Подпишись и читай
самые интересные
статьи первым!

Расчет и подбор трубопроводов. Оптимальный диаметр трубопровода

Если нагревать воду в открытом сосуде при атмосферном давлении, то ее температура будет непрерывно повышаться до тех пор, пока вся масса воды не прогреется и не закипит. В процессе нагревания испарение воды происходит с ее открытой поверхности, при кипении пар из воды образуется на нагреваемой поверхности и частично во всем объеме жидкости. Температура воды остается при этом постоянной (равной в рассматриваемом случае около 100 °С), несмотря на продолжающийся извне подвод теплоты к сосуду. Это явление объясняется тем, что при кипении подводимая теплота расходуется на работу по расщеплению частичек воды и образование из них пара.

При нагревании воды в закрытом сосуде ее температура повышается также лишь до тех пор, пока вода не закипит. Выделяющийся из воды пар скапливается в верхней части сосуда над поверхностью уровня воды; его температура равна температуре кипящей воды. Такой пар называют насыщенным.

Если пар из сосуда не отводится, а подвод теплоты к нему (извне) продолжается, то давление во всем объеме сосуда будет увеличиваться. Вместе с увеличением давления станет увеличиваться и температура кипящей воды и образующегося из нее пара. Опытным путем установлено, что каждому давлению соответствуют своя температура насыщенного пара и равная ей температура кипения воды, а также свой удельный объем пара.

Так, при атмосферном давлении (0,1 МПа) вода начинает кипеть и превращается в пар при температуре около 100 °С (точнее при 99,1 °С); при давлении 0,2 МПа - при 120 °С; при давлении 0,5 МПа - при 151,1 °С; при давлении 10 МПа - при 310 °С. Из приведенных примеров видно, что с ростом давления температура кипения воды и равная ей температура насыщенного пара увеличиваются. Удельный объем пара с ростом давления, наоборот, уменьшается.

При давлении 22,5 МПа нагреваемая вода переходит в насыщенный пар мгновенно, поэтому скрытая теплота парообразования при этом давлении равна нулю. Давление пара 22,5 МПа называют критическим.

Если насыщенный пар охлаждать, то он станет конденсироваться, т.е. превратится в воду; при этом он будет отдавать свою теплоту парообразования охлаждающему телу. Указанное явление имеет место в системах парового отопления, в которые насыщенный пар поступает из котельной или паровой магистрали. Здесь он охлаждается воздухом помещения, отдает воздуху свою теплоту, за счет чего последний нагревается, а пар конденсируется.

Состояние насыщенного пара является весьма неустойчивым: даже небольшие изменения давления и температуры приводят к конденсации части пара или же, наоборот, к испарению капелек воды, имеющихся в насыщенном паре. Насыщенный пар, совершенно не содержащий капелек воды, называют сухим насыщенным; насыщенный пар с капельками воды называют влажным.

В качестве теплоносителя в системах парового отопления применяют насыщенный пар, температура которого соответствует определенному давлению.

Системы парового отопления классифицируют по следующим признакам:

По начальному давлению пара - системы низкого давления (р изб

Способу возврата конденсата - системы с самотечным возвратом (замкнутые) и с возвратом конденсата с помощью питательного насоса (разомкнутые);

Конструктивной схеме прокладки трубопроводов - системы с верхней, нижней и промежуточной прокладкой распределительного паропровода, а также с прокладкой сухого и мокрого конденсатопровода.

Схема системы парового отопления низкого давления с верхней прокладкой паропровода показана на рис. 1, а. Насыщенный пар, образующийся в котле 1, пройдя сухопарник (сепаратор) 12, попадает в паропровод 5 и далее поступает в отопительные приборы 7. Здесь пар отдает свою теплоту через стенки приборов воздуху отапливаемого помещения и превращается в конденсат. Последний стекает по возвратному конденсатопроводу 10 в котел 1, преодолевая при этом давление пара в котле за счет давления столба конденсата, который поддерживается высотой 200 мм по отношению к уровню воды в сухопарнике 12.

Рисунок 1. Система парового отопления низкого давления: а - схема системы с верхней прокладкой паропровода; б - стояк с нижней разводкой пара; 1 - котел; 2 - гидравлический затвор; 3 - водомерное стекло; 4 - воздушная трубка; 5 - подающий паропровод; 6 - паровой вентиль; 7 - отопительный прибор; 8 - тройник с пробкой; 9 - конденсатопровод сухой; 10 - конденсатопровод мокрый; 11 - трубопровод подпитки; 12 - сухопарник; 13 - перепускная петля

В верхнюю часть возвратного конденсатопровода 10 вмонтирована трубка 4, соединяющая его с атмосферой для продувки в момент ввода и вывода системы из эксплуатации.

Уровень воды в сухопарнике контролируют с помощью водомерного стекла 3. Для предупреждения повышения давления пара в системе выше заданного уровня устанавливают гидравлический затвор 2 с рабочей высотой жидкости, равной h.

Регулировку системы парового отопления производят паровыми вентилями 6 и контрольными тройниками 8 с пробками, добиваясь, чтобы при работе парового котла в расчетном режиме в каждый отопительный прибор поступало такое количество пара, которое успевало бы полностью в нем сконденсироваться. В этом случае из предварительно открытого контрольного тройника выделение пара практически не наблюдается и вероятность «проскока» конденсата в воздушную трубку 4 ничтожна мала. Потери конденсата в системе парового отопления компенсируют подпиткой барабана котла специально обработанной водой (освобожденной от солей жесткости), подаваемой по трубопроводу 11.

Системы парового отопления, как уже отмечалось, бывают с верхней и нижней разводками паропровода. Недостатком нижней разводки пара (рис. 1, б) является то, что образующийся конденсат в подъемных и вертикальных стояках стекает навстречу пару и иногда перекрывает паропровод, вызывая гидравлические удары. Более спокойный слив конденсата происходит, если паропровод 5 проложен с уклоном в сторону движения пара, а конденсатопровод 9 - в сторону котла. Для слива попутного конденсата из паропровода в конденсатопровод систему снабжают специальными перепускными петлями 13.

Если сеть парового отопления имеет большое разветвление, то самотечный слив конденсата производят в специальный сборный бак 3 (рис. 2), откуда его перекачивают насосом 8 в котел 1. Насос работает периодически, в зависимости от изменения уровня воды в сухопарнике 2. Такую схему отопления называют разомкнутой; в ней для отделения конденсата от пара, как правило, используют конденсатоотводчики (конденсатные горшки) 7. Последние чаще всего имеют поплавковую или сильфонную конструкцию (рис. 3).

Рисунок 2. Схема принудительного возврата конденсата: 1 - котел; 2 - сухопарник; 3 - конденсатосборный бак; 4 - воздушная трубка; 5 - обводная линия; 6 - паровые вентили; 7 - конденсатоотводчик; 8 - подпиточный насос; 9 - обратный клапан

Поплавковый конденсатоотводчик (см. рис. 3, б) работает так. Пар и конденсат через входное отверстие поступают под поплавок 3, который соединен рычагом с шаровым клапаном 4. Поплавок 3 имеет форму колпака. Под давлением пара он всплывает, закрывая шаровой клапан 4. Конденсат заполняет всю камеру конденсатоотводчика; при этом пар под клапаном конденсируется и поплавок тонет, открывая шаровой клапан. Конденсат отводится в направлении, указанном стрелкой, до тех пор, пока новые порции пара, скопившиеся под колпаком, не заставят колпак всплыть. Затем цикл работы конденсатоотводчика повторяется.

Рисунок 3. Конденсатоотводчики: а – сильфонный; б – поплавковый; 1 – сильфон; 2 – легкокипящая жидкость; 3 – поплавок (опрокинутый колпак); 4 – шаровый клапан

На промышленных предприятиях, имеющих производственные потребители пара повышенного давления, системы парового отопления подключают к теплофикационным магистралям по схемам высокого давления (рис. 4). Пар от собственной или районной котельной поступает в распределительную гребенку 1, где давление его контролируют манометром 3. Затем по отходящим от гребенки 1 паропроводам 2 пар направляют к производственным потребителям, а по паропроводам Т1 - к потребителям системы парового отопления. Паропроводы Т1 подсоединены к гребенке 6 парового отопления, а гребенка 6 - к гребенке 1 через редукционный клапан 4. Редукционный клапан дросселирует пар до давления не более 0,3 МПа. Разводку паропроводов высокого давления систем парового отопления выполняют, как правило, поверху. Диаметры паропроводов и поверхности нагрева отопительных приборов этих систем несколько меньше, чем у систем парового отопления низкого давления.

Рисунок 4. Схема парового отопления высокого давления: 1 - распределительная гребенка; 2 - паропровод; 3 - манометр; 4 - редукционный клапан; 5 - байпас (обводная линия); 6 - гребенка системы отопления; 7 - грузовой предохранительный клапан; 8 - неподвижная опора; 9 - компенсаторы; 10 - паровые вентили; 11 - конденсатопровод; 12 - конденсатоотводчики

Недостатком систем парового отопления является трудность регулирования теплопроизводительности отопительных приборов, что, в конечном счете, приводит к перерасходу топлива в течение отопительного сезона.

Диаметры трубопроводов паровых систем отопления рассчитывают отдельно для паропроводов и конденсатопроводов. Диаметры паропроводов низкого давления определяют так же, как в системах водяного отопления. Потери давления в главном циркуляционном кольце системы?р рк, Па, представляют собой сумму сопротивлений (потерь давления) всех участков, входящих в это кольцо:

где n - доля потери давления на трение от общих потерь в кольце; ?I - суммарная длина участков главного циркуляционного кольца, м.

Затем определяют требуемое давление пара в котле р к, которое должно обеспечивать преодоление потерь давления в главном циркуляционном кольце. В системах парового отопления низкого давления разность давлений пара в котле и перед нагревательными приборами расходуется только на преодоление сопротивлений паровой магистрали, а конденсат возвращается самотеком. Для преодоления сопротивления отопительных приборов предусматривают запас давления р пр = 2000 Па. Удельную потерю давления пара можно определить по формуле

где 0,9 - значение коэффициента, учитывающего запас давления на преодоление неучтенных сопротивлений.

Для систем парового отопления низкого давления долю потерь на трение n принимают 0,65, а для систем высокого давления - 0,8. Вычисленное по формуле (3) значение удельной потери давления должно равняться или быть несколько больше значения, определенного по формуле (2).

Диаметры паропроводов определяют с учетом вычисленных удельных потерь давления и тепловой нагрузки каждого расчетного участка.

Диаметры паропроводов можно также определять, используя специальные таблицы в справочниках или номограмму (рис. 5), составленную для средних значений плотности пара низкого давления. При конструировании систем парового отопления скорость пара в паропроводах следует принимать с учетом рекомендаций, приведенных в табл. 1.

Таблица 1. Скорости пара в паропроводах

В остальном методика гидравлического расчета паропроводов низкого давления и сопротивлений циркуляционных колец полностью аналогична расчету трубопроводов водяных систем отопления.

Конденсатопроводы паровых систем отопления низкого давления удобно рассчитывать, используя верхнюю часть приведенной на рис. 5 номограммы.

Рисунок 5. Номограмма для расчета диаметров паропроводов и самотечных конденсатопроводов

При расчете паропроводов систем отопления высокого давления необходимо учитывать изменения объема пара от давления и уменьшение его объема при транспортировании вследствие попутной конденсации.

Расчет диаметров производят при следующих значениях параметров пара: плотность 1 кг/м 3 ; давление 0,08 МПа; температура 116,3 °С; кинематическая вязкость 21 10 6 м 2 /с. Для указанных параметров пара составлены специальные таблицы и построены номограммы, позволяющие подобрать диаметры паропроводов. После выбора диаметров производят пересчет удельной потери давления на трение с учетом действительных параметров проектируемой системы по формуле

где v - скорость пара, найденная по расчетным таблицам или номограмме.

При определении диаметров коротких паропроводов часто пользуются упрощенным методом, производя расчет по предельно допустимым скоростям движения пара.

К эксплуатационным преимуществам систем парового отопления относятся: простота пуска системы в работу; отсутствие циркуляционных насосов; низкая металлоемкость; возможность использования в ряде случаев отработавшего пара.

Недостатками систем парового отопления являются: низкая долговечность трубопроводов из-за повышенной коррозии внутренних поверхностей, вызываемой влажным воздухом в периоды прекращения подачи пара; шум, обусловленный большой скоростью движения пара по трубам; частые гидравлические удары от встречного движения попутного конденсата в подъемных паропроводах; низкие санитарно-гигиенические качества из-за высокой температуры (более 100 °С) поверхности отопительных приборов и труб, пригорания пыли и возможности ожогов людей.

В производственных помещениях с повышенными требованиями к чистоте воздуха, а также в жилых, общественных, административных и административно-бытовых зданиях применять паровое отопление нельзя. Системы парового отопления допускается использовать только в непожаро- и невзрывоопасных производственных помещениях с кратковременным пребыванием людей.

Схема сети показана на рис. 8

Рис. 8. Расчетная схема паропровода: I–IV – абоненты; 1–4 – узловые точки

Формулы, используемые для определения гидравлических потерь, как для жидкости, так и для пара являются одинаковыми.

Отличительная особенность паропровода – учет изменения плотности пара.

1. Определяем ориентировочное значение удельных потерь на трение на участках от источника тепла до наиболее удалённого потребителя IV, Па/м:

.

Здесь – суммарная длина участков 1 – 2 – 3 – IV; α –доля потерь давления в местных сопротивлениях, принимаемая равной 0,7 как для магистрали с П–образными компенсаторами со сварными отводами и предполагаемыми диаметрами (табл. 16).

Таблица 16

Коэффициент α для определения эквивалентных длин для паропроводов

Типы компенсаторов Условный проход трубы d у ,мм Значение коэффициента α
Для паропроводов Для водяных тепловых сетей и конденсатопроводов
Транзитные магистрали
Сальниковые П- ≤1000 0,2 0,2
образные с отводами:
гнутыми ≤300 0,5 0,3
200–350 0,7 0,5
сварными 400–500 600–1000 0,9 1,2 0,7
Разветвленные тепловые сети

Окончание табл. 16



2. Определяем плотность пара:

3. По номограммам находим диаметр паропровода (прил. 6).

4. Действительные потери давления, Па/м:

(117)

5. Действительная скорость пара:

Сверяем с табл. 17.

Таблица 17

Максимальная скорость движения пара в паропроводах

7. Суммарная эквивалентная длина на участках:

(119)

где – сумма коэффициентов местных сопротивлений (см. табл. 8).

8. Приведенная длина участка:

9. Потери давления на трение и в местных сопротивлениях на участке:

(121)

10. Давление пара в конце участка:

(122)

Данные расчетов свести в табл. 18 по схеме.


Таблица 18

Гидравлический расчет паровой сети

№ участка Расход пара D Размеры труб, мм Длина участка, м Скорость пара ωТ, м/с Удельные потери давления на трение Па/м Предполагаемая средняя плотность ρ ср, кг/м 3 Скорость движения пара м/с Потери давления Конец участка Средняя плотность пара ρср, кг/м3 Суммарные потери давления от ТЭЦ,МПа
Т/ч Кг/с Условный проход d у Наружный диаметр * толщина стенки; dn* S по плану l Эквивалентная местным сопротивлениям l Э приведенная l пр =l+ l Э давление р Н, МПа плотность ρ Н, кг/м 3 удельные Па/м на участке Па давление рК, МПа плотность ρК, кг/м 3
при ρ= 2,45 кг/ м 3 при ρ ср

Расчет паропровода

α – 0,3 ...0,6. (123)

По формуле находим диаметр трубы:

(124)

Задаемся скоростью пара в трубе. Из уравнения для расхода пара – σ=ωrF находим диаметр трубы по ГОСТу подбирается труба с ближайшим внутренним диаметром. Уточняются удельные линейные потери и виды местных сопротивлений, рассчитываются эквивалентные длины. Определяется давление на конце трубопровода. Рассчитываются потери тепла на расчетном участке по нормируемым потерям тепла :

(125)

где – потери тепла на единицу длины при заданной разности температур пара и окружающей среды с учетом потерь тепла на опорах, задвижках и т.п.

Если определено без учета потерь, тепла на опорах, задвижках и т. п., то

где t ср средняя температура пара на участке, 0 С, t 0 – температура окружающей среды, зависящая от способа прокладки, 0 С. При наземной прокладке t 0 = = t Н0 , при подземной бесканальной прокладке t 0 = t гр (температура грунта на глубине укладки). При прокладке в проходных и полупроходных каналах t 0 = =40–50°С.

При прокладке в переходных каналах t 0 = 5°С. По найденным потерям тепла определяют изменение энтальпии пара на участке и значение энтальпии пара в конце участка:

По найденным значениям давления и энтальпии пара в начале и конце участка определяется новое значение средней плотности пара (форм. 128).

Если новое значение плотности отличается от ранее заданного более чем на 3 %, то проверочный расчет повторяется с уточнением одновременно и R Л :

(128)

Потери энергии при движении жидкости по трубам определяются ре­жимом движения и характером внутренней поверхности труб. Свойства жидкости или газа учитываются в расчете с помощью их параметров: плотности р и кинематической вязкости v. Сами же формулы, использу­емые для определения гидравлических потерь, как для жидкости, так и для пара являются одинаковыми.

Отличительная особенность гидравлического расчета паропровода заключается в необходимости учета при определении гидравлических потерь изменения плотности пара. При расчете газопроводов плотность газа определяют в зависимости от давления по уравнению состояния, написанному для идеальных газов, и лишь при высоких давлениях (больше примерно 1,5 МПа) вводят в уравнение поправочный коэффи­циент, учитывающий отклонение поведения реальных газов от поведе­ния идеальных газов.

При использовании законов идеальных газов для расчета трубопро­водов, по которым движется насыщенный пар, получаются значительные ошибки. Законы идеальных газов можно использовать лишь для сильно перегретого пара. При расчете паропроводов плотность пара определя­ют в зависимости от давления по таблицам. Так как давление пара в свою очередь зависит от гидравлических потерь, расчет паропроводов ведут методом последовательных приближений. Сначала задаются по­терями давления на участке, по среднему давлению определяют плот­ность пара и далее рассчитывают действительные потери давления. Ес­ли ошибка оказывается недопустимой, производят пересчет.

При расчете паровых сетей заданными являются расходы пара, его начальное давление и необходимое давление перед установками, ис­пользующими пар. Методику расчета паропроводов рассмотрим на при­мере.

ТАБЛИЦА 7.6. РАСЧЕТ ЭКВИВАЛЕНТНЫХ ДЛИН (Аэ=0,0005 м)

№ участка на рис. 7.4

Местные сопротивления

Коэффициент мест­ного сопротивления С

Эквивалентная дли­на 1э, м

Задвижка

Задвижка

Сальниковые компенсаторы (4 шт.)

Тройник при разделении по­токов (проход)

Задвижка

Сальниковые компенсаторы (3 шт.)

Тройник при разделении по­токов (проход)

Задвижка

Сальниковые компенсаторы (3 шт.)

Сальниковые компенсаторы (2 шт.)

0,5 0,3-2=0,бі

Тройник при разделении по­токов (ответвление) Задвижка

Сальниковые компенсаторы (2 шт)

Тройник при разделении по­токов (ответвление) Задвижка

Сальниковые компенсаторы (1 шт)

6,61 кг/м3.

(3 шт.)................................... *........................................................ 2,8-3 = 8,4

Тройник при разделении потока (проход) . . ._________________ 1__________

Значение эквивалентной длины при 2£ = 1 при k3 = 0,0002 м для трубы диамет­ром 325X8 мм по табл. 7.2 /э=17,6 м, следовательно, суммарная эквивалентная дли­на для участка 1-2: /э = 9,9-17,6= 174 м.

Приведенная длина участка 1-2: /пр і-2=500+174=674 м.

Источником тепла называется комплекс оборудования и устройств, с помощью которых осуществляется преобразование природных и искусственных видов энергии в тепловую энергию с требуемыми для потребителей параметрами. Потенциальные запасы основных природных видов …

В результате гидравлического расчета тепловой сети определяют диаметры всех участков теплопроводов, оборудования и запорно-регули - рующей арматуры, а также потери давления теплоносителя на всех эле­ментах сети. По полученным значениям потерь …

В системах теплоснабжения внутренняя коррозия трубопроводов и оборудования приводит к сокращению срока их службы, авариям и зашламлению воды продуктами коррозии, поэтому необходимо пре­дусматривать меры борьбы с ней. Сложнее обстоит дело …

Трубопроводы для транспортировки различных жидкостей являются неотъемлемой частью агрегатов и установок, в которых осуществляются рабочие процессы, относящиеся к различным областям применения. При выборе труб и конфигурации трубопровода большое значение имеет стоимость как самих труб, так и трубопроводной арматуры. Конечная стоимость перекачки среды по трубопроводу во многом определяется размерами труб (диаметр и длина). Расчет этих величин осуществляется с помощью специально разработанных формул, специфичных для определенных видов эксплуатации.

Труба - это полый цилиндр из металла, дерева или другого материала, применяемый для транспортировки жидких, газообразных и сыпучих сред. В качестве перемещаемой среды может выступать вода, природный газ, пар, нефтепродукты и т.д. Трубы используются повсеместно, начиная с различных отраслей промышленности и заканчивая бытовым применением.

Для изготовления труб могут использоваться самые разные материалы, такие как сталь, чугун, медь, цемент, пластик, такой как АБС-пластик, поливинилхлорид, хлорированный поливинилхлорид, полибутелен, полиэтилен и пр.

Основными размерными показателями трубы являются ее диаметр (наружный, внутренний и т.д.) и толщина стенки, которые измеряются в миллиметрах или дюймах. Также используется такая величина как условный диаметр или условный проход - номинальная величина внутреннего диаметра трубы, также измеряемая в миллиметрах (обозначается Ду) или дюймах (обозначается DN). Величины условных диаметров стандартизированы и являются основным критерием при подборе труб и соединительной арматуры.

Соответствие значений условного прохода в мм и дюймах:

Трубе с круглым поперечным сечением отдают предпочтение перед другими геометрическими сечениями по ряду причин:

  • Круг обладает минимальным соотношением периметра к площади, а применимо к трубе это означает, что при равной пропускной способности расход материала у труб круглой формы будет минимальным в сравнении с трубами другой формы. Отсюда же следует и минимально возможные затраты на изоляцию и защитное покрытие;
  • Круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды с гидродинамической точки зрения. Также за счет минимально возможной внутренней площади трубы на единицу ее длины достигается минимизация трения между перемещаемой средой и трубой.
  • Круглая форма наиболее устойчива к воздействию внутренних и внешних давлений;
  • Процесс изготовления труб круглой формы достаточно прост и легкоосуществим.

Трубы могут сильно отличаться по диаметру и конфигурации в зависимости от назначения и области применения. Так магистральные трубопроводы для перемещения воды или нефтепродуктов способны достигать почти полуметра в диаметре при достаточно простой конфигурации, а нагревательные змеевики, также представляющие собой трубу, при малом диаметре имеют сложную форму с множеством поворотов.

Невозможно представить какую-либо отрасль промышленности без сети трубопроводов. Расчет любой такой сети включает подбор материала труб, составление спецификации, где перечислены данные о толщине, размере труб, маршруте и т.д. Сырье, промежуточный продукт и/или готовый продукт проходят производственные стадии, перемещаясь между различными аппаратами и установками, которые соединяются при помощи трубопроводов и фитингов. Правильный расчет, подбор и монтаж системы трубопроводов необходим для надежного осуществления всего процесса, обеспечения безопасной перекачки сред, а также для герметизации системы и недопущения утечек перекачиваемого вещества в атмосферу.

Не существует единой формулы и правил, которые могли бы быть использованы для подбора трубопровода для любого возможного применения и рабочей среды. В каждой отдельной области применения трубопроводов присутствует ряд факторов, требующих учета и способных оказать значительное влияние на предъявляемые к трубопроводу требования. Так, например, при работе со шламом, трубопровод большого размера не только увеличит стоимость установки, но также создаст рабочие трудности.

Обычно трубы подбирают после оптимизации расходов на материал и эксплуатационных расходов. Чем больше диаметр трубопровода, то есть выше изначальное инвестирование, тем ниже будет перепад давления и соответственно меньше эксплуатационные расходы. И наоборот, малые размеры трубопровода позволят уменьшить первичные затраты на сами трубы и трубную арматуру, но возрастание скорости повлечет за собой увеличение потерь, что приведет к необходимости затрачивать дополнительную энергию на перекачку среды. Нормы по скорости, фиксированные для различных областей применения, базируются на оптимальных расчетных условиях. Размер трубопроводов рассчитывают, используя эти нормы с учетом областей применения.

Проектирование трубопроводов

При проектировании трубопроводов за основу берутся следующие основные конструктивные параметры:

  • требуемая производительность;
  • место входа и место выхода трубопровода;
  • состав среды, включая вязкость и удельный вес;
  • топографические условия маршрута трубопровода;
  • максимально допустимое рабочее давление;
  • гидравлический расчет;
  • диаметр трубопровода, толщина стенок, предел текучести материала стенок при растяжении;
  • количество насосных станций, расстояние между ними и потребляемая мощность.

Надежность трубопроводов

Надежность в конструировании трубопроводов обеспечивается соблюдением надлежащих норм проектирования. Также обучение персонала является ключевым фактором обеспечения длительного срока службы трубопровода и его герметичности и надежности. Постоянный или периодический контроль работы трубопровода может быть осуществлен системами контроля, учёта, управления, регулирования и автоматизации, персональными приборами контроля на производстве, предохранительными устройствами.

Дополнительное покрытие трубопровода

Коррозионно-стойкое покрытие наносят на наружную часть большинства труб для предотвращения разрушающего действия коррозии со стороны внешней среды. В случае перекачивая коррозионных сред, защитное покрытие может быть нанесено и на внутреннюю поверхность труб. Перед вводом в эксплуатацию все новые трубы, предназначенные для транспортировки опасных жидкостей, проходят проверку на дефекты и протечки.

Основные положения для расчета потока в трубопроводе

Характер течения среды в трубопроводе и при обтекании препятствий способен сильно отличаться от жидкости к жидкости. Одним из важных показателей является вязкость среды, характеризуемая таким параметром как коэффициент вязкости. Ирландский инженер-физик Осборн Рейнольдс провел серию опытов в 1880г, по результатам которых ему удалось вывести безразмерную величину, характеризующую характер потока вязкой жидкости, названную критерием Рейнольдса и обозначаемую Re.

Re = (v·L·ρ)/μ

где:
ρ — плотность жидкости;
v — скорость потока;
L — характерная длина элемента потока;
μ - динамический коэффициент вязкости.

То есть критерий Рейнольдса характеризует отношение сил инерции к силам вязкого трения в потоке жидкости. Изменение значения этого критерия отображает изменение соотношения этих типов сил, что, в свою очередь, влияет на характер потока жидкости. В связи с этим принято выделять три режима потока в зависимости от значения критерия Рейнольдса. При Re<2300 наблюдается так называемый ламинарный поток, при котором жидкость движется тонкими слоями, почти не смешивающимися друг с другом, при этом наблюдается постепенное увеличение скорости потока по направлению от стенок трубы к ее центру. Дальнейшее увеличение числа Рейнольдса приводит к дестабилизации такой структуры потока, и значениям 23004000 наблюдается уже устойчивый режим, характеризуемый беспорядочным изменением скорости и направления потока в каждой отдельной его точке, что в сумме дает выравнивание скоростей потока по всему объему. Такой режим называется турбулентным. Число Рейнольдса зависит от задаваемого насосом напора, вязкости среды при рабочей температуре, а также размерами и формой сечения трубы, через которую проходит поток.

Профиль скоростей в потоке
ламинарный режим переходный режим турбулентный режим
Характер течения
ламинарный режим переходный режим турбулентный режим

Критерий Рейнольдса является критерием подобия для течения вязкой жидкости. То есть с его помощью возможно моделирование реального процесса в уменьшенном размере, удобном для изучения. Это крайне важно, поскольку зачастую бывает крайне сложно, а иногда и вовсе невозможно изучать характер потоков жидкости в реальных аппаратах из-за их большого размера.

Расчет трубопровода. Расчет диаметра трубопровода

Если трубопровод не теплоизолированный, то есть возможен обмен тепла между перемещаемой и окружающей средой, то характер потока в нем может изменяться даже при постоянной скорости (расходе). Такое возможно, если на входе перекачиваемая среда имеет достаточно высокую температуру и течет в турбулентном режиме. По длине трубы температура перемещаемой среды будет падать вследствие тепловых потерь в окружающую среду, что может повлечь за собой смену режима потока на ламинарный или переходный. Температура, при которой происходит смена режима, называется критической температурой. Значение вязкости жидкости напрямую зависит от температуры, поэтому для подобных случаев используют такой параметр как критическая вязкость, соответствующая точке смены режима потока при критическом значении критерия Рейнольдса:

v кр = (v·D)/Re кр = (4·Q)/(π·D·Re кр)

где:
ν кр - критическая кинематическая вязкость;
Re кр - критическое значение критерия Рейнольдса;
D - диаметр трубы;
v - скорость потока;
Q - расход.

Еще одним важным фактором является трение, возникающее между стенками трубы и движущимся потоком. При этом коэффициент трения во многом зависит от шероховатости стенок трубы. Взаимосвязь между коэффициентом трения, критерием Рейнольдса и шероховатостью устанавливается диаграммой Муди, позволяющей определить один из параметров, зная два других.


Формула Коулбрука-Уайта также применяется для вычисления коэффициента трения турбулентного потока. На основании этой формулы возможно построение графиков, по которым устанавливается коэффициент трения.

(√λ ) -1 = -2·log(2,51/(Re·√λ ) + k/(3,71·d))

где:
k - коэффициент шероховатости трубы;
λ - коэффициент трения.

Существуют также и другие формулы приблизительного расчета потерь на трение при напорном течении жидкости в трубах. Одним из наиболее часто используемых уравнений в этом случае считается уравнение Дарси-Вейсбаха. Оно основывается на эмпирических данных и используется в основном при моделировании систем. Потери на трение - это функция скорости жидкости и сопротивления трубы движению жидкости, выражаемой через значение шероховатости стенок трубопровода.

∆H = λ · L/d · v²/(2·g)

где:
ΔH - потери напора;
λ - коэффициент трения;
L - длина участка трубы;
d - диаметр трубы;
v - скорость потока;
g - ускорение свободного падения.

Потеря давления вследствие трения для воды рассчитывают по формуле Хазена — Вильямса.

∆H = 11,23 · L · 1/С 1,85 · Q 1,85 /D 4,87

где:
ΔH - потери напора;
L - длина участка трубы;
С - коэффициент шероховатости Хайзена-Вильямса;
Q - расход;
D - диаметр трубы.

Давление

Рабочее давление трубопровода - это набольшее избыточное давление, обеспечивающее заданный режим работы трубопровода. Решение о размере трубопровода и количестве насосных станций обычно принимается, опираясь на рабочее давление труб, производительность насоса и расходы. Максимальное и минимальное давление трубопровода, а также свойства рабочей среды, определяют расстояние между насосными станциями и требуемую мощность.

Номинальное давление PN - номинальная величина, соответствующая максимальному давлению рабочей среды при 20 °C, при котором возможна продолжительная эксплуатация трубопровода с заданными размерами.

При увеличении температуры нагрузочная способность трубы понижается, как и допустимое избыточное давление вследствие этого. Значение pe,zul показывает максимальное давление (изб) в трубопроводной системе при увеличении рабочей температуры.

График допустимых избыточных давлений:


Расчет падения давления в трубопроводе

Расчет падения давления в трубопроводе производят по формуле:

∆p = λ · L/d · ρ/2 · v²

где:
Δp - перепад давления на участке трубы;
L - длина участка трубы;
λ - коэффициент трения;
d - диаметр трубы;
ρ - плотность перекачиваемой среды;
v - скорость потока.

Транспортируемые рабочие среды

Чаще всего трубы используют для транспортировки воды, но также их могут применять для перемещения шлама, суспензий, пара и т.д. В нефтяной отрасли трубопроводы служат для перекачивания широкого спектра углеводородов и их смесей, сильно отличающихся по химическим и физическим свойствам. Сырая нефть может транспортироваться на больше расстояния от месторождений на суше или нефтяных вышек на шельфе до терминалов, промежуточных точек и НПЗ.

По трубопроводам также передают:

  • продукты нефтепереработки, такие как бензин, авиационное топливо, керосин, дизельное топливо, мазут и др.;
  • нефтехимическое сырье: бензол, стирол, пропилен и т.д.;
  • ароматические углеводороды: ксилол, толуол, кумол и т.д.;
  • сжиженное нефтяное топливо, такое как сжиженный природный газ, сжиженный нефтяной газ, пропан (газы со стандартной температурой и давлением, но подвергнутые сжижению с применением давления);
  • углекислый газ, жидкий аммиак (транспортируются как жидкости под действием давления);
  • битум и вязкое топливо слишком вязкое для транспортировки по трубопроводам, поэтому используются дистиллятные фракции нефти для разжижения этого сырья и получения в результате смеси, которую можно транспортировать посредством трубопровода;
  • водород (на небольшие расстояния).

Качество транспортируемой среды

Физические свойства и параметры транспортируемых сред во многом определяют проектные и рабочие параметры трубопровода. Удельный вес, сжимаемость, температура, вязкость, точка застывания и давление паров - основные параметры рабочей среды, которые необходимо учитывать.

Удельный вес жидкости - это ее вес на единицу объема. Многие газы транспортируются по трубопроводам под повышенным давлением, а при достижении определенного давления некоторые газы даже могут подвергаться сжижению. Поэтому степень сжатия среды является критичным параметром для проектирования трубопроводов и определения пропускной производительности.

Температура косвенно и напрямую оказывает влияние на производительность трубопровода. Это выражается в том, что жидкость увеличивается в объеме после увеличения температуры, при условии, что давление остается постоянным. Понижение температуры может также оказать влияние как на производительность так и на общий КПД системы. Обычно, когда температура жидкости понижается, это сопровождается увеличением ее вязкости, что создает дополнительное сопротивление трения по внутренней стенке трубы, требуя больше энергии для перекачивания одинакового количетсва жидкости. Очень вязкие среды чувствительны к перепадам рабочих температур. Вязкость представляет собой сопротивляемость среды течению и измеряется в сантистоксах сСт. Вязкость определяет не только выбор насоса, но также расстояние между насосными станциями.

Как только температура среды опускается ниже точки потери текучести, эксплуатация трубопровода становится невозможной, и для возобновления его функционирования предпринимаются некоторые опции:

  • нагревание среды или теплоизоляция труб для поддержания рабочей температуры среды выше ее точки текучести;
  • изменение химического состава среды перед попаданием в трубопровод;
  • разбавление перемещаемой среды водой.

Типы магистральных труб

Магистральные трубы изготавливают сварными или бесшовными. Бесшовные стальные трубы изготавливают без продольных сварных швов стальными отрезками с тепловой обработкой для достижения желаемого размера и свойств. Сварная труба изготавливается при использовании нескольких производственных процессов. Эти два типа отличаются друг от друга количеством продольных швов в трубе и типом используемого сварочного оборудования. Стальная сварная труба - наиболее часто используемый тип в нефтехимической области применения.

Каждый отрезок труб соединяют сварными секциями вместе для формирования трубопровода. Также в магистральных трубопроводах в зависимости от области применения используют трубы, изготовленные из стекловолокна, разнообразного пластика, асбоцемента и т.д.

Для соединения прямых участков труб, а также для перехода между отрезками трубопровода разного диаметра используются специально изготовленные соединительные элементы (колена, отводы, затворы).

колено 90° отвод 90° переходное ответвление разветвление
колено 180° отвод 30° переходной штуцер наконечник

Для монтажа отдельных частей трубопроводов и фитингов используются специальные соединения.

сварное фланцевое резьбовое муфтовое

Температурное удлинение трубопровода

Когда трубопровод находится под давлением, вся его внутренняя поверхность подвергается воздействию равномерно распределённой нагрузки, отчего возникают продольные внутренние усилия в трубе и дополнительные нагрузки на концевые опоры. Температурные колебания также оказывают воздействие на трубопровод, вызывая изменения в размерах труб. Усилия в закрепленном трубопроводе при колебаниях температур могут привысить допустимое значение и привести к избыточному напряжению, опасному для прочности трубопровода как в материале труб, так и во фланцевых соединениях. Колебание температуры перекачиваемой среды также создает температурное напряжение в трубопроводе, которое может передаться на арматуру, насосную станцию и пр. Это может повлечь за собой разгерметизацию стыков трубопроводов, выход из строя арматуры или дргуих элементов.

Расчет размеров трубопровода при изменении температуры

Расчет изменения линейных размеров трубопровода при изменении температуры производят по формуле:

∆L = a·L·∆t

a - коэффициент температурного удлинения, мм/(м°C) (см. таблицу ниже);
L - длина трубопровода (расстояние между неподвижными опорами), м;
Δt - разница между макс. и мин. температурой перекачиваемой среды, °С.

Таблица линейного расширения труб из различных материалов

Приведенные числа представляют собой средние показатели для перечисленных материалов и для расчета трубопровода из иных материалов данные из этой таблицы не должны браться за основу. При расчете трубопровода рекомендуется использовать коэффициент линейного удлинения, указываемый заводом-изготовителем трубы в сопровождающей технической спецификации или техпаспорте.

Температурное удлинение трубопроводов устраняют как применением специальных компенсационных участков трубопровода, так и при помощи компенсаторов, которые могут состоять из упругих или подвижных частей.

Компенсационные участки состоят из упругих прямых частей трубопровода, расположенных перпендикулярно друг к другу и крепящихся при помощи отводов. При температурном удлинении увеличение одной части компенсируется деформацией изгиба другой части на плоскости или деформацией изгиба и кручения в пространстве. Если трубопровод сам компенсирует температурное расширение, то это называется самокомпенсацией.

Компенсация происходит также и благодаря эластичным отводам. Часть удлинения компенсируется эластичностью отводов, другую часть устраняют за счет упругих свойств материала участка, находящегося за отводом. Компенсаторы устанавливают там, где не возможно использование компенсирующих участков или когда самокомпенсация трубопровода недостаточна.

По конструктивному исполнению и принципу работы компенсаторы бывают четырех видов: П-образные, линзовые, волнистые, сальниковые. На практике довольно часто применяются плоские компенсаторы с L-, Z- или U-образной формой. В случае пространственных компенсаторов, они представляют собой обычно 2 плоских взаимно перпендикулярных участка и имеют одно общее плечо. Эластичные компенсаторы производят из труб или эластичных дисков, либо сильфонов.

Определение оптимального размера диаметра трубопроводов

Оптимальный диаметр трубопровода может быть найден на основе технико-экономических расчетов. Размеры трубопровода, включая размеры и функциональные возможности различных компонентов, а также условия, при которых должна происходить эксплуатация трубопровода, определяет транспортирующая способность системы. Трубы большего размера подходят для более интенсивного массового потока среды при условии, что другие компоненты в системы подобраны и рассчитаны под эти условия надлежащим образом. Обычно, чем длиннее отрезок магистральной трубы между насосными станциями, тем требуется больший перепад давления в трубопроводе. Кроме того, изменение физических характеристик перекачиваемой среды (вязкость и т.д.), также может оказать большое влияние на давление в магистрали.

Оптимальный размер - наименьший из подходящих размеров трубы для конкретного применения, экономически эффективный на протяжении всего срока службы системы.

Формула для расчета производительности трубы:

Q = (π·d²)/4 · v

Q - расход перекачиваемой жидкости;
d - диаметр трубопровода;
v - скорость потока.

На практике для расчета оптимального диаметра трубопровода используют значения оптимальных скоростей перекачиваемой среды, взятые из справочных материалов, составленных на основе опытных данных:

Перекачиваемая среда Диапазон оптимальных скоростей в трубопроводе, м/с
Жидкости Движение самотеком:
Вязкие жидкости 0,1 - 0,5
Маловязкие жидкости 0,5 - 1
Перекачивание насосом:
Всасывающая сторона 0,8 - 2
Нагнетательная сторона 1,5 - 3
Газы Естественная тяга 2 - 4
Малое давление 4 - 15
Большое давление 15 - 25
Пары Перегретый пар 30 - 50
Насыщенный пар под давлением:
Более 105 Па 15 - 25
(1 - 0,5) · 105 Па 20 - 40
(0,5 - 0,2) · 105 Па 40 - 60
(0,2 - 0,05) · 105 Па 60 - 75

Отсюда получаем формулу для расчета оптимального диаметра трубы:

d о = √((4·Q) / (π·v о ))

Q - заданный расход перекачиваемой жидкости;
d - оптимальный диаметр трубопровода;
v - оптимальная скорость потока.

При высокой скорости потока обычно применяют трубы меньшего диаметра, что означает снижение затрат на закупку трубопровода, его техническое обслуживание и монтажные работы (обозначим K 1). При увеличении скорости происходит возрастание потерь напора на трение и в местных сопротивлениях, что приводит к увеличению затрат на перекачку жидкости (обозначим K 2).

Для трубопроводов больших диаметров затраты K 1 будут выше, а расходы во время эксплуатации K 2 ниже. Если сложить значения K 1 и K 2 , то получим общие минимальные затраты K и оптимальный диаметр трубопровода. Затраты K 1 и K 2 в этом случае приведены в один и тот же временной промежуток.

Расчет (формула) капитальных затрат для трубопровода

K 1 = (m·C M ·K M)/n

m - масса трубопровода, т;
C M - стоимость 1 т, руб/т;
K M - коэффициент, повышающий стоимость монтажных работ, например 1,8;
n - срок службы, лет.

Указанные затраты на эксплуатацию, связанны с потреблением энергии:

K 2 = 24·N·n дн ·C Э руб/год

N - мощность, кВт;
n ДН - кол-во рабочих дней в году;
С Э - затраты на один кВт-ч энергии, руб/кВт *ч.

Формулы для определения размеров трубопровода

Пример общих формул по определению размера труб без учета возможных дополнительных факторов воздействия, таких как эрозия, взвешенные твердые частицы и прочее:

Наименование Уравнение Возможные ограничения
Поток жидкости и газа под давлением
Потеря напора на трение
Дарси-Вейсбаха

d = 12·[(0,0311·f·L·Q 2)/(h f)] 0,2

Q - объемный расход, гал/мин;
d - внутренний диаметр трубы;
hf - потеря напора на трение;
L - длина трубопровода, футы;
f - коэффициент трения;
V - скорость потока.
Уравнение общего потока жидкости

d = 0,64·√(Q/V)

Q - объемный расход, гал/мин
Размер всасывающей линии насоса для ограничения потерь напора на трение

d = √(0,0744·Q)

Q - объемный расход, гал/мин
Уравнение общего потока газа

d = 0,29·√((Q·T)/(P·V))

Q - объемный расход, фут³/мин
T - температура, K
Р - давление фунт/дюйм² (абс);
V - скорость
Поток самотеком
Уравнение Маннинга для расчета диаметра трубы для максимального потока

d = 0,375

Q - объемный расход;
n - коэффициент шероховатости;
S - уклон.
Число Фруда соотношение силы инерции и силы тяжести

Fr = V / √[(d/12) · g]

g - ускорение свободного падения;
v - скорость течения;
L - длину трубы или диаметр.
Пар и испарение
Уравнение определения диаметра трубы для пара

d = 1,75·√[(W·v_g·x) / V]

W - массовый расход;
Vg - удельный объём насыщенного пара;
x - качество пара;
V - скорость.

Оптимальная скорость потока для различных трубопроводных систем

Оптимальный размер трубы выбирается из условия минимальных затрат на перекачивание среды по трубопроводу и стоимости труб. Однако необходимо учитывать также ограничения по скорости. Иногда, размер трубопроводной линии должен соответствовать требованиям технологического процесса. Так же часто размер трубопровода связан с перепадом давления. В предварительных проектных расчетах, где потери давления не учитываются, размер технологического трубопровода определяется по допустимой скорости.

Если в трубопроводе имеются изменения в направлении потока, то это приводит к значительному увеличению местных давлений на поверхности перпендикулярно направлению потока. Такого рода увеличение - функция скорости жидкости, плотности и исходного давления. Так как скорость обратно пропорциональна диаметру, высокоскоростные жидкости требуют особого внимания при выборе размера и конфигурации трубопровода. Оптимальный размер трубы, например, для серной кислоты ограничивает скорость среды до значения, при котором не допускается эрозия стенок в трубных коленах, чтобы таким образом не допустить повреждения структуры трубы.

Поток жидкости самотеком

Расчет размера трубопровода в случае потока, движущегося самотеком, достаточно сложен. Характер движения при такой форме потока в трубе может быть однофазным (полная труба) и двухфазным (частичное заполнение). Двухфазный поток образуется в том случае, когда в трубе одновременно присутствуют жидкость и газ.

В зависимости от соотношения жидкости и газа, а также их скоростей, режим двухфазного потока может варьироваться от пузырькового до дисперсного.

пузырьковый поток (горизонтальный) снарядный поток (горизонтальный) волновой поток дисперсный поток

Движущую силу для жидкости при движении самотеком обеспечивает разность высот начальной и конечной точек, причем обязательным условием является расположение начальной точки выше конечной. Иными словами разность высот определяет разность потенциальной энергии жидкости в этих положениях. Этот параметр также учитывается при подборе трубопровода. Помимо этого на величину движущей силы влияют значения давлений в начальной и конечной точке. Увеличение перепада давления влечет за собой увеличение скорости потока жидкости, что, в свою очередь, позволяет подбирать трубопровод меньшего диаметра, и наоборот.

В случае если конечная точка подсоединена к системе под давлением, например дистилляционной колонне, необходимо вычесть эквивалентное давление из имеющейся разницы в высоте, чтобы оценить реально создаваемое эффективное дифференциальное давление. Также если начальная точка трубопровода будет под вакуумом, то его влияние на общее дифференциальное давление также должно быть учтено при выборе трубопровода. Окончательный подбор труб осуществляется с использованием дифференциального давления, учитывающего все вышеперечисленные факторы, а не основывается только лишь на перепаде высот начальной и конечной точки.

Поток горячей жидкости

В технологических установках обычно сталкиваются с различными проблемами при работе с горячими или кипящими средами. В основном причина заключается в испарении части потока горячей жидкости, то есть фазовом превращении жидкости в пар внутри трубопровода или оборудования. Типичный пример - явление кавитации центробежного насоса, сопровождаемое точечным вскипанием жидкости с последующим образованием пузырьков пара (паровая кавитация) или выделением растворенных газов в пузырьки (газовая кавитация).

Трубопровод большего размера предпочтительнее из-за снижения скорости потока в сравнении с трубопроводом меньшего диаметра при постоянном расходе, что обуславливается достижением более высокого показателя NPSH на всасывающей линии насоса. Также причиной возникновения кавитации при потере давления могут быть точки внезапной смены направления потока или сокращения размера трубопровода. Возникающая парогазовая смесь создает препятствие прохождению потока и может вызвать повреждения трубопровода, что делает явление кавитации крайне нежелательным при эксплуатации трубопровода.

Обводной трубопровод для оборудования/приборов

Оборудование и приборы, особенно те, которые могут создавать значительные перепады давления, то есть теплообменники, регулирующие клапаны и прочее, оснащают обводными трубопроводами (для возможности не прерывать процесс даже во время технических работ по обслуживанию). Такие трубопроводы обычно имеют 2 отсечных клапана, установленных в линию установки, и клапан, регулирующий поток параллельно к этой установке.

При нормальной работе поток жидкости, проходя через основные узлы аппарата, испытывает дополнительное падение давления. В соответствии с этим рассчитывается давление нагнетания для него, создаваемое подсоединенным оборудованием, например центробежным насосом. Насос подбирается на основе общего перепада давления в установке. Во время движения по обводному трубопроводу этот дополнительный перепад давления отсутствует, в то время как работающий насос нагнетает поток прежней силы, согласно своим рабочим характеристикам. Чтобы избежать различия в характеристиках потока через аппарат и обводную линию, рекомендуется использовать обводную линию меньшего размера с регулировочным клапаном, чтобы создать давление, эквивалентное основной установке.

Линия отбора проб

Обычно небольшое количество жидкости отбирается для анализа, чтобы определить ее состав. Отбор может производиться на любой стадии процесса для определения состава сырья, промежуточного продукта, готового продукта или же просто транспортируемого вещества, такого как сточные воды, теплоноситель и т.д. Размер участка трубопровода, на котором происходит отбор проб, обычно зависит от типа анализируемой рабочей среды и расположения точки отбора пробы.

Например, для газов в условиях повышенного давления достаточно небольших трубопроводов с клапанами для отбора нужного количества образцов. Увеличение диаметра линии отбора проб позволит снизить долю отбираемой для анализа среды, но такой отбор становится сложнее контролировать. В то же время небольшая линия отбора проб плохо подходит для анализа различных суспензий, в которых твердые частицы могут забивать проточную часть. Таким образом, размер лини отбора проб для анализа суспензий во многом зависит от размера твердых частиц и характеристик среды. Аналогичные выводы применимы и к вязким жидкостям.

При подборе размера трубопровода для отбора проб обычно учитывают:

  • характеристики жидкости, предназначенной для отбора;
  • потери рабочей среды при отборе;
  • требования безопасности во время отбора;
  • простота эксплуатации;
  • расположение точки отбора.

Циркуляция охлаждающей жидкости

Для трубопроводов с циркулирующей охлаждающей жидкостью предпочтительны высокие скорости. В основном это объясняется тем, что охлаждающая жидкость в охладительной башне подвергается воздействию солнечного света, что создает условия для образования водорослесодержащего слоя. Часть этого водорослесодержащего объема попадает в циркулирующую охлаждающую жидкость. При низкой скорости потока водоросли начинают расти в трубопроводе и через некоторое время создают трудности для циркуляции охлаждающей жидкости или ее прохода в теплообменник. В этом случае рекомендуется высокая скорость циркуляции во избежание образования водорослевых заторов в трубопроводе. Обычно использование интенсивно циркулирующей охлаждающей жидкости встречается в химической промышленности, для чего требуются трубопроводы больших размеров и длины, чтобы обеспечить питание различных теплообменных аппаратов.

Переполнение резервуара

Резервуары оснащают трубами для перелива по следующим причинам:

  • избегание потери жидкости (избыток жидкости поступает в другой резервуар, а не выливается за пределы изначального резервуара);
  • недопущение утечек нежелательных жидкостей за пределы резервуара;
  • поддержание уровня жидкости в резервуарах.

Во всех вышеупомянутых случаях трубы для перелива рассчитаны на максимально допустимый поток жидкости, поступающий в резервуар, независимо от расхода жидкости на выходе. Другие принципы подбора труб аналогичны подбору трубопроводов для самотечных жидкостей, то есть в соответствии с наличием доступной вертикальной высоты между начальной и конечной точкой трубопровода перелива.

Самая высокая точка трубы перелива, которая также является его начальной точкой, находится в месте подсоединения к резервуару (патрубок перелива резервуара) обычно почти на самом верху, а самая низкая конечная точка может быть около сливного желоба почти у самой земли. Однако линия перелива может заканчиваться и на более высокой отметке. В этом случае имеющийся дифференциальный напор будет ниже.

Поток шлама

В случае горной промышленности, руда обычно добывается в труднодоступных участках. В таких местах, как правило, нет железнодорожного или дорожного сообщения. Для таких ситуаций гидравлическая транспортировка сред с твердыми частицами рассматривается как наиболее приемлемая, в том числе и в случае расположения горноперерабатывающих установок на достаточном удалении. Шламовые трубопроводы используются в различных промышленных областях для транспортировки твердых сред в дробленом виде вместе с жидкостью. Такие трубопроводы зарекомендовали себя как наиболее экономически выгодные по сравнению с другими методами транспортировки твердых сред в больших объемах. Помимо этого к их преимуществам можно отнести достаточную безопасность из-за отсутствия нескольких видов транспортировки и экологичность.

Суспензии и смеси взвешенных веществ в жидкостях хранятся в состоянии периодического перемешивания для поддержания однородности. В противном случае происходит процесс расслоения, при котором взвешенные частицы, в зависимости от их физических свойств, всплывают на поверхность жидкости или оседают на дно. Перемешивание обеспечивается благодаря оборудованию, такому как резервуар с мешалкой, в то время как в трубопроводах, это достигается за счет поддержания турбулентных условий движения потока среды.

Снижение скорости потока при транспортировке взвешенных в жидкости частиц не желательно, так как в потоке может начаться процесс разделения фаз. Это может привести к закупориванию трубопровода и изменению концентрации транспортируемого твердого вещества в потоке. Интенсивному перемешиванию в объеме потока способствует турбулентный режим течения.

С другой стороны, чрезмерное уменьшение размеров трубопровода также часто приводит к его закупорке. Поэтому выбор размера трубопровода - это важный и ответственный шаг, требующий предварительного анализа и расчетов. Каждый случай должен рассматриваться индивидуально, поскольку различные шламы ведут себя по-разному на различных скоростях жидкости.

Ремонт трубопроводов

В ходе эксплуатации трубопровода в нем могут возникать различного рода утечки, требующие немедленного устранения для поддержания работоспособности сисетмы. Ремонт магистрального трубопровода может быть осуществлен несколькими способами. Это может быть как замена целого сегмента трубы или небольшого участка, в котором возникла утечка, так и наложение заплатки на существующую трубу. Но прежде чем выбрать какой-либо способ ремонта необходимо провести тщательное изучение причины возникновения утечки. В отдельных случаях может потребоваться не просто ремонт, а смена маршрута трубы для предотвращения повторного ее повреждения.

Первым этапом ремонтных работ является определение местоположения участка трубы, требующего вмешательства. Далее в зависимости от типа трубопровода определяется перечень необходимого оборудования и мероприятий, необходимых для устранения утечки, а также проводится сбор необходимых документов и разрешений, если подлежащий ремонту участок трубы находится на территории другого собственника. Так как большинство труб расположено под землей, может возникнуть необходимость извлечения части трубы. Далее покрытие трубопровода проверяется на общее состояние, после чего часть покрытия удаялется для проведения ремонтных работ непосредсвтенно с трубой. После ремонта могут быть проведены различные проверочные мероприятия: ультразвуковое испытание, цветная дефектоскопия, магнитно-порошковая дефектоскопия и т.п.

Хотя некоторые ремонтные работы требуют полного отключения трубопровода, часто бывает достаточно только временного перерыва в работе для изолирования ремонтируемого участка или подготовки обводного пути. Однако в большенстве случаев ремонтные работы проводят при полном отключении трубопровода. Изолирование участка трубопровода может осуществляться с помощью заглушек или отсечных клапанов. Далее устанавливают необходимое оборудование и осуществляют непосредственно ремонт. Ремонтные работы проводят на поврежденном участке, освобожденном от среды и без давления. По окончании ремонта заглушки открывают и восстанавливают целостность трубопровода.

Включайся в дискуссию
Читайте также
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Причины и симптоматика инсульта у детей
Мыс крестовый лиинахамари