается напряжение постоянного тока, ток протекает через жидкость, контактирующую с электродами, в результате чего происходит выделение газов:

  • реакция на катоде: 2ОН – → 0,5О 2 + Н 2 О + 2е –
  • реакция на аноде: 2Н 2 О + 2е – → Н 2 + 2ОН –
  • суммарная реакция: Н 2 О → Н 2 + 0,5О 2 .

Внутри гальванического элемента расходуется только вода. Электролит добавляется для минимизации электрического сопротивления и для содействия реакции посредством обеспечения избытка гидроксильных ионов (см. реакцию выше), но не расходуется в процессе.

Количество газа, выделяемого на каждом электроде, находится в прямой зависимости от количества постоянного тока, протекающего через элемент. Особенность процесса щелочного электролиза – возможность работы в широких пределах нагрузки (начиная с 10% от номинальной мощности). Энергозатраты при щелочном электролизе – 4,5÷5,5 кВт на 1 Нм 3 производимого водорода.

Преимущества электролизных установок компании «Первый инженер»:

  • возможность изготовления автономной установки по производству газов (в контейнерном исполнении);
  • комплектация оборудования в соответствии с требованиями клиента;
  • полное сопровождение проекта, включая взаимодействие с государственными контролирующими органами (при необходимости);
  • поставка установок в полной заводской готовности с прохождением первичных испытаний на заводе-изготовителе;
  • полная автоматизация работы оборудования и отсутствие необходимости в постоянном контроле со стороны обслуживающего персонала.

Срок изготовления

Электролизер– это специальное устройство, которое предназначено для разделения компонентов соединения или раствора с помощью электрического тока. Данные приборы широко используются в промышленности, к примеру, для получения активных металлических компонентов из руды, очищения металлов, нанесения на изделия металлических покрытий. Для быта они используются редко, но также встречаются. В частности для домашнего использования предлагаются устройства, которые позволяют определить загрязненность воды или получить так называемую «живую» воду.

Основа работы устройства принцип электролиза, первооткрывателем которого считается известный зарубежный ученый Фарадей. Однако первый электролизер воды за 30 лет до Фарадея создал русский ученый по фамилии Петров. Он на практике доказал, что вода может обогащаться в катодном или анодном состоянии. Несмотря на эту несправедливость, его труды не пропали даром и послужили развитию технологий. На данный момент изобретены и с успехом используются многочисленные виды устройств, которые работают по принципу электролиза.

Что это

Электролизерработает благодаря внешнему источнику питания, который подает электрический ток. Упрощенно агрегат выполнен в виде корпуса, в который вмонтировано два или несколько электродов. Внутри корпуса находится электролит. При подаче электрического тока происходит разложение раствора на требуемые составляющие. Положительно заряженные ионы одного вещества направляются к отрицательно заряженному электроду и наоборот.

Основной характеристикой подобных агрегатов является производительность. То есть это количество раствора или вещества, которое установка может перерабатывать за определенный период времени. Данный параметр указывается в наименовании модели. Однако на него также могут влиять и иные показатели: сила тока, напряжение, вид электролита и так далее.

Виды и типы
По конструкции анода и расположению токопровода электролизер может быть трех видов, это агрегаты с:
  1. Прессованными обожженными анодами.
  2. Непрерывным самообжигающимся анодом, а также боковым токопроводом.
  3. Непрерывным самообжигающимся анодом, а также верхним токопроводом.
Электролизер, используемый для растворов, по конструктивным особенностям можно условно разделить на:
  • Сухие.
  • Проточные.
  • Мембранные.
  • Диафрагменные.

Устройство

Конструкции агрегатов могут быть различными, но все они работают на принципе электролиза.

Устройство в большинстве случаев состоит из следующих элементов:
  • Электропроводящий корпус.
  • Катод.
  • Анод.
  • Патрубки, предназначенные для ввода электролита, а также вывода веществ, полученных в ходе реакции.

Электроды выполняются герметичными. Обычно они представлены в виде цилиндров, которые сообщаются с внешней средой с помощью патрубков. Электроды изготавливаются из специальных токопроводящих материалов. На катоде осаждается металл или к нему направляют ионы отделенного газа (при расщеплении воды).

В цветной промышленности часто применяют специализированные агрегаты для электролиза. Это более сложные установки, которые имеют свои особенности. Так электролизер для выделения магния и хлора требует ванну, выполненную из стенок торцевого и продольного вида. Она обкладывается с помощью огнеупорных кирпичей и иных материалов, а также делится с помощью перегородки на отделение для электролиза и ячейку, в которой собираются конечные продукты.

Конструктивные особенности каждого вида подобного оборудования позволяют решать лишь конкретные задачи, которые связаны с обеспечением качества выделяющихся веществ, скоростью происходящей реакции, энергоемкостью установки и так далее.

Принцип действия

В электролизных устройствах электрический ток проводят лишь ионные соединения. Поэтому при опускании электродов в электролит и включении электрического тока, в нем начинает течь ионный ток. Положительные частицы в виде катионов направляются к катоду, к примеру, это водород и различные металлы. Анионы, то есть отрицательно заряженные ионы текут к аноду (кислород, хлор).

При подходе к аноду анионы лишаются своего заряда и становятся нейтральными частицами. В результате они оседают на электроде. У катода происходят похожие реакции: катионы забирают у электрода электроны, что приводит к их нейтрализации. В результате катионы оседают на электроде. К примеру, при расщеплении воды образуется водород, которые поднимается наверх в виде пузырьков. Чтобы собрать этот газ над катодом сооружаются специальные патрубки. Через них водород поступает в необходимую емкость, после чего его можно будет использовать по назначению.

Принцип действия в конструкциях разных устройств в целом схож, но в ряде случаев могут быть и свои особенности. Так в мембранных агрегатах используется твердый электролит в виде мембраны, которая имеет полимерную основу. Главная особенность подобных приборов кроется в двойном назначении мембраны. Эта прослойка может переносить протоны и ионы, в том числе разделять электроды и конечные продукты электролиза.

Диафрагменные устройства применяются в случаях, когда нельзя допустить диффузию конечных продуктов электролизного процесса. С этой целью применяют пористую диафрагму, которая выполнена из стекла, асбеста или керамики. В ряде случаев в качестве подобной диафрагмы могут применяться полимерные волокна либо стеклянная вата.

Применение

Электролизершироко применяется в различных отраслях промышленности. Но, несмотря на простую конструкцию, оно имеет различные варианты исполнения и функции. Данное оборудование применяется для:

  • Добычи цветных металлов (магний, алюминий).
  • Получения химических элементов (разложение воды на кислород и водород, получение хлора).
  • Очистки сточных вод (обессоливание, обеззараживание, дезинфекция от ионов металлов).
  • Обработки различных продуктов (деминерализация молока, посол мяса, электроактивация пищевых жидкостей, извлечение нитратов и нитритов из овощных продуктов, извлечения белка из водорослей, грибов и рыбных отходов).

В медицине установки используются в интенсивной терапии для детоксикации организма человека, то есть для создания растворов гипохлорита натрия высокой чистоты. Для этого используется устройство проточного вида с электродами из титана.

Электролизные и электродиализные установки нашли широкое применение для решения экологических проблем и опреснения воды. Но эти агрегаты в виду их недостатков используются редко: это сложность конструкции и их эксплуатации, необходимость трехфазного тока и требования периодической замены электродов из-за их растворения.

Подобные установки находят применение и в быту, к примеру, для получения «живой» воды, а также ее очистки. В будущем возможно создание миниатюрных установок, которые будут использоваться в автомобилях для безопасного получения водорода из воды. Водород станет источником энергии, а машину можно будет заправлять обычной водой.

Электролиз – химико-физическое явление по разложению веществ на компоненты посредством электротока, которое широко применяется в производственных целях. На основе этой реакции изготавливаются агрегаты для получения, например, хлора или цветных металлов.

Постоянный рост цен на энергетические ресурсы сделал популярными электролизные установки бытового назначения. Что представляют собой такие конструкции, и как их изготовить дома?

Общая информация об электролизере

Электролизная установка – устройство для электролиза, требующее внешний энергоисточник, конструктивно состоящее из нескольких электродов, которые помещены в заполненную электролитом емкость. Также такая установка может называться устройством для расщепления воды.

В подобных агрегатах основным техническим параметром является производительность, которая означает объем вырабатываемого водорода за час и измеряется в м³/ч. Стационарные агрегаты несут этот параметр в наименовании модели, например, мембранная установка СЭУ-40 вырабатывает за час 40 куб. м водорода.

Прочие характеристики таких устройств полностью зависят от целевого назначения и вида установок. Например, при осуществлении электролиза воды КПД агрегата зависит от нижеследующих параметров:

  1. Уровень наименьшего электродного потенциала (электронапряжения). Для нормального функционирования агрегата эта характеристика должна находиться в диапазоне 1,8-2 В на одну пластину. Если источник электропитания имеет напряжение в 14 В, то емкость электролизера с электролитным раствором имеет смысл разделить листами на 7 ячеек. Подобная установка называется сухим электролизером. Меньшее значение не запустит электролиз, а большее – сильно увеличит расход энергии;

  1. Чем меньше будет расстояние между пластиночными компонентами, тем меньше будет сопротивление, что при прохождении большого тока приведет к увеличению выработки газового вещества;
  2. Площадь поверхности пластин напрямую оказывает влияние на производительность;
  3. Тепловой баланс и степень концентрации электролита;
  4. Материал электродных элементов. Золото является дорогим, но идеальным материалом для применения в электролизерах. Из-за его дороговизны часто применяют нержавеющую сталь.

Важно! В конструкциях другого типа значения будут иметь иные параметры.

Установки для электролиза воды могут также использоваться для таких целей, как обеззараживание, очистка и оценка качества воды.

Принцип работы и виды электролизера

Самое простое устройство имеют электролизеры, которые расщепляют воду на кислород и водород. Они состоят из емкости с электролитом, в которую помещаются электроды, подключенные к энергоисточнику.

Принцип работы электролизной установки заключается в том, что электроток, который проходит через электролит, имеет напряжение, достаточное для разложения воды на молекулы. Результат процесса – анод выделяет одну часть кислорода, а катод производит две части водорода.

Виды электролизеров

Устройства для расщепления воды бывают нижеследующих видов:

  1. Сухие;
  2. Проточные;
  3. Мембранные;
  4. Диафрагменные;
  5. Щелочные.

Сухой тип

Такие электролизеры имеют самую простую конструкцию (картинка выше). Им присуща особенность, которая заключается в том, что манипуляция с числом ячеек дает возможность запитать агрегат от источника с любым напряжением.

Проточный тип

Эти установки имеют в своей конструкции полностью залитую электролитом ванну с электродными элементами и баком.

Принцип работы проточной электролизной установки нижеследующий (по картинке выше):

  • при протекании электролиза электролит вместе с газом через трубу «В» выдавливается в бак «D»;
  • в емкости «D» протекает процесс по отделению газа от электролита;
  • газ выходит через клапан «С»;
  • электролитный раствор возвращается через трубку «Е» в ванну «А».

Интересно знать. Такой принцип работы настроен в некоторых сварочных аппаратах – горение выделяемого газа позволяет сваривать элементы.

Мембранный тип

Электролизная установка мембранного типа имеет схожую конструкцию с другими электролизерами, однако в качестве электролита выступает твердое вещество на полимерной основе, которое именуется мембраной.

Мембрана в таких агрегатах имеет двойное назначение – перенос ионов и протонов, разделение электродов и продуктов электролиза.

Диафрагменный тип

Когда одно вещество не может проникать и влиять на другое, применяют пористую диафрагму, которая может изготавливаться из стекла, полимерных волокон, керамики либо асбестового материала.

Щелочной тип

Протекать электролиз в дистиллированной воде не может. В таких случаях необходимо использовать катализаторы, которыми выступают щелочные растворы высокой концентрации. Соответственно, основную часть электролизных устройств можно назвать щелочными.

Важно! Стоит отметить, что использование соли в качестве катализатора вредно, так как при протекании реакции выделяется газообразный хлор. Идеальным катализатором может выступать гидроксид натрия, который не разъедает железные электроды и не способствует выделению вредных веществ.

Самостоятельное изготовление электролизера

Изготовить электролизер своими руками может каждый человек. Для процесса сборки самой простой конструкции потребуются нижеследующие материалы:

  • лист нержавейки (идеальные варианты – зарубежная AISI 316L или отечественная 03Х16Н15М3);
  • болты М6х150;
  • шайбы и гайки;
  • прозрачная трубка – можно применять водяной уровень, который используется в строительных целях;
  • несколько штуцеров типа «елочка» с внешним диаметром 8 мм;
  • контейнер из пластика объемом 1,5 л;
  • небольшой фильтрующий проточную воду фильтр, например, фильтр для стиральных машин;
  • обратный водный клапан.

Процесс сборки

Собирать электролизер своими руками следует по следующей инструкции:

  1. Первым делом необходимо осуществить разметку и дальнейшую распилку листа нержавейки на равные квадраты. Распилка может осуществляться угловой шлифовальной машинкой (болгаркой). Один из уголков в таких квадратах должен быть спилен под углом для верного скрепления пластин;
  2. Далее потребуется просверлить отверстие для болта на противоположной от углового спила стороне пластины;
  3. Соединение пластин необходимо производить поочередно: одна пластина на «+», следующая на «-» и так далее;
  4. Между разно заряженными пластинами должен находиться изолятор, которым выступает трубка от водяного уровня. Ее необходимо разрезать на кольца, какие следует разрезать вдоль для получения полосок толщиной 1 мм. Такого расстояния между пластин достаточно для эффективного выделения газа при электролизе;
  5. Скрепление пластин вместе осуществляется посредством шайб следующим образом: на болт насаживается шайба, потом – пластина, далее – три шайбы, после – пластина и так далее. Пластины, положительно заряженные, располагаются зеркально отрицательно заряженных листов. Это позволяет не допустить задевание электродов спиленными краями;

  1. Собирая пластины, следует сразу выполнять их изоляцию и затяжку гаек;
  2. Также каждую пластину нужно прозвонить для того, чтобы убедиться в отсутствии короткого замыкания;
  3. Далее всю сборку требуется поместить в бокс из пластика;
  4. После этого надо отметить места касания болтов о стенки контейнера, где и просверлить два отверстия. Если болты не влезают в емкость, то их необходимо подрезать ножовкой;
  5. Далее болты затягиваются гайками и шайбами для герметичности конструкции;

  1. После проделанных манипуляций потребуется сделать отверстия в крышке контейнера и вставить в них штуцера. Герметичность в данном случае можно обеспечить посредством промазки швов герметиками на основе силикона;
  2. Защитный клапан и фильтр в конструкции располагаются на выходе газа и служат средством контроля чрезмерного его скопления, которое может привести к плачевным последствиям;
  3. Электролизная установка собрана.

Заключительный этап – тестирование, которое осуществляется таким образом:

  • заполнение водой емкости до уровня крепежных болтов;
  • подключение питания к прибору;
  • подключение к штуцеру трубки, противоположный конец которой опускается в воду.

Если будет подан на установку слабый ток, то выпускание газа через трубку будет почти незаметно, однако внутри электролизера его можно будет наблюдать. Повышая электрический ток, добавляя щелочной катализатор в воду, можно существенно увеличить выход газового вещества.

Изготовленный электролизер может выступать составной частью многих устройств, например, водородной горелки.

Зная типы, основные характеристики, устройство и принцип работы электролизных установок, можно осуществить правильную сборку самодельной конструкции, которые будет являться незаменимым помощником в различных бытовых ситуациях: от сварки и экономии расхода топлива автотранспорта до работы систем отопления.

Видео

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари