Подпишись и читай
самые интересные
статьи первым!

Типы теплонасосных установок. Тепловые насосные установки

Теплонасосные агрегаты и установки следует рассматривать как устройства, осуществляющие полный цикл циркуляции хладагента и приборы регулирования, включающих в себя привод. Причем в теплонасосных агрегатов относятся компактные, готовые к работе блоки, а в теплонасосных установок - комплексы, состоящие из нескольких отдельных устройств или блоков. В зависимости от вида нагрузки со стороны источника и приемника тепловые насосы можно классифицировать в соответствии с табл. 1.2.

Установлено, что благодаря одинаковому термодинамическому круговом цикла холодильных установок и тепловых насосов и незначительном расхождении температурных интервалов оборудования тепловые насосы следует подбирать непосредственно из ассортимента, который применяется для холодильного оборудования с некоторыми модификациями, и только в некоторых случаях требуется разработка специальных узлов.

Таблица 1.2.

Термоэлектрические тепловые насосы не получили до сих пор распространение через низкий коэффициент преобразования.

Компрессионные теплонасосные установки

К ТН малой мощности относятся небольшие водоподогреватели и и оконные кондиционеры, включающих в себя тепловые насосы. В целом тепловые насосы, предназначенные преимущественно для производства тепла при мощности 2 ... 3 кВт, не могут конкурировать с простыми электронагревательными устройствами (с нагревателем электроопору) через высокие удельные расходы. Только агрегаты, предназначенные в основном для производства холода и выработки теплоты, благодаря возможности простого переключения имеют практическое значение. Это, в частности, оконные кондиционеры с переключением (рис. 1.29).

Такие агрегаты, как правило, состоят из холодильной машины с герметичным корпусом, испарителя и конденсатора с принудительной циркуляцией воздуха. С помощью четырехходовой вентиля они могут переключаться на режим теплового насоса, то есть осуществлять отопление помещений. Каждый вентилятор имеет устройство для переключения работы испарителя на конденсатор, и на перемещение внутреннего и наружного воздуха.

Рис. 1.29. А - схема коммуникаций; б - схема включения кондиционера; в - схема включения теплового насоса; / -конденсатор; // - Дроссель; Ш компрессор; IV- испаритель

Тепловая мощность составляет 1,5 ... 4,5 кВт. Коэффициент преобразования при температуре помещения 21 ° С и внешней 7,5 ° С редко превышает 2.

Часть кондиционеров большой мощности, предназначенных для общих промышленных зданий, также выполняется с переключением на работу по схеме теплового насоса.

Компрессионные тепловые насосы также могут работать с приводом от тепловых двигателей. В этом случае весь агрегат состоит из компрессионного теплового насоса и теплового двигателя. Преобразования химической энергии топлива в теплоту происходит непосредственно внутри теплового двигателя (например, двигателя Стирлинга). В двигателе согласно термодинамического кругового цикла часть теплоты переходит в механическую энергию, которая приводит в действие собственный компрессионный тепловой насос, благодаря чему увеличивается полезный температурный уровень низкотемпературного окружающей среды или отработанной теплоты. Отработанная теплота двигателя также может быть использована. Теплообменник отработанной теплоты в зависимости от температурных условий подключается параллельно или последовательно конденсатора компрессионного теплового насоса или тепло подводится к специальным потребителей.

Как приводы в принципе могут быть использованы тепловые двигатели всех типов, однако наиболее удобные газовые и дизельные двигатели, потому что они работают на природном газе и нефти - высококачественных носителях первичной энергии, применяемых для отопления. Полученная теплота с помощью такой системы отопления с двигателем может сократить расход первичной энергии примерно вдвое по сравнению с обычным способом получения тепла при сжигании топлива.

Можно достичь коэффициента преобразования, равного 1,8 ... 1,9.

Абсорбционные теплонасосные установки

По степени агрегатирования АПТ разделяются на агрегатирован (с конструктивным объединением всех элементов в один или несколько блоков) и неагрегатировани (с отдельно выполненным элементами АПТ). К агрегатирован относятся бромистолитиеви АПТ.

В зависимости от схемы включения АПТ в технологические процессы различных производств их можно разделить на автономные, не зависящие от схемы технологического процесса, и встроенные - с объединением части цикла АПТ с технологическим процессом.

Число абсорбционных тепловых насосов, выпускаемых до сих пор, небогатое, но уже достигнуты высокие коэффициенты трансформации. При этом абсорбционные тепловые насосы могут более полно отвечать специальным условиям источников тепла и приводной энергии, чем компрессионные.

В Германии, например, выпускаются абсорбционные тепловые насосы с тепловой мощностью 1 ... 3 МВт. Коэффициент трансформации зависит от рабочей температуры и температуры испарения. Для малых установок нельзя достичь высоких показателей (С, < 1,5). В разных странах проводятся работы по совершенствованию малых абсорбционных тепловых насосов.

Имея в своем доме холодильники и кондиционеры, мало кто знает - принцип работы теплового насоса реализован именно в них.

Около 80% мощности, которую дает тепловой насос, приходится на тепло окружающей среды в виде рассеянного солнечного излучения. Именно его насос просто «перекачивает» с улицы в дом. Работа теплового насоса подобна принципу работы холодильника, вот только направление переноса тепла иное.

Проще говоря…

Чтобы охладить бутылку минеральной воды, Вы ее ставите в холодильник. Холодильник должен «забрать» у бутылки часть тепловой энергии и, согласно закону сохранения энергии, ее куда-то переместить, отдать. Холодильник переносит теплоту на радиатор, обычно расположенный на задней его стенке. При этом радиатор нагревается, отдавая свое тепло в помещение. Фактически он отапливает помещение. Это особенно заметно в маленьких минимаркетах летом, при нескольких включенных холодильниках в помещении.

Предлагаем пофантазировать. Предположим, что мы будем постоянно подкладывать теплые предметы в холодильник, а он будет, охлаждая их, нагревать воздух в помещении. Пойдем на «крайности»… Расположим холодильник в оконном проеме открытой дверкой «морозилки» наружу. Радиатор холодильника будет находиться в помещении. В процессе работы холодильник будет охлаждать воздух на улице, перенося в помещение «забранную» теплоту. Так и работает тепловой насос, забирая рассредоточенное тепло у окружающей среды и перенося его в помещение.

Где насос берет тепло?

Принцип работы теплового насоса базируется на «эксплуатации» естественных низкопотенциальных источников тепла из окружающей среды.


Ими могут быть:


Как устроен тепловой насос и система отопления с ним?

Тепловой насос интегрирован в систему отопления, которая состоит из 2-х контуров + третий контур - система самого насоса. По внешнему контуру циркулирует незамерзающий теплоноситель, который забирает на себя тепло из окружающего пространства.

Попадая в тепловой насос, точнее его испаритель, теплоноситель отдает в среднем от 4 до 7 °C хладагенту теплового насоса. А его температура кипения составляет -10 °C. Вследствие этого хладагент закипает с последующим переходом в газообразное состояние. Теплоноситель внешнего контура, уже охлажденный уходит на следующий «виток» по системе для набора температуры.

В составе функционального контура теплового насоса «числятся»:

  • испаритель;
  • компрессор (электрический);
  • капилляр;
  • конденсатор;
  • хладагент;
  • терморегулирующее управляющее устройство.

Процесс выглядит приблизительно так!

«Закипевший» в испарителе хладагент по трубопроводу поступает в компрессор, работающих от электроэнергии. Этот «трудяга» сжимает газообразный хладагент до высокого давления, что, соответственно, приводит к повышению его температуры.

Теперь уже горячий газ далее попадает во другой теплообменник, который называется конденсатором. Здесь тепло хладагента передается воздуху помещения или теплоносителю, который циркулирует по внутреннему контуру системы отопления.

Хладагент остывает, одновременно переходя в состояние жидкости. Затем он проходит через капиллярный редукционный клапан, где «теряет» давление и вновь попадает в испаритель.

Цикл замкнулся и готов к повтору!

Приблизительный расчет теплопроизводительности установки

В течении часа по внешнему коллектору через насос протекает до 2,5-3 м 3 теплоносителя, который земля способна нагреть на ∆t = 5-7 °C.

Для расчета тепловой мощности такого контура воспользуйтесь формулой:

Q = (T_1 — T_2)*V_тепл

V_тепл - объемный расход теплоносителя в час (м^3/час);

T_1 — T_2 - разница температур на входе и входе (°C) .


Разновидности тепловых насосов

По типу используемого вида рассеянного тепла различают тепловые насосы:

  • грунт-вода (используют закрытые грунтовые контуры или глубокие геотермальные зонды и водяную систему отопления помещения);
  • вода-вода (используют открытые скважины для забора и сброса грунтовых вод - внешний контур не закольцованный, внутренняя система отопления - водяная);
  • вода-воздух (использование внешних водяных контуров и системы отопления воздушного типа);
  • (использование рассеянного тепла внешних воздушных масс в комплекте с воздушной системой отопления дома).

Преимущества и достоинства тепловых насосов

Экономичная эффективность. Принцип работы теплового насоса базируется не на производстве, а на переносе (транспортировке) тепловой энергии, то можно утверждать, что его КПД больше единицы. Что за чушь? - скажете Вы.В теме тепловых насосов фигурирует величина - коэффициент преобразования (трансформации) тепла (КПТ). Именно по этому параметру сравнивают между собой агрегаты подобного типа. Его физический смысл – показать отношение полученного количества теплоты к величине, затраченной для этого, энергии. К примеру, при КПТ = 4,8 затраченная насосом электроэнергия в 1кВт позволит получить с его помощью 4,8 кВт тепла безвозмездно, то есть даром от природы.

Универсальная повсеместность применения. Даже при отсутствии доступных линий электропередач работа компрессора теплового насоса может быть обеспечена дизельным приводом. А «природное» тепло есть в любом уголке планеты - тепловой насос «голодным» не останется.


Экологическая чистота использования. В тепловом насосе отсутствуют продукты горения, а его малое энергопотребление меньше «эксплуатирует» электростанции, косвенно снижая вредные выбросы от них. Хладагент, используемый в тепловых насосах, озонобезопасен и не содержит хлоруглеродов.


Двунаправленный режим работы. Тепловой насос может в зимнее время обогревать помещение, а в летнее - охлаждать. Отобранную из помещения «теплоту» можно использовать эффективно, например, подогревать воду в бассейне или в системе ГВС.


Безопасность эксплуатации. В принципе работы теплового насоса Вы не рассмотрите опасных процессов. Отсутствие открытого огня и вредных опасных для человека выделений, низкая температура теплоносителей делают тепловой насос «безобидным», но полезным бытовым прибором.

Полная автоматизация процесса отопления помещения.


Некоторые нюансы эксплуатации

Эффективное использование принципа работы теплового насоса требует соблюдения нескольких условий:

  • помещение, которое обогревается должно быть хорошо утеплено (теплопотери до 100 Вт/м 2) - иначе, забирая тепло с улицы, будете греть улицу за свои же деньги;
  • тепловые насосы выгодно применять для низкотемпературных систем отопления. Под такие критерии отлично подходят системы теплый пол (35-40 °C). Коэффициент преобразования тепла существенно зависит от соотношения температур входного и выходного контуров.

Подытожим сказанное!

Суть принципа работы теплового насоса не в производстве, а в переносе тепла. Это позволяет получить высокий коэффициент (от 3 до 5) преобразования тепловой энергии. Проще говоря, каждый использованный 1 кВт электроэнергии «перенесет» в дом 3-5 кВт тепла. Еще что-то нужно говорить?

За последний год тепловые насосы заняли свою нишу на российском климатическом рынке в числе других популярных технологий. Обсуждение достоинств и недостатков теплонасосных установок (ТНУ) проходило как на страницах отраслевой прессы, так и на тематических конференциях и круглых столах. О тепловых насосах в последнее время появилось много информации - как в русскоязычном Интернет, так и в специализированных СМИ. Тем не менее, по-прежнему крайне мало публикаций об интегрированных теплонасосных системах. Цель данной статьи - несколько восполнить этот пробел, обобщить некоторые из вопросов, возникающих у специалистов при первом знакомстве с кольцевыми теплонаносными системами, и коротко ответить на них.

Итак, про тепловые насосы известно, что это климатическое оборудование, способное утилизировать тепло окружающей среды, с помощью компрессора поднимать температуру теплоносителя до нужного уровня и передавать это тепло туда, где оно необходимо.

Извлечь из окружающей среды тепло можно почти всегда. Ведь "холодная вода" - понятие субъективное, основанное на наших ощущениях. Даже самая холодная речная вода содержит некоторое количество теплоты. Но известно, что тепло переходит только от более нагретого тела к более холодному. Тепло можно принудительно направить от холодного тела к теплому, тогда холодное тело еще больше остынет, а теплое нагреется. Используя тепловой насос, который "выкачивает" тепло из воздуха, речной воды или земли, еще более понижая их температуру, можно обогреть здание. В классическом случае считается, что, затрачивая на работу 1 кВт электроэнергии, ТНУ может произвести от 3 до 6 кВт тепловой энергии. На практике это означает, что мощностью двух-трех бытовых лампочек в зимний период можно обогреть жилую комнату средних размеров. Летом, работая в обратном режиме, тепловой насос может охлаждать воздух в помещениях здания. Тепло из здания будет удаляться, поглощаясь атмосферой, рекой или землей.

В настоящее время имеется огромное разнообразие теплонасосных установок, что позволяет широко применять их в промышленности, сельском хозяйстве, в ЖКХ. В качестве примера применения ТНУ, в конце статьи мы рассмотрим два проекта - один из них проект масштабной кольцевой системы, внедренной в Краснодарском крае, второй — объект малого строительства в Подмосковье.

Какие тепловые насосы бывают?

Тепловые насосы бывают разной тепловой мощности - от нескольких киловатт до сотен мегаватт. Они могут работать с различными источниками тепла, находящимися в разных агрегатных состояниях. В связи с этим, их можно разделить на следующие типы: вода-вода, вода-воздух, воздух-вода, воздух-воздух. Выпускаются ТНУ, предназначенные для работы с источниками низкопотенциального тепла самых разных температур, вплоть до отрицательной. Они могут использоваться в качестве приемника высокопотенциального тепла, требующего различной температуры, даже выше 1000С. В зависимости от этого тепловые насосы можно разделить на низкотемпературные, среднетемпературные и высокотемпературные.

Тепловые насосы различаются также по техническому устройству. В этом плане можно выделить два направления: парокомпрессионные и абсорбционные ТНУ. Тепловые насосы для своей работы могут использовать и другие виды энергии, кроме электрической, например, они могут работать на различных видах топлива.

Различные комбинации видов источников низкопотенциального тепла и приемников высокопотенциального тепла дают большое разнообразие типов тепловых насосов. Вот некоторые примеры:

  • ТНУ, использующий тепло грунтовых вод для отопления;
  • ТНУ, использующий тепло естественного водоема для горячего водоснабжения;
  • ТНУ-кондиционер воздуха, использующий морскую воду в качестве источника и приемника тепла;
  • ТНУ-кондиционер воздуха, использующий наружный воздух в качестве источника и приемника тепла;
  • ТНУ для нагрева воды плавательного бассейна, использующий тепло наружного воздуха;
  • ТНУ, утилизирующий тепло сточных вод в системе теплоснабжения;
  • ТНУ, утилизирующий тепло инженерно-технического оборудования в системе теплоснабжения;
  • ТНУ для охлаждения молока и одновременно нагрева воды для горячего водоснабжения на молочных фермах;
  • ТНУ для утилизации тепла от технологических процессов в первичном подогреве приточного воздуха.

Большое разнообразие теплонасосной техники выпускается серийно, но тепловые насосы могут изготавливаться и по специальным проектам. Имеются экспериментальные установки, опытно-промышленные образцы, а также много теоретических разработок.

В случае, если на объекте предусматривается применение нескольких тепловых насосов, которые будут предназначены для производства как тепла, так и холода, эффективность их работы многократно возрастет, если они будут объединены в единую систему. Это так называемые кольцевые теплонасосные системы (КТНС). Такие системы целесообразно использовать на средних и крупных объектах.

Кольцевые системы кондиционирования воздуха

Основу этих систем составляют ТНУ типа вода-воздух, выполняющие функции кондиционирования воздуха в помещениях. В помещении, где предусматривается кондиционирование воздуха (или рядом с ним) устанавливается тепловой насос, мощность которого подбирается в соответствии с параметрами помещения, его назначением, характеристиками необходимой приточно-вытяжной вентиляции, возможным количеством присутствующих людей, установленным в нем оборудованием и другими критериями. Все ТНУ реверсивные, то есть предназначены и для охлаждения, и для нагрева воздуха. Все они связаны общим водяным контуром - трубами, в которых циркулирует вода. Вода является одновременно и источником, и приемником тепла для всех ТНУ. Температура в контуре может изменяться в пределах от 18 до 320С. Между тепловыми насосами, которые нагревают воздух, и теми, которые охлаждают его, происходит обмен теплом посредством водяного контура. В зависимости от особенностей помещений, а также от времени года и времени суток - в разных помещениях может требоваться либо нагрев, либо охлаждение воздуха. При одновременной работе в одном здании ТНУ, производящих тепло и холод, происходит перенос тепла из помещений, где его избыток, в помещения, где его не хватает. Таким образом, происходит обмен теплом между зонами, объединенными в единое кольцо.

Помимо ТНУ, выполняющих функцию кондиционирования воздуха, в состав КТНС могут входить и ТНУ другого назначения. Если на объекте имеются достаточные потребности в тепле, через кольцевую систему при помощи ТНУ можно эффективно утилизировать бросовое тепло. Например, при наличии интенсивного потока сточных вод имеет смысл установить ТНУ вода-вода, который позволит утилизировать тепло сбросов посредством КТНС. Такой тепловой насос сможет извлекать тепло из сточных вод, передавать его с помощью кольцевого контура, а затем использовать для обогрева помещений.

Воздух, удаляемый из здания вытяжной вентиляцией, также содержит большое количество тепла. При отсутствии в вытяжном воздухе большого количества примесей, затрудняющих работу ТНУ, можно утилизировать тепло удаляемого воздуха, установив ТНУ воздух-вода. Через КТНС это тепло может быть использовано всеми потребителями в здании, чего трудно добиться, применяя традиционные регенераторы и рекуператоры. Кроме того, процесс утилизации в данном случае может происходить эффективнее, так как не зависит от температуры наружного воздуха, забираемого приточной вентиляцией, и от устанавливаемой температуры нагрева воздуха, нагнетаемого в помещения.

Кроме того, при работе реверсивных тепловых насосов и на сточных водах и в вытяжной вентиляции, их можно использовать для удаления излишков тепла из водяного контура в теплое время года, и тем самым снижать необходимую мощность градирни.

В теплое время года при помощи тепловых насосов излишки тепла в водяном контуре утилизируются через потребителей, имеющихся на объекте. Например, к кольцевой системе может быть подключен ТНУ вода-вода, передающий избыточное тепло в систему горячего водоснабжения (ГВС). На объекте с небольшими потребностями в горячей воде такого теплового насоса может быть достаточно для того, чтобы полностью их удовлетворить.

Если на объекте имеется один или несколько плавательных бассейнов, например, в оздоровительных учреждениях, в домах отдыха, в развлекательных комплексах и в гостиницах, нагрев воды бассейнов можно также реализовать при помощи ТНУ вода-вода, подключив его к КТНС.

Сочетание кольцевых систем с другими системами

Систему вентиляции в зданиях с использованием кольцевой теплонасосной системы необходимо разрабатывать с учетом особенности работы ТНУ, кондиционирующих воздух. Обязательной является рециркуляция воздуха в том объеме, который необходим для стабильной работы этих ТНУ, поддержания заданной температуры в помещении и эффективной утилизации тепла (исключением являются те случаи, где рециркуляция нежелательна, например, залы плавательных бассейнов, местные кухонные вытяжки). Существуют и некоторые другие особенности при разработке вентиляции с КТНС.

Однако, вместе с тем, кольцевая система предусматривает более простые системы вентиляции, чем при других способах кондиционирования. Тепловые насосы осуществляют кондиционирование воздуха непосредственно на месте, в самом помещении, что избавляет от необходимости транспортировки готового воздуха по протяженным теплоизолированным воздуховодам, как это происходит, допустим, при центральном кондиционировании.

Кольцевая система может полностью взять на себя функции отопления, но не исключается и совместное применение с системой отопления. В этом случае применяется менее мощная и более простая с технической точки зрения система отопления. Такая бивалентная система более пригодна в северных широтах, где необходимо больше тепла для отопления, и его придется подводить в большем количестве от высокопотенциального источника. Если в здании установлены отдельные системы кондиционирования и отопления, то эти системы, зачастую, буквально мешают друг другу, особенно в переходные периоды. Использование же кольцевой системы совместно с системой отопления не порождает подобных проблем, так как ее работа полностью зависит от фактического состояния микроклимата в каждой отдельной зоне.

На предприятиях кольцевые теплонасосные системы могут участвовать в нагреве или охлаждении воды или воздуха в технологических целях, причем эти процессы будут включены в баланс общего теплоснабжения предприятия.

Говоря о традиционных системах теплоснабжения, трудно согласиться с их ограниченной экономичностью. Тепло используется частично, быстро рассеивается в атмосферу (при работе отопления и вентиляции), удаляется со сточными водами (через ГВС, технологические процессы) и другими путями. Хорошо еще, если для обеспечения некоторой экономичности установлены теплообменники типа воздух-воздух в системе вентиляции, или типа вода-вода для утилизации тепла, например, холодильных агрегатов, или какие-то другие местные устройства вторичного использования тепла. КТНС же решает данную задачу комплексно, во многих случаях позволяя сделать утилизацию тепла более эффективной.

Автоматизированное управление кольцевыми системами

К разочарованию многих производителей дорогостоящих систем автоматизации, теплонасосные системы не требуют сложных средств автоматизированного управления. Все регулирование здесь сводится лишь к поддержанию определенного значения температуры воды в контуре. Чтобы не допустить охлаждения воды ниже заданного предела, необходимо вовремя включать дополнительный нагреватель. И наоборот, чтобы не превысить верхний предел, надо своевременно включать градирню. Автоматическое управление этим несложным процессом можно реализовать при помощи нескольких термостатов. Поскольку температура воды в контуре КТНС может изменяться в довольно широком диапазоне (обычно от 18 до 320С), то нет также необходимости в использовании точной регулирующей арматуры.

Что касается процесса поступления тепла от теплового насоса к потребителю, то он контролируется за счет автоматики, встроенной в каждый тепловой насос. Например, ТНУ для кондиционирования воздуха имеют датчик температуры (термостат), устанавливаемый непосредственно в помещении. Этого обычного термостата вполне достаточно для управления работой ТН.

Тепловой насос полностью обеспечивает необходимые температурные параметры воздуха в помещениях, что позволяет отказаться от регулирующих заслонок в системе вентиляции и регулирующей арматуры в системе отопления (при бивалентной системе). Все эти обстоятельства способствуют снижению стоимости и повышению надежности инженерных систем в целом.

На крупных объектах, где кольцевая система включает в себя большое количество тепловых насосов и где установлены разнотипные ТНУ (для кондиционирования, утилизации тепла и для обеспечения технологических процессов), часто имеет смысл реализовывать более сложную систему автоматизированного управления, которая позволяет оптимизировать работу всей системы.

На работу кольцевой теплонасосной системы влияют следующие факторы:

  • во-первых, температура воды в контуре. От нее зависит коэффициент преобразования теплоты (СОР), то есть, отношение количества выдаваемого потребителю тепла к количеству потребляемой тепловым насосом энергии;
  • во-вторых, температура наружного воздуха;
  • в-третьих, параметры работы градирни. Для одного и того же количества удаленного тепла при разных условиях может быть затрачено разное количество энергии, потребляемой градирней. Это, в свою очередь, также зависит от температуры наружного воздуха, его влажности, наличия ветра и прочих условий;
  • в-четвертых, от количества работающих в данный момент в системе тепловых насосов. Здесь значение имеет суммарная мощность ТНУ, забирающих тепло из водяного контура, по сравнению с мощностью всех ТНУ, отдающих тепло в контур, то есть количество тепла, поступающего в контур или удаляемого из него.

Хорошо детям, хорошо бюджету

Перейдем к описанию проектов с использованием кольцевых теплонасосных систем.

Первый проект - это реконструкция обычной общеобразовательной школы на юге России. Летом прошлого года администрация Краснодарского края реализовала этот проект в г. Усть-Лабинск (городская школа №2). При реконструкции были выдержаны самые высокие стандарты в обеспечении санитарных требований и комфортного пребывания детей в школе. В частности, в здании была установлена полноценная климатическая система, обеспечивающая позонный контроль за температурой, притоком свежего воздуха и влажностью.

Инженерам при реализации данного проекта, во-первых, хотелось обеспечить должный уровень комфорта, индивидуальный контроль в каждом классе. Во-вторых, предполагалось, что кольцевая система позволит значительно снизить затраты на отопление школы и решить проблему низкой температуры воды в теплоцентрали на участке школы. Система состоит из более чем пятидесяти тепловых насосов производства фирмы Climatemaster (США) и градирни. Она получает дополнительное тепло от теплоцентрали города. Климатическая система находится под автоматизированным управлением и способна самостоятельно поддерживать наиболее комфортные для человека и одновременно экономичные режимы работы.

Эксплуатация описанной системы в зимние месяцы дала следующие результаты:

  • до модернизации (до установки тепловых насосов), ежемесячные затраты на обогрев 2500 м2 составляли 18440 руб.;
  • после модернизации здания отапливаемая площадь увеличилась до 3000 м2, а ежемесячные затраты на отопление снизились до 9800 руб.

Таким образом, использование тепловых насосов позволило более чем вдвое сократить затраты на отопление здания, отапливаемая площадь которого увеличилась почти на 20%.

Автономное тепло

Проблемы коттеджного строительства в Подмосковье сегодня связаны с тем, что инфраструктура (электрические сети, водопроводы), часто не позволяет расти новым поселкам. Существующие трансформаторные подстанции не справляются с возросшими нагрузками. Постоянные перебои с подачей электроэнергии (аварии на старых подстанциях, обрывы ветхих проводов) заставляют потребителей искать пути автономного энергоснабжения.

В описываемом проекте перед инженерами стояла задача обеспечить многокомнатный двухэтажный коттедж с мансардой теплом и электричеством. Общая отапливаемая площадь дома составила 200 м2. Из подведенных коммуникаций - артезианская вода и электричество.

Поскольку во главу угла было положено требование энергоэффективности, было решено установить солнечные батареи. Были закуплены и смонтированы прямо на участке за домом солнечные фотоэлектрические модули на 3,5 кВт. По расчетам инженеров, этого должно было хватить на подпитку аккумуляторных батарей, которые бы, в свою очередь, бесперебойно питали дом и систему отопления. Общая стоимость системы составила порядка 27?000 долларов США. Если учесть, что получен источник бесплатного электричества, и эта статья будет вычеркнута из семейного бюджета, то получается, что затраты на установку солнечной батареи окупятся менее, чем за 10 лет. А если учесть, что в другом случае пришлось бы строить подстанцию или жить с постоянными перебоями электроснабжения, то затраты уже можно считать окупившимися.

Для отопления было решено использовать геотермальную теплонасосную систему. Был закуплен американский тепловой насос типа "вода-вода". Данный тип тепловых насосов с помощью теплообменников производит горячую воду, которая может быть использована для горячего водоснабжения и отопления с помощью радиаторных батарей. Сам контур, поставляющий к тепловому насосу низкопотенциальное тепло, был проложен прямо на участке, прилегающем к коттеджу, на глубине 2 м. Контур представляет собой полиэтиленовую трубу, диаметром 32 мм и протяженностью 800 м. Установка теплового насоса с монтажом, поставкой оборудования и комплектующих обошлась в 10?000 долларов США.

Таким образом, затратив на организацию собственной автономной энергосистемы порядка 40?000 долларов США, хозяин коттеджа исключил затраты на теплоснабжение из своего бюджета, и обеспечил надежное автономное отопление.

Возможности применения кольцевых систем

Из вышеизложенного следует, что возможности применения кольцевой теплонасосной системы необычайно широки. Их можно использовать на самых разных объектах. Это административные, общественные здания, медицинские и оздоровительные учреждения, дома отдыха, развлекательные и спортивные комплексы, различные промышленные предприятия. Системы настолько гибкие, что их применение возможно в самых разных случаях и в очень большом количестве вариантов.

При разработке такой системы, прежде всего, нужно оценить потребности в тепле и холоде проектируемого объекта, изучить все возможные источники тепла внутри здания и все предполагаемые приемники тепла, определить теплопритоки и теплопотери. Наиболее пригодные из источников тепла могут быть использованы в кольцевой системе в том случае, если это тепло будет востребовано. Общая мощность утилизирующих тепловых насосов не должна быть бесполезно избыточной. При определенных условиях самым выгодным вариантом, возможно, будет установка ТНУ, использующих внешнюю среду в качестве источника и приемника тепла. Система должна быть сбалансирована по теплу, но это вовсе не означает, что общие мощности источников и потребителей тепла должны быть равны, они могут разниться, так как их соотношение может значительно изменяться при изменении условий работы системы.

Таким образом, кольцевая теплонасосная система выполняет функции и отопления, и кондиционирования воздуха, и эффективной утилизации тепла. Использование одной системы вместо нескольких всегда более выгодно с точки зрения капитальных и эксплутационных затрат.

Статья предоставлена компанией "АЭРОКЛИМАТ"

Становятся все менее выгодными и утрачивают свою актуальность. Сжигание газового или жидкого топлива в котлах, как никогда прежде, отягощает бюджет. Существенной экономии можно достичь, если использовать тепловые насосы для отопления дома. В них заложен принцип потребления бесплатной природной энергии, которая повсюду. Ее нужно только взять.

Эффективность вложений

Сжиженный газ и дизельное топливо не могут соперничать с тепловыми насосами ни по текущим затратам, ни по комфорту эксплуатации. Использование для отопления твердого топлива трудно поддается автоматизации и требует больших трудозатрат. Электроэнергия комфортный, но дорогой вид энергии. Для подключения электрического котла нужна отдельная мощная линия. До сих пор в отечественных условиях природный газ оставался наиболее востребованным и удобным видом топлива. Но он имеет ряд недостатков:

  1. Оформление разрешений.
  2. Согласование проекта в контролирующих органах и с соседями.
  3. Часть операций по врезке и подключению могут выполнять только уполномоченные организации.
  4. Периодическая поверка счетчика.
  5. Ограниченное распространение сети и удаленность точек подключения.
  6. Высокие затраты на прокладку питающей линии.
  7. Газоиспользующее оборудование является источником потенциальной угрозы и требует регламентированного контроля.

Существенным недостатком теплового насоса можно считать только высокие капитальные вложения на этапе закупки оборудования и монтажа. Цена стандартной отопительной системы на тепловом насосе с геотермальным теплообменником складывается из стоимости работы бурильщиков и специфического оборудования с монтажом. В комплект входят:

Работы выполняются квалифицированным персоналом с профессиональным инструментом. Несколько более высокие первоначальные затраты уравновешивается серьезными достоинствами:

  1. Теплонасосная установка очень экономична, что позволяет окупить дополнительные затраты всего за несколько сезонов.
  2. Есть широкие возможности для реализации гибкого автоматизированного управления с минимумом обслуживания.
  3. Комфорт использования.
  4. Хорошая приспособленность для установки в жилых помещениях, благодаря эстетичному и современному дизайну.
  5. Охлаждение помещений на базе того же комплекта оборудования.
  6. При работе на охлаждение помимо активного режима работы есть возможность использования пониженной температуры природной воды и грунта для реализации пассивного режима без лишних затрат энергии.
  7. Невысокая мощность оборудования не требует прокладки питающего кабеля большого сечения.
  8. Отсутствие необходимости в разрешительной документации.
  9. Возможность использования существующей разводки отопительных приборов.

На производство 1 кВт тепловой мощности достаточно затратить не более 250 Вт. Для отопления частного домовладения на 1 м.кв. площади потребляется всего около 25 Вт/час. И это с учетом горячего водоснабжения. Еще больше повысить энергоэффективность можно путем улучшения теплоизоляции дома.

Как это работает

Тепловой насос, принцип работы которого основан на цикле Карно, расходует энергию не на нагрев теплоносителя, а на перекачивание внешнего тепла. Технология не нова. Тепловые насосы трудятся в наших домах в составе холодильников уже десятки лет. В холодильнике тепло из камеры перемещается наружу. В новейших отопительных установках реализуется обратный процесс. Несмотря на низкую температуру за бортом, энергии там предостаточно.

Забирать тепло у более холодного тела и отдавать его более горячему становиться возможным, благодаря свойству вещества потреблять энергию при испарении и выделять ее при конденсации, а также повышать свою температуру в результате сжатия. Необходимые условия для кипения и испарения создаются путем изменения давления. В качестве рабочего тела используют жидкость с низкой температурой кипения – фреон.

В тепловом насосе преобразования происходят в 4 этапа:

  1. Охлажденное ниже температуры внешней среды жидкое рабочее тело циркулирует по контактирующему с ней змеевику. Жидкость нагревается и испаряется.
  2. Газ сжимается компрессором, в результате чего его температура превышается.
  3. В более холодном внутреннем змеевике происходит конденсация с выделением тепла.
  4. Жидкость перепускается через дросселирующее устройство для поддержания разности давлений между конденсатором и испарителем.

Практическая реализация

Непосредственный контакт испарителя и конденсатора с внешней и внутренней средой не характерен для систем отопления на базе тепловых насосов. Передача энергии происходит в теплообменниках. Прокачиваемый по внешнему контуру теплоноситель отдает тепло холодному испарителю. Горячий конденсатор передает его в систему отопления дома.

Эффективность такой схемы сильно зависит от разности температур внешней и внутренней сред. Чем она меньше, тем лучше. Поэтому тепло редко отбирают у наружного воздуха, температура которого может быть очень низкой.

По месту забора энергии различают установки следующих типов:

  • «грунт-вода»;
  • «вода-вода»;
  • «воздух-вода».

В качестве теплоносителя в грунтовых и водяных системах используют безопасные незамерзающие жидкости. Это может быть пропиленгликоль. Использование этиленгликоля для таких целей не допускается, так как при разгерметизации системы он вызовет отравление почв или водоносных горизонтов.

Установки «грунт-вода»

Уже на небольшой глубине температура грунта мало зависит от погодных условий, поэтому грунт является эффективной внешней средой. Ниже 5 метров, условия не меняются в любое время года. Различают 2 типа установок:

  • поверхностный;
  • геотермальный.

В первых на участке роются протяженные траншеи на глубину ниже уровня промерзания. В них кольцами раскладываются пластиковые трубы сплошного сечения и засыпаются землей.

В геотермальных системах теплообмен происходит на глубине, в скважинах. Высокие и постоянные температуры в глубинах земли дают хороший экономический эффект. На участке бурятся скважины глубиной от 50 до 100 м в необходимом по расчету количестве. Для одних строений может быть достаточно 1 скважины, для других и 5 будет мало. В скважину опускаются теплообменные зонды.

Установки «вода-вода»

В таких системах используется энергия незамерзающей зимой воды на дне рек и озер или грунтовых вод. Различают 2 типа водяных установок в зависимости от места реализации теплообмена:

  • в водоеме;
  • на испарителе.

Первый вариант является наименее затратным в плане капитальных вложений. Трубопровод просто погружается на дно близлежащего водоема и фиксируется от всплытия. Второй применяют при отсутствии в непосредственной близости водоемов. Бурят 2 скважины: расходную и приемную. Из первой вода перекачивается во вторую через теплообменник.

Установки «воздух-вода»

Воздушный теплообменник устанавливается просто рядом с домом или на крыше. Через него прокачивается наружный воздух. Такие системы менее эффективны, но дешевы. Улучшить характеристики помогает установка в подветренных местах.

Самостоятельная сборка системы

При большом желании можно попробовать установить тепловой насос своими руками. Приобретается мощный фреоновый компрессор, бухта медных труб, теплообменники и другие расходные материалы. Но тонкостей в этой работе много. Состоят они не столько в выполнении монтажных работ, сколько в правильном расчете, настройке и балансировке системы.

Достаточно неудачно подобрать фреоновую магистраль, чтобы попавшая в компрессор жидкость мгновенно вывела его из строя. Сложности также могут возникнуть с реализацией автоматического регулирования производительности системы.

Тепловой насос – это целая отопительная система, способная обогреть частный дом не хуже традиционного, привычного нам отопления. Понятно, что для того чтобы насос запустить в работу, сначала нужно его правильно установить.

Все теплонасосы, в зависимости от того, от какого природного источника они забирают тепло, делятся на три основных вида: грунт-вода, вода-вода, воздух-вода.

Монтаж каждого из этих видов имеет свои нюансы и особенности. – достаточно сложная конструкция и его установка это процесс трудоемкий, к которому нужно подойти с большой ответственностью. В статье мы рассмотрим, на что нужно обратить внимание при монтаже различных видов тепловых насосов.

Правила монтажа теплонасоса типа грунт–вода

Схема работы насоса системы «грунт-вода» (нажмите для увеличения)

Грунт является источником тепла. Углубившись на 5 метров в землю, можно заметить, что температура там остается практически одной и той же целый год (в большинстве регионов России – 8-10°C).

Благодаря этому отопление будет высокоэффективным. Работает система следующим образом: грунтовый теплообменник, находящийся в земле, собирает энергию, которая аккумулирует в теплоносителе, после чего перемещается в теплонасос и возвращается обратно .

Схема работы насоса системы «вода-вода» (нажмите для увеличения)

Часть энергии, излучаемой солнцем, остается под водой, особенно в толще воды. На дно водоема или в грунт дна укладывают специальные трубы, отягощенные грузом.

Большая температура теплоносителя в зимний период обеспечивает большую эффективность и теплопередачу. Но, увы, не подходит для установки в частных домах.

Более или менее для небольших домов подойдет вариант со скважиной. Специальный насос откачивает воду из скважины в испаритель, после чего вода сливается в другую скважину, расположенную ниже по течению и углубленную в подземный слой на 15 метров.

Совет специалиста: перед тем, как пользоваться системой вода-вода, необходимо исключить попадание мусора в испаритель и защитить его от ржавчины, а также установить фильтр. Если вода богата солями, то требуется установка промежуточного теплообменника с циркуляцией в нем чистой воды или антифриза.

Однако если вода из скважины плохо отводится, возможно маленькое наводнение и затопление насоса.

Правила монтажа теплонасоса типа воздух–вода

Схема работы насоса системы «воздух-вода» (нажмите для увеличения)

Менее популярен, чем грунт–вода из-за того, что в зимний период из воздуха невозможно отобрать достаточное количество тепла. -20°C – предел работы теплового насоса, после чего в работу вступает дополнительный тепловой генератор.

Основные схемы установки:

  1. Моноблочные конструкции монтируются в помещении, все оборудование собрано в одном корпусе. Гибкий воздуховод соединяет механизм с улицей. Также изготавливают и внешние моноблоки.
  2. Технология сплит включает в себя два блока, соединенных друг с другом.
  3. Один расположен на улице, другой – в здании. В первом установлен вентилятор с испарителем, а во втором – автоматика и конденсатор. Компрессор разрешается ставить как в доме, так и на улице.

Возьмите на заметку: выбирая воздушные тепловые насосы, учтите, что при похолодании мощность теряется почти вдвое.

В новых тепловых насосах данного типа внедрили функцию, позволяющую собирать тепло из помещения, вентиляционных выбросов и дымовых газов. Благодаря этому существует возможность отапливать помещение и греть проточную воду.

Покупая тепловой насос, нужно ориентироваться на конкретные потребности своего дома.

В идеале нужно знать теплопотери дома и климат, в котором расположено жилище. Эти данные важны для того, чтобы правильно выбрать мощность теплонасоса, и его модель.

Но нужно помнить и то, что подобрав теплонасос, нужно так же верно выбрать все составляющие отопительной системы, в которой теплонасос будет функционировать.

Невозможно найти универсальный теплонасос, так как каждая система отопления уникальна.
И все же, все отопительные системы с этим устройством имеют общие критерии, которые влияют на схему подключения теплонасоса:

  • наличие дополнительного источника тепла (отопительный котел, солнечная батарея, печь);
  • наличие водяных контуров (теплый пол, фанкойлы, радиаторы);
  • необходимость горячего водоснабжения;
  • наличие кондиционера;
  • наличие системы вентиляции;
  • тип теплонасоса.

Если учесть эти нюансы и ваши индивидуальные потребности, то вы сможете сделать правильный выбор и стать обладателем надежной, долговечной и экономичной системы отопления.

Смотрите видео, в котором показан весь процесс монтажа теплового насоса:

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари