Подпишись и читай
самые интересные
статьи первым!

Тригонометрическая окружность четверти. Тригонометрический круг

Таблица значений тригонометрических функций

Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби - символ "/".

См. также полезные материалы:

Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180 .

Примеры :
1. Синус пи .
sin π = sin 180 = 0
таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи .
cos π = cos 180 = -1
таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 - 360 градусов (часто встречающиеся значения)

значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin
(синус)
cos
(косинус)
tg
(тангенс)
ctg
(котангенс)
sec
(секанс)
cosec
(косеканс)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет - клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
0, 15, 30, 45, 60, 90 ... 360 градусов
(цифровые значения "как по таблицам Брадиса")

значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18


В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов . Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. - 2-е изд. - М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Очень часто термины тригонометрический круг, единичная окружность, числовая окружность плохо понимаются учащимся народом. И совершенно зря. Эти понятия – мощный и универсальный помощник во всех разделах тригонометрии. Фактически, это легальная шпаргалка! Нарисовал тригонометрический круг – и сразу увидел ответы! Заманчиво? Так давайте освоим, грех такой вещью не воспользоваться. Тем более, это совсем несложно.

Для успешной работы с тригонометрическим кругом нужно знать всего три вещи.

Первое. Надо знать, что такое синус, косинус, тангенс и котангенс в применении к прямоугольному треугольнику. Сходите по ссылке, кто ещё не был. Тогда и здесь всё ясно будет.

Второе. Надо знать, что такое тригонометрический круг, единичная окружность, числовая окружность. Это я расскажу прямо здесь и сейчас.

Третье. Надо знать, как отсчитывать углы на тригонометрическом круге, и что такое градусная и радианная меры углов. Это будет в следующих уроках.

Всё. Разобравшись с этими тремя китами, получим надёжную, безотказную и совершенно законную шпаргалку для всей тригонометрии сразу.

А то в школьных учебниках с этой самым тригонометрическим кругом как-то не очень…

Начнём, помаленьку.

В предыдущем уроке вы усвоили, что синус, косинус, тангенс и котангенс (т.е. тригонометрические функции) зависят только от угла. И не зависят от длин сторон в прямоугольном треугольнике. Отсюда интересный вопрос. Пусть у нас есть вот такой угол. Назовём его угол β. Буква красивая.)

Раз есть угол, у него должны быть тригонометрические функции! Синус, скажем, или котангенс… А где их взять? Нет ни гипотенузы, ни катетов…

Как определить тригонометрические функции угла без прямоугольного треугольника? Задачка… Придётся опять лезть в сокровищницу мировых знаний. К средневековым людям. Те всё умели...



Первым делом возьмём координатную плоскость. Это самые обычные координатные оси, ОХ – по горизонтали, ОY – по вертикали. И… прибьём одну сторону угла к положительной полуоси ОХ. Вершина угла, естественно, в точке О. Крепко прибьём, чтобы не оторвать! Вторую сторону оставим подвижной, чтобы угол менять можно было. Раздвижной у нас угол будет. Конец неприбитой стороны угла обозначим точкой А . Получим вот такую картинку:

Так, угол пристроили. А где его синус, где косинус? Спокойно! Сейчас всё будет.

Отметим координаты точки А на осях. Наведите курсор мышки на картинку и всё увидите. На ОХ это будет точка В , на ОY - точка С . Понятно, что В и С - это какие-то числа. Координаты точки А .

Так вот, число В будет косинусом угла β, а число С – его синусом!

С чего бы это? Древние люди учили нас, что синус и косинус – это отношения сторон! Которые от длин сторон не зависят. А мы тут координаты точки придумали… Но! Посмотрите на треугольник ОАВ . Прямоугольный, кстати… По древнему определению косинус угла β равен отношению прилежащего катета к гипотенузе. Т.е. ОВ/ОА . Ладно, не возражаем. Причём косинус и синус не зависят от длин сторон. А это вообще отлично! Это значит, что длины сторон можно брать какие угодно. Имеем полное право взять длину ОА за единицу! Неважно чего. Хоть метр, хоть километр, всё равно синус не меняется. А в этом случае

Вот так. Если провести такие же рассуждения для синуса, получим, что синус угла β равен АВ . Но АБ = ОС . Следовательно,

Можно сказать совсем просто. Синусом угла β будет игрековая координата точки А, а косинусом – иксовая . Слова нестандартные, но тем лучше. Запоминается надёжнее! А запомнить это надо. Железно запомнить. Косинус – по иксу, синус – по игреку.

Нет, не обидели средневековые люди древних! Сберегли наследие! И отношение сторон сохранили, и возможности расширили чрезвычайно!

Однако, а где тригонометрический круг !? Где единичная окружность !? Ни слова про круги не было!

Верно. Но осталось всего ничего. Взять подвижную сторону ОА и повернуть её вокруг точки О на полный оборот. Как вы думаете, какую фигуру нарисует при этом точка А? Совершенно верно! Окружность! Вот она.

Вот это и будет тригонометрический круг.

Вот так. А почему круг - тригонометрический? Круг и круг... Вопрос резонный. Поясняю. Каждой точке окружности соответствуют два числа. Координата этой точки по Х и координата этой точки по Y. А координаты у нас что? Наведите курсор на рисунок. Координаты у нас - точки В и С. Т.е. косинус и синус угла β. Т.е. тригонометрические функции . Поэтому круг и называется тригонометрическим.

Вспомнив, что ОА = 1, а ОА – радиус, сообразим, что это же – и единичная окружность тоже.

А так как синус и косинус - просто какие-то числа - этот тригонометрический круг будет ещё и числовой окружностью.

Три термина в одном флаконе.)

В данной теме эти понятия: тригонометрический круг, единичная окружность и числовая окружность – одно и то же. В более широком смысле, единичная окружность – это любая окружность с радиусом, равным единице. Тригонометрический круг – практический термин, как раз для работы с единичной окружностью в тригонометрии. Чем мы сейчас и позанимаемся. Работой с тригонометрическим кругом.

Первую половину работы мы уже выполнили. Нарисовали тригонометрический круг с помощью угла (классно звучит, правда?).

Теперь выполним вторую половину работы. Сделаем то же самое, только наоборот. Пройдём путь от тригонометрического круга к углу.

Пусть нам дана единичная окружность. Т.е. просто окружность, нарисованная на координатной плоскости, с радиусом, равным единице. Возьмём произвольно точку А на окружности. Отметим её координаты точками В и С на осях. Как нам помнится, её координаты - это cosβ (по иксу) и sinβ (по игреку). И синус с косинусом отметим. Получим вот такую картинку:

Всё понятно? Внимание, вопрос!

Где β!? Где угол β, без которого синуса и косинуса не бывает!?

Наводим курсор на картинку, и... вот он, вот он угол β! Именно его синус и косинус являются координатами точки А.

Кстати, здесь не нарисована прибитая сторона угла. Она и в предыдущих рисунках не нужна, только так, для понимания... Угол всегда отсчитывается от положительного направления оси ОХ. От направления стрелки.

А если точку А взять в другом месте? Окружность - она круглая... Да пожалуйста! Где угодно! Поместим, к примеру, точку А во вторую четверть, отметим её координаты, синус, косинус, как полагается. Вот так:

Самые наблюдательные заметят, что синус угла β – положительный (точка С – на положительной полуоси OY), а вот косинус – отрицательный ! Точка В лежит на отрицательной полуоси ОХ.

Наводим курсор на картинку и видим угол β. Угол β здесь – тупой. Чего, кстати, решительно не бывет в прямоугольном треугольнике. А зря, что ли, мы возможности расширяли?

Уловили суть тригонометрического круга? Если взять точку в любом месте окружности, её координатами будут косинус и синус угла. Угол отсчитывается от положительного направления оси ОХ и до прямой, соединяющей центр координат с этой самой точкой на окружности.

Вот и всё. Проще хотелось бы, да некуда. Кстати, мой вам совет. Работая с тригонометрическим кругом, рисуйте не только точки на окружности, но и сам угол ! Как на этих рисунках. Понятнее будет.

Рисовать вам этот круг в тригонометрии постоянно придётся. Это не обязаловка, это и есть та легальная шпаргалка, которой пользуются умные люди. Сомневаетсь? Тогда назовите мне по памяти знаки вот таких выражений, к примеру: sin130 0 , cos150 0 , sin250 0 , cos330 0 ? Я уж не спрашиваю про cos1050 0 или sin(-145 0)... Про такие углы в следующем уроке написано.

И нигде-то вы подсказку не найдёте. Только на тригонометрическом круге. Рисуем примерный угол в правильной четверти и сразу видим, куда попадают его синус и косинус. На положительные полуоси, или отрицательные. Кстати, определение знаков тригонометрических функций постоянно требуется в самых различных заданиях...

Или ещё, чисто для примера... Надо вам, например, узнать, что больше, sin130 0 , или sin155 0 ? Попробуй-ка, сообрази просто так…

А мы умные, мы нарисуем тригонометрический круг. И нарисуем на нём угол примерно 130 градусов. Исходя только из того , что он больше 90 и меньше 180 градусов. Ориентируемся на угол, а не на окружность! Уж где пересечёт подвижная сторона угла окружность, там и пересечёт. Отмечаем игрековую координату точки пересечения. Это будет sin130 0 . Как на этом рисунке:

А затем, здесь же, нарисуем угол 155 градусов. Примерно нарисуем, зная, что он больше 130 градусов. И меньше 180. Отметим и его синус. Наведите курсор на картинку, всё увидите. Ну и что, какой синус больше? Тут уж совсем трудно ошибиться! Конечно sin130 0 больше, чем sin155 0 !

Долго? Да ну?! Никто не требует от вас тщательно прорисовывать картину и обеспечивать мультипликацию! Поработаете с этим сайтом, и по этой задаче будете за 10 секунд рисовать вот такую картинку:

Другой и не сообразит, что это за каракули, да… А вы спокойно и уверенно дадите правильный ответ! Хотя, аккуратность и не мешает... А то можно такую "окружность" нарисовать, что ответ обратный получится...

Эта задачка - только один пример широких возможностей тригонометрического круга. Освоить эти возможности вполне реально. Чем мы и займёмся далее.

Чаще всего вам придётся иметь с тригонометрическими функциями в обычной, алгебраической записи. Типа sin45 0 , tg(-3), cos(x+y) и так далее. Безо всяких картинок и тригонометрических кругов ! Рисовать этот самый круг надо самим. Руками. Если, конечно, хотите легко и правильно решать задания по тригонометрии. В том числе и самые продвинутые. Но особо не волнуйтесь. Уж на этом сайте, в тригонометрии, я вам обеспечу рисование кругов! И вы освоите этот крайне полезный приём. Однозначно.

Подведём итоги урока.

В этой теме мы плавно перешли от тригонометрических функций угла в прямоугольном треугольнике к тригонометрическим функциям любого угла. Для этого нам понадобилось освоить понятия "тригонометрический круг, единичная окружность, числовая окружность". Это очень полезно.)

Здесь я рассказывал о тригонометрическом круге в применении к синусу и косинусу. Но тангенс и котангенс тоже можно увидеть на круге! Одно движение ручкой, и вы легко и правильно определяете знак тангенса - котангенса любого угла, решаете тригонометрические неравенства и вообще потрясаете окружающих своими тригонометрическими способностями.)

Если вас интересуют такие перспективы - можно посетить урок "Тангенс и котангенс на тригонометрическом круге" в Особом разделе 555.

Как выглядят углы в 1000 градусов? Как выглядят отрицательные углы? Что за загадочное число «Пи», на которое неизбежно наталкиваешься в любом разделе тригонометрии? И каким боком это «Пи» к углам пристраивается? Всё это – в следующих уроках.

На тригонометрическом круге помимо углов в градусы мы наблюдаем .

Подробнее про радианы:

Радиан определяется как угловая величина дуги, длина которой равна её радиусу. Соответственно, так как длина окружности равна , то очевидно, что в окружности укладывается радиан, то есть

1 рад ≈ 57,295779513° ≈ 57°17′44,806″ ≈ 206265″.

Все знают, что радиан – это

Так вот, например, , а . Так, мы научились переводить радианы в углы .

Теперь наоборот, давайте переводить градусы в радианы .

Допустим, нам надо перевести в радианы. Нам поможет . Поступаем следующим образом:

Так как, радиан, то заполним таблицу:

Тренируемся находить значения синуса и косинуса по кругу

Давайте еще уточним следующее.

Ну хорошо, если нас просят вычислить, скажем, , – здесь обычно путаницы не возникает – все начинают первым делом искать на круге.

А если просят вычислить, например, … Многие, вдруг, начинают не понимают где искать этот ноль… Частенько ищут его в начале координат. Почему?

1) Давайте договоримся раз и навсегда! То, что стоит после или – это аргумент=угол, а углы у нас располагаются на круге, не ищите их на осяx! (Просто отдельные точки попадают и на круг, и на ось…) А сами значения синусов и косинусов – ищем на осях!

2) И еще! Если мы от точки «старт» отправляемся против часовой стрелки (основное направление обхода тригонометрического круга), то мы откладываем положительные значения углов , значения углов растут при движении в этом направлении.

Если же мы от точки «старт» отправляемся по часовой стрелке, то мы откладываем отрицательные значения углов.

Пример 1.

Найти значение .

Решение:

Находим на круге . Проецируем точку на ось синусов (то есть проводим перпендикуляр из точки к оси синусов (оу)).

Приходим в 0. Значит, .

Пример 2.

Найти значение .

Решение:

Находим на круге (проходим против часовой стрелки и еще ). Проецируем точку на ось синусов (а она уже лежит на оси синусов).

Попадаем в -1 по оси синусов.

Заметим, за точкой «скрываются» такие точки, как (мы могли бы пойти в точку, помеченную как , по часовой стрелке, а значит появляется знак минус), и бесконечно много других.

Можно привести такую аналогию:

Представим тригонометрический круг как беговую дорожку стадиона.


Вы ведь можете оказаться в точке «Флажок», отправляюсь со старта против часовой стрелки, пробежав, допустим, 300 м. Или пробежав, скажем, 100м по часовой стрелке (считаем длину дорожки 400 м).

А также вы можете оказаться в точке «Флажок» (после «старт»), пробежав, скажем, 700 м, 1100 м, 1500 м и т. д. против часовой стрелки. Вы можете оказаться в точке «Флажок», пробежав 500 м или 900 м и т. д. по часовой стрелке от «старт».

Разверните мысленно беговую дорожку стадиона в числовую прямую. Представьте, где на этой прямой будут, например, значения 300, 700, 1100, 1500 и т.д. Мы увидим точки на числовой прямой, равноотстоящие друг от друга. Свернем обратно в круг. Точки «cлепятся» в одну.

Так и с тригонометрическим кругом. За каждой точкой скрыто бесконечно много других.

Скажем, углы , , , и т.д. изображаются одной точкой. И значения синуса, косинуса в них, конечно же, совпадают. (Вы заметили, что мы прибавляли/вычитали или ? Это период для функции синус и косинус.)

Пример 3.

Найти значение .

Решение:

Переведем для простоты в градусы

(позже, когда вы привыкнете к тригонометрическому кругу, вам не потребуется переводить радианы в градусы):

Двигаться будем по часовой стрелки от точки Пройдем полкруга () и еще

Понимаем, что значение синуса совпадает со значением синуса и равняется

Заметим, если б мы взяли, например, или и т.д., то мы получили бы все тоже значение синуса.

Пример 4.

Найти значение .

Решение:

Все же, не будем переводить радианы в градусы, как в предыдущем примере.

То есть нам надо пройти против часовой стрелки полкруга и еще четверть полкруга и спроецировать полученную точку на ось косинусов (горизонтальная ось).

Пример 5.

Найти значение .

Решение:

Как отложить на тригонометрическом круге ?


Если мы пройдем или , да хоть , мы все равно окажемся в точке, которую мы обозначили как «старт». Поэтому, можно сразу пройти в точку на круге

Пример 6.

Найти значение .

Решение:

Мы окажемся в точке ( приведет нас все равно в точку ноль). Проецируем точку круга на ось косинусов (смотри тригонометрический круг), попадаем в . То есть .

Тригонометрический круг – у вас в руках

Вы же уже поняли, что главное – запомнить значения тригонометрических функций первой четверти. В остальных четвертях все аналогично, нужно лишь следить за знаками. А «цепочку-лесенку» значений тригонометрических функций, вы, надеюсь уже не забудете.

Как находить значения тангенса и котангенса основных углов .

После чего, познакомившись с основными значениями тангенса и котангенса, вы можете пройти

На пустой шаблон круга. Тренируйтесь!

Координаты x лежащих на окружности точек равны cos(θ), а координаты y соответствуют sin(θ), где θ - величина угла.

  • Если вам сложно запомнить данное правило, просто помните, что в паре (cos; sin) "синус стоит на последнем месте".
  • Это правило можно вывести, если рассмотреть прямоугольные треугольники и определение данных тригонометрических функций (синус угла равен отношению длины противолежащего, а косинус - прилежащего катета к гипотенузе).
  • Запишите координаты четырех точек на окружности. "Единичная окружность" - это такая окружность, радиус которой равен единице. Используйте это, чтобы определить координаты x и y в четырех точках пересечения координатных осей с окружностью. Выше мы обозначили эти точки для наглядности "востоком", "севером", "западом" и "югом", хотя они не имеют устоявшихся названий.

    • "Восток" соответствует точке с координатами (1; 0) .
    • "Север" соответствует точке с координатами (0; 1) .
    • "Запад" соответствует точке с координатами (-1; 0) .
    • "Юг" соответствует точке с координатами (0; -1) .
    • Это аналогично обычному графику, поэтому нет необходимости запоминать эти значения, достаточно помнить основной принцип.
  • Запомните координаты точек в первом квадранте. Первый квадрант расположен в верхней правой части круга, где координаты x и y принимают положительные значения. Это единственные координаты, которые необходимо запомнить:

    • точка π / 6 имеет координаты () ;
    • точка π / 4 имеет координаты () ;
    • точка π / 3 имеет координаты () ;
    • обратите внимание, что числитель принимает лишь три значения. Если перемещаться в положительном направлении (слева направо по оси x и снизу вверх по оси y ), числитель принимает значения 1 → √2 → √3.
  • Проведите прямые линии и определите координаты точек их пересечения с окружностью. Если вы проведете от точек одного квадранта прямые горизонтальные и вертикальные линии, вторые точки пересечения этих линий с окружностью будут иметь координаты x и y с теми же абсолютными значениями, но другими знаками. Иными словами, можно провести горизонтальные и вертикальные линии от точек первого квадранта и подписать точки пересечения с окружностью теми же координатами, но при этом оставить слева место для правильного знака ("+" или "-").

    • Например, можно провести горизонтальную линию между точками π / 3 и 2π / 3 . Поскольку первая точка имеет координаты ( 1 2 , 3 2 {\displaystyle {\frac {1}{2}},{\frac {\sqrt {3}}{2}}} ), координаты второй точки будут (? 1 2 , ? 3 2 {\displaystyle {\frac {1}{2}},?{\frac {\sqrt {3}}{2}}} ), где вместо знака "+" или "-" поставлен знак вопроса.
    • Используйте наиболее простой способ: обратите внимание на знаменатели координат точки в радианах. Все точки со знаменателем 3 имеют одинаковые абсолютные значения координат. То же самое относится к точкам со знаменателями 4 и 6.
  • Для определения знака координат используйте правила симметрии. Существует несколько способов определить, где следует поставить знак "-":

    • вспомните основные правила для обычных графиков. Ось x отрицательна слева и положительна справа. Ось y отрицательна снизу и положительна сверху;
    • начните с первого квадранта и проведите линии к другим точкам. Если линия пересечет ось y , координата x изменит свой знак. Если линия пересечет ось x , изменится знак у координаты y ;
    • запомните, что в первом квадранте положительны все функции, во втором квадранте положителен только синус, в третьем квадранте положителен лишь тангенс, и в четвертом квадранте положителен только косинус;
    • какой бы метод вы ни использовали, в первом квадранте должно получиться (+,+), во втором (-,+), в третьем (-,-) и в четвертом (+,-).
  • Проверьте, не ошиблись ли вы. Ниже приведен полный список координат "особых" точек (кроме четырех точек на координатных осях), если двигаться по единичной окружности против часовой стрелки. Помните, что для определения всех этих значений достаточно запомнить координаты точек лишь в первом квадранте:

    • первый квадрант: ( 3 2 , 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},{\frac {1}{2}}} ); ( 2 2 , 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( 1 2 , 3 2 {\displaystyle {\frac {1}{2}},{\frac {\sqrt {3}}{2}}} );
    • второй квадрант: ( − 1 2 , 3 2 {\displaystyle -{\frac {1}{2}},{\frac {\sqrt {3}}{2}}} ); ( − 2 2 , 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},{\frac {\sqrt {2}}{2}}} ); ( − 3 2 , 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},{\frac {1}{2}}} );
    • третий квадрант: ( − 3 2 , − 1 2 {\displaystyle -{\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ); ( − 2 2 , − 2 2 {\displaystyle -{\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( − 1 2 , − 3 2 {\displaystyle -{\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} );
    • четвертый квадрант: ( 1 2 , − 3 2 {\displaystyle {\frac {1}{2}},-{\frac {\sqrt {3}}{2}}} ); ( 2 2 , − 2 2 {\displaystyle {\frac {\sqrt {2}}{2}},-{\frac {\sqrt {2}}{2}}} ); ( 3 2 , − 1 2 {\displaystyle {\frac {\sqrt {3}}{2}},-{\frac {1}{2}}} ).
  • Включайся в дискуссию
    Читайте также
    Литература средневековья Поэтическое произведение эпохи средневековья
    Когда употребляются формы are, being?
    Требования к специалисту и эксперту в сфере закупок