Подпишись и читай
самые интересные
статьи первым!

Виды нейронов и их функции. Строение и функции нейронов

Нейрон (от греч. neuron - нерв) - это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более 100 миллиардов нейронов.

Функции нейронов Как и другие клетки, нейроны должны обеспечивать поддержание собственной структуры и функций, приспосабливаться к изменяющимся условиям и оказывать регулирующее влияние на соседние клетки. Однако основная функция нейронов - это переработка информации: получение, проведение и передача другим клеткам. Получение информации происходит через синапсы с рецепторами сенсорных органов или другими нейронами, или непосредственно из внешней среды с помощью специализированных дендритов. Проведение информации происходит по аксонам, передача - через синапсы.

Строение нейрона

Тело клетки Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в них находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Аксон - обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами. Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии. Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик - образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Синапс Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие - гиперполяризацию; первые являются возбуждающими, вторые - тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Структурная классификация нейронов

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.

Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;

Мультиполярные нейроны - Нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе

Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (т. е. находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация нейронов По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние – неультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - эта группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комиссуральные и проекционные (головной мозг).

Морфологическая классификация нейронов Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

учитывают размеры и форму тела нейрона,

количество и характер ветвления отростков,

длину нейрона и наличие специализированные оболочки.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см. По количеству отростков выделяют следующие морфологические типы нейронов: - униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге; - псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях; - биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях; - мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона Нейрон развивается из небольшой клетки - предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему. Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона. Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне.

Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки. Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Клетки в организме человека дифференцированы в зависимости от видовой принадлежности. По сути, они являются структурными элементами различных тканей. Каждая максимально приспособлена к определенному виду деятельности. Строение нейрона является ярким тому подтверждением.

Нервная система

Большинство клеток организма имеют сходное строение. У них компактная форма, заключенная в оболочку. Внутри ядро и набор органелл, выполняющих синтез и обмен необходимых веществ. Однако строение и функции нейрона имеют отличия. Он является структурной единицей нервной ткани. Эти клетки обеспечивают связь между всеми системами организма.

Основу ЦНС составляют головной и спинной мозг. В двух этих центрах выделяют серое и белое вещество. Различия связаны с выполняемыми функциями. Одна часть получает сигнал от раздражителя и обрабатывает его, а другая отвечает за проведение необходимой ответной команды. За пределами главных центров нервная ткань образует пучки скоплений (узлы или ганглии). Они ветвятся, разводя проводящую сигналы сеть по всему организму (периферическая нервная система).

Нервные клетки

Чтобы обеспечивать множественные связи, нейрон имеет особое строение. Кроме тела, в котором сосредоточены главные органеллы, присутствуют отростки. Часть их короткие (дендриты), обычно их несколько, другой (аксон) - он один, и его длина в отдельных структурах может достигать 1 метра.

Строение нервной клетки нейрона имеет такой вид, чтобы обеспечивать наилучший взаимообмен информацией. Дендриты сильно ветвятся (как крона дерева). Своими окончаниями они взаимодействуют с отростками других клеток. Место их стыка называют синапсом. Там происходит прием-передача импульса. Его направление: рецептор - дендрит - тело клетки (сома) - аксон - реагирующий орган или ткань.

Внутреннее строение нейрона по составу органелл сходно с другими структурными единицами тканей. В нем присутствует ядро и цитоплазма, ограниченная мембраной. Внутри располагаются митохондрии и рибосомы, микротрубочки, эндоплазматическая сеть, аппарат Гольджи.

От сомы клетки (основы) в большинстве случаев отходит несколько толстых ответвлений (дендритов). Они не имеют четкой границы с телом и покрыты общей мембраной. По мере отдаления стволы становятся тоньше, происходит их ветвление. В итоге самые тонкие их части имеют вид заостренных нитей.

Особое строение нейрона (тонкий и длинный аксон) предполагает необходимость защиты его волокна на всей протяженности. Поэтому сверху он покрыт оболочкой из шванновских клеток, образующих миелин, с перехватами Ранвье между ними. Такая структура обеспечивает дополнительную защиту, изолирует проходящие импульсы, дополнительно питает и поддерживает нити.

Аксон берет свое начало с характерной возвышенности (холмика). Отросток в итоге также ветвится, но это происходит не по всей его протяженности, а ближе к окончанию, в местах соединения с другими нейронами или с тканями.

Классификация

Нейроны разделяют на виды в зависимости от типа медиатора (посредника проводящего импульса) выделяемого на окончаниях аксона. Это может быть холин, адреналин и пр. От места расположения в отделах ЦНС они могут относиться к соматическим нейронам или к вегетативным. Различают воспринимающие клетки (афферентные) и передающие обратные сигналы (эфферентные) в ответ на раздражение. Между ними могут находиться итернейроны, отвечающие за обмен информацией внутри ЦНС. По типу ответной реакции клетки могут тормозить возбуждение или, наоборот, повышать его.

По состоянию их готовности различают: «молчащие», которые начинают действовать (передают импульс) только при наличии определенного вида раздражения, и фоновые, что постоянно осуществляют мониторинг (непрерывная генерация сигналов). В зависимости от типа воспринимаемой от сенсоров информации меняется и строение нейрона. В этой связи их классифицируют на бимодальные, с относительно простым ответом на раздражение (два взаимосвязанных вида ощущения: укол и - как результат - боль, и полимодальные. Это более сложная структура - полимодальные нейроны (специфическая и неоднозначная реакция).

Особенности, строение и функции нейрона

Поверхность мембраны нейрона покрыта маленькими выростами (шипами) для увеличения контактируемой зоны. Они в общей сложности могут занимать до 40% площади клетки. Ядро нейрона, как и у других видов клеток, несет в себе наследственную информацию. Нервные клетки не делятся митозом. Если связь аксона с телом будет разорвана, отросток отмирает. Однако если сома не была повреждена, она способна сгенерировать и вырастить новый аксон.

Хрупкое строение нейрона предполагает наличие дополнительной «опеки». Защитные, опорные, секреторные и трофические (питание) функции обеспечивает нейроглия. Ее клетки заполняют все пространство вокруг. До определенной степени она способствует восстановлению нарушенных связей, а также борется с инфекциями и вообще «заботится» о нейронах.

Клеточная мембрана

Этот элемент обеспечивает функцию барьера, отделяя внутреннюю среду от находящейся снаружи нейроглии. Тончайшая пленка состоит из двух слоев белковых молекул и находящихся между ними фосфолипидов. Строение мембраны нейрона предполагает наличие в ее структуре специфических рецепторов, отвечающих за узнавание раздражителей. Они обладают выборочной чувствительностью и при необходимости «включаются» при наличии контрагента. Связь внутренней и наружной сред происходит через канальцы, пропускающие ионы кальция или калия. При этом они открываются или закрываются под действием белковых рецепторов.

Благодаря мембране клетка имеет свой потенциал. При передаче его по цепочке происходит иннервация возбудимой ткани. Контакт мембран соседствующих нейронов происходит в синапсах. Поддержание постоянства внутренней среды - это важная составляющая жизнедеятельности любой клетки. И мембрана тонко регулирует концентрацию в цитоплазме молекул и заряженных ионов. При этом происходит транспорт их в необходимых количествах для протекания реакций метаболизма на оптимальном уровне.

Она осуществляется по трём основным группам призна­ков: морфологическим, функциональным и биохимическим.

1. Морфологическая классификация нейронов (по особенностям строения). По количеству отростков ней­роны делятся на униполярные (с одним отростком), бипо­лярные (с двумя отростками) , псевдоуниполярные (ложно униполярные), мультиполярные (имеют три и более отрост­ков). (Рис. 8-2). Последних в нервной системе больше всего.

Рис. 8-2. Типы нервных клеток.

1. Униполярный ней­рон.

2. Псевдоуниполярный нейрон.

3. Биполярный нейрон.

4. Мультиполярный нейрон.

В цитоплазме нейронов видны нейрофибриллы.

(По Ю. А. Афанасьеву и др.).

Псевдоуниполярными нейроны называют потому, что отходя от тела, аксон и дендрит вначале плотно прилегают друг к другу, создавая впечатление одного отростка, и лишь потом Т-образно расходятся (к ним относятся все рецепторные нейроны спинальных и краниальных ганглиев). Униполярные нейроны встречаются только в эмбриогенезе. Биполярными нейронами являются биполярные клетки сетчатки глаза, спирального и вестибулярного ганглиев. По форме описано до 80 вариантовнейронов: звёздчатые, пирамидальные, гру­шевидные, веретеновидные, паукообразные и др.

2. Функциональная (в зависимости от выполняемой функции и места в рефлекторной дуге):рецепторные, эффек­торные, вставочные и секреторные. Рецепторные (чувстви­тельные, афферентные) нейроны с помощью дендритов вос­принимают воздействия внешней или внутренней среды, ге­нерируют нервный импульс и передают его другим типам нейронов. Они встречаются только в спинальных ганглиях и чувствительных ядрах черепномозговых нервов. Эффектор­ные (эфферентные) нейроны, передают возбуждение на ра­бочие органы (мышцы или железы). Они располагаются в передних рогах спинного мозга и вегетативных нервных ганглиях. Вставочные (ассоциативные) нейронырасполага­ются между рецепторными и эффекторными нейронами; по количеству их больше всего, особенно в ЦНС. Секреторные нейроны (нейросекреторные клетки) –это специализирован­ные нейроны, по своей функции напоминающие эндокринные клетки . Они синтезируют и выделяют в кровь нейрогор­моны, расположены в гипоталамической области головного мозга. Они регулируют деятельность гипофиза, а через него и многие периферические эндокринные железы.

3. Медиаторная (по химической природе выделяемого медиатора):

Холинергические нейроны (медиатор ацетилхолин);

Аминергические (медиаторы – биогенные амины, на­пример норадреналин, серотонин, гистамин);

ГАМКергические (медиатор – гаммааминомасляная кислота);

Аминокислотергические (медиаторы – аминокислоты, такие как глютамин, глицин, аспартат);

Пептидергические (медиаторы – пептиды, например опиоид­ные пептиды, субстанция Р, холецистокинин, и др.);

Пуринергические (медиаторы – пуриновые нуклео­тиды, например аденин) и др.

Внутреннее строение нейронов

Ядро нейрона обычно крупное, округлое, с мелкодис­персным хроматином, 1-3 крупными ядрышками. Это отра­жает высокую интенсивность процессов транскрипции в ядре нейрона.

Клеточная оболочка нейрона способна генерировать и проводить электрические импульсы. Это достигается изме­нением локальной проницаемости её ионных каналов для Na+ и К+, изменением электрического потенциала и быст­рым перемещением его по цитолемме (волна деполяризации, нервный импульс).

В цитоплазме нейронов хорошо развиты все органоиды общего назначения. Митохондрии многочисленны и обеспе­чивают высокие энергетические потребности нейрона, свя­занные со значительной активностью синтетических процес­сов, проведением нервных импульсов, работой ионных насо­сов. Они характеризуются быстрым изнашиванием и обнов­лением (рис 8-3). Комплекс Гольджи очень хорошо развит. Не случайно эта органелла впервые была описана и демонст­рируется в курсе цитологии именно в нейронах. При свето­вой микроскопии он выявляется в виде колечек, нитей, зёр­нышек, расположенных вокруг ядра (диктиосомы). Много­численные лизосомы обеспечивают постоянное интенсивное разрушение изнашиваемых компонентов цитоплазмы ней­рона (аутофагия).

Р
ис. 8-3. Ультрастук­турная орга­низация тела нейрона.

Д. Дендриты. А. Ак­сон.

1. Ядро (ядрышко показано стрелкой).

2. Митохондрии.

3. Комплекс Голь­джи.

4. Хроматофильная субстанция (уча­стки гранулярной цито­плаз­мотической сети).

5. Лизосомы.

6. Аксонный холмик.

7. Нейротру­бочки, нейрофиламенты.

(По В. Л. Быкову).

Для нормального функционирования и обновления структур нейрона в них должен быть хорошо развит бело­ксинтезирующий аппарат (рис. 8-3). Гранулярная цитоплаз­матическая сеть в цитоплазме нейронов образует скопле­ния, которые хорошо окрашиваются основными красителями и видны при световой микроскопии в виде глыбок хромато­фильного вещества (базофильное, или тигровое вещество, субстанция Ниссля). Термин субстанция Ниссля сохра­нился в честь учёного Франца Ниссля, впервые ее описав­шего. Глыбки хроматофильного вещества расположены в пе­рикарионах нейронов и дендритах, но никогда не встреча­ются в аксонах, где белоксинтезирующий аппарат развит слабо (рис. 8-3). При длительном раздражении или повреж­дении нейрона эти скопления гранулярной цитоплазматиче­ской сети распадаются на отдельные элементы, что на свето­оптическом уровне проявляется исчезновением субстанции Ниссля (хроматолиз , тигролиз).

Цитоскелет нейронов хорошо развит, образует трёх­мерную сеть, представленную нейрофиламентами (толщиной 6-10 нм) и нейротрубочками (диаметром 20-30 нм). Нейро­филаменты и нейротрубочки связаны друг с другом попереч­ными мостиками, при фиксации они склеиваются в пучки толщиной 0,5-0,3 мкм, которые окрашиваются солями се­ребра.На светооптическом уровне они описаны под назва­нием нейрофибрилл. Они образуют сеть в перикарионах нейроцитов, а в отростках лежат параллельно (рис. 8-2). Ци­тоскелет поддерживает форму клеток, а также обеспечивает транспортную функцию – участвует в транспорте веществ из перикариона в отростки (аксональный транспорт).

Включения в цитоплазме нейрона представлены липид­ными каплями, гранулами липофусцина – «пигмента старе­ния» – жёлто-бурого цвета липопротеидной природы. Они представляют собой остаточные тельца (телолизосомы) с продуктами непереваренных структур нейрона. По-види­мому, липофусцин может накапливаться и в молодом воз­расте, при интенсивном функционировании и повреждении нейронов. Кроме того, в цитоплазме нейронов черной суб­станции и голубого пятна ствола мозга имеются пигментные включения меланина . Во многих нейронах головного мозга встречаются включения гликогена .

Нейроны не способны к делению, и с возрастом их число постепенно уменьшается вследствие естественной ги­бели. При дегенеративных заболеваниях (болезнь Альцгей­мера, Гентингтона, паркинсонизм) интенсивность апоптоза возрастает и количество нейронов в определённых участках нервной системы резко уменьшается.

НЕЙРОН. ЕГО СТРОЕНИЕ И ФУНКЦИИ

Глава 1 МОЗГ

ОБЩИЕ СВЕДЕНИЯ

Традиционно со времён французского физиолога Биша (начало XIX в.) нервную систему разделяют на соматическую и вегетативную, в каждую из которых входят структуры головного и спинного мозга, называемые центральной нервной системой (ЦНС), а также лежащие вне спинного и головного мозга и поэтому относящиеся к периферической нервной системе нервные клетки и нервные волокна, иннервирующие органы и ткани организма.

Соматическая нервная система представлена эфферентными (двигательными) нервными волокнами, иннервирующими скелетную мускулатуру, и афферентными (чувствительными) нервными волокнами, идущими в ЦНС от рецепторов. Вегетативная нервная система включает в себя эфферентные нервные волокна, идущие к внутренним органам и рецепторам, и афферентные волокна от рецепторов внутренних органов. По морфологическим и функциональным особенностям вегетативная нервная система разделяется на симпатическую и парасимпатическую.

По своему развитию, а также структурной и функциональной организации нервная система человека имеет сходство с нервной системой разных видов животных, что существенно расширяет возможности её исследования не только морфологами и нейрофизиологами, но и психофизиологами.

У всех видов позвоночных нервная система развивается из пласта клеток на наружной поверхности эмбриона – эктодермы. Часть эктодермы, называемая нервной пластинкой, сворачивается в полую трубку, из которой формируются головной и спинной мозг. В основе этого формирования лежит интенсивное деление эктодермальных клеток и формирование нервных клеток. Каждую минуту формируется примерно 250 000 клеток [Коуэн, 1982].

Молодые несформированные нервные клетки постепенно мигрируют из областей, где они возникли, к местам своей постоянной локализации и объединяются в группы. В результате стенка трубки утолщается, сама трубка начинает трансформироваться, и на ней появляются идентифицируемые участки мозга, а именно: в её передней части, которая будет в дальнейшем заключена в череп, образуются три первичных мозговых пузыря – это rhombencephalon, или задний мозг; mesencephalon, или средний мозг, и prosencephalon, или передний мозг (рис. 1.1 А, Б). Из задней части трубки формируется спинной мозг. Мигрировав на место постоянной локализации, нейроны начинают дифференцироваться, у них появляются отростки (аксоны и дендриты) и их тела приобретают определённую форму (см. параграф 2).

Одновременно происходит дальнейшая дифференциация мозга. Задний мозг дифференцируется на продолговатый мозг, мост и мозжечок; в среднем мозге нервные клетки группируются в виде двух пар крупных ядер, называемых верхними и нижними бугорками четверохолмия. Центральное скопление нервных клеток (серое вещество) на этом уровне носит название покрышек среднего мозга.

В переднем мозге происходят наиболее существенные изменения. Из него дифференцируются правая и левая камеры. Из выпячиваний этих камер в дальнейшем формируются сетчатки глаз. Остальная, большая часть, правой и левой камер превращается в полушария; эта часть мозга называется конечным мозгом (telencephalon), и наиболее интенсивное развитие она получает у человека.

Образовавшийся после дифференциации полушарий центральный отдел переднего мозга получил название промежуточного мозга (diencephalon); он включает в себя таламус и гипоталамус с железистым придатком, или гипофизарным комплексом. Части мозга, расположенные ниже конечного мозга, т.е. от промежуточного до продолговатого мозга включительно, называют стволом мозга.

Под влиянием сопротивления черепа интенсивно увеличивающиеся стенки конечного мозга отодвигаются назад и прижимаются к стволу мозга (рис. 1.1 В). Наружный слой стенок конечного мозга становится корой больших полушарий, а их складки между корой и верхней частью ствола, т.е. таламусом, образуют базальные ядра – полосатое тело и бледный шар. Кора больших полушарий мозга – это наиболее позднее в эволюции образование. По некоторым данным у человека и у других приматов не менее 70% всех нервных клеток ЦНС локализовано в коре больших полушарий [Наута, Фейртаг, 1982]; её площадь увеличена за счёт многочисленных извилин. В нижней части полушарий кора подворачивается вовнутрь и образует сложные складки, которые на поперечном срезе напоминают морского конька – гиппокамп.

Рис.1.1. Развитие мозга млекопитающих [Милнер, 1973]

А. Расширение переднего конца нервной трубки и образование трёх отделов головного мозга

Б Дальнейшее расширение и разрастание переднего мозга

В . Разделение переднего мозга на промежуточный мозг (таломус и гипоталамус), базальные ядра и кору больших полушарий. Показано относительное расположение этих структур:

1 – передний мозг (prosencephalon); 2 – средний мозг (mesencepholon); 3 – задний мозг (rhombencephalon); 4 – спинной мозг (medulla spinalis); 5– боковой желудочек (ventriculus lateralis); 6 – третий желудочек (ventriculus tertius); 7 – сильвиев водопровод (aqueductus cerebri); 8 – четвёртый желудочек (ventriculus quartus); 9 – полушария мозга (hemispherium cerebri); 10 – таламус (thalamus) и гиполамус (hypothalamus); 11– базальные ядра (nuclei basalis); 12 – мост (pons) (вентрально) и мозжечок (cerebellum)(дорсально); 13 – продолговатый мозг (medulla oblongata).

В толще стенок дифференцирующихся структур мозга в результате агрегации нервных клеток формируются глубинные мозговые образования в виде ядер, формаций и субстанций, причём в большинстве областей мозга клетки не только агрегируют друг с другом, но и приобретают некоторую предпочтительную ориентацию. Например, в коре головного мозга большинство крупных пирамидных нейронов выстраиваются в ряд таким образом, что их верхние полюса с дендритами направлены к поверхности коры, а нижние полюса с аксонами – в направлении белого вещества. С помощью отростков нейроны формируют связи с другими нейронами; при этом аксоны многих нейронов, прорастая в отдалённые участки, образуют специфические анатомически и гистологически выявляемые проводящие пути. Следует отметить, что процесс формирования структур мозга и проводящих путей между ними происходит не только за счёт дифференциации нервных клеток и прорастания их отростков, но и за счёт обратного процесса, заключающегося в гибели некоторых клеток и ликвидации ранее сформированных связей.

В результате описанных ранее трансформаций образуется мозг – предельно сложное морфологическое образование. Схематическое изображение мозга человека представлено на рис. 1.2.

Рис. 1.2. Головной мозг (правое полушарие; частично удалены теменная, височная и затылочная области):

1 – медиальная поверхность лобной области правого полушария; 2 – мозолистое тело (corpus callosum); 3 – прозрачная перегородка (septum pellucidum); 4 – ядра гипоталамуса (nuclei hypothalami); 5 – гипофиз (hypophisis); 6 – мамилярное тело (corpus mamillare); 7– субталамическое ядро (nucleus subthalamicus); 8 – красное ядро (nucleus ruber) (проекция); 9 – чёрная субстанция (substantia nigra)(проекция); 10– шишковидная железа (corpus pineale); 11 – верхние бугорки четверохолмия (colliculi superior tecti mesencepholi); 12 – нижние бугорки четверохолмия (colliculi inferior tecti mesencephali); 13 – медиальное коленчатое тело (МКТ) (corpus geniculatum mediale); 14 – латеральное коленчатое тело (ЛКТ) (corpus geniculatum laterale); 15 – нервные волокна, идущие от ЛКТ в первичную зрительную кору; 16 – шпорная извилина (sulcus calcarinus); 17– гиппокампальная извилина (girus hippocampalis); 18 – таламус (thalamus); 19 – внутренняя часть бледного шара (globus pallidus); 20 – наружная часть бледного шара; 21 – хвостатое ядро (nucleus caudatus); 22 – скорлупа (putamen); 23 – островок (insula); 24 – мост (pons); 25 – мозжечок (кора)(cerebellum); 26– зубчатое ядро мозжечка (nucleus dentatus); 27– продолговатый мозг (medulla oblongata); 28– четвёртый желудочек (ventriculus quartus); 29 – зрительный нерв (nervus opticus); 30 – глазодвигательный нерв (nervus oculomotoris); 31 – тригеминальный нерв (nervus trigeminus); 32 – вестибулярный нерв (nervus vestibularis). Стрелкой обозначен свод

НЕЙРОН. ЕГО СТРОЕНИЕ И ФУНКЦИИ

Мозг человека состоит из 10 12 нервных клеток. Обычная нервная клетка получает информацию от сотен и тысяч других клеток и передаёт сотням и тысячам, а количество соединений в головном мозге превышает 10 14 - 10 15 . Открытые более 150 лет тому назад в морфологических исследованиях Р. Дютроше, К. Эренберга и И. Пуркинье, нервные клетки не перестают привлекать к себе внимание исследователей. Как независимые элементы нервной системы они были открыты сравнительно недавно – в XIX в. Гольджи и Рамон-и-Кахал применили достаточно совершенные методы окраски нервной ткани и нашли, что в структурах мозга можно выделить клетки двух типов: нейроны и глию. Нейробиолог и нейроанатом Рамон-и-Кахал использовал метод окраски по Гольджи для картирования участков головного и спинного мозга. В результате была показана не только чрезвычайная сложность, но и высокая степень упорядоченности нервной системы. С тех пор появились новые методы исследования нервной ткани, позволяющие выполнить тонкий анализ её строения, – например, использование гисторадиохимии выявляет сложнейшие связи между нервными клетками, что позволяет выдвигать принципиально новые предположения о построении нейронных систем.

Имеющая исключительно сложное строение, нервная клетка – это субстрат самых высокоорганизованных физиологических реакций, лежащих в основе способности живых организмов к дифференцированному реагированию на изменения внешней среды. К функциям нервной клетки относят передачу информации об этих изменениях внутри организма и её запоминание на длительные сроки, создание образа внешнего мира и организацию поведения наиболее целесообразным способом, обеспечивающим живому существу максимальный успех в борьбе за своё существование.

Исследования основных и вспомогательных функций нервной клетки в настоящее время развились в большие самостоятельные области нейробиологии. Природа рецепторных свойств чувствительных нервных окончаний, механизмы межнейронной синаптической передачи нервных влияний, механизмы появления и распространения нервного импульса по нервной клетке и её отросткам, природа сопряжения возбудительного и сократительного или секреторного процессов, механизмы сохранения следов в нервных клетках – всё это кардинальные проблемы, в решении которых за последние десятилетия достигнуты большие успехи благодаря широкому внедрению новейших методов структурного, электрофизиологического и биохимического анализов.

Размер и форма

Размеры нейронов могут быть от 1 (размер фоторецептора) до 1000 мкм (размер гигантского нейрона у морского моллюска Aplysia) (см. [Сахаров, 1992]). Форма нейронов также исключительно разнообразна. Наиболее ясно форма нейронов видна при приготовлении препарата полностью изолированных нервных клеток. Нейроны чаще всего имеют неправильную форму. Существуют нейроны, напоминающие «листик» или «цветок». Иногда поверхность клеток напоминает мозг – она имеет «борозды» и «извилины». Исчерченность мембраны нейронов увеличивает её поверхность более чем в 7 раз.

В нервных клетках различимы тело и отростки. В зависимости от функционального назначения отростков и их количества различают клетки монополярные и мультиполярные. Монополярные клетки имеют только один отросток – это аксон. Согласно классическим представлениям, у нейронов один аксон, по которому возбуждение распространяется от клетки. Согласно же наиболее новым результатам, полученным в электрофизиологических исследованиях с использованием красителей, которые могут распространяться от тела клетки и прокрашивать отростки, нейроны имеют более чем один аксон. Мультиполярные (биполярные) клетки имеют не только аксоны, но и дендриты. По дендритам сигналы от других клеток поступают в нейрон. Дендриты в зависимости от их локализации могут быть базальными и апикальными. Дендритное дерево некоторых нейронов чрезвычайно разветвлено, а на дендритах находятся синапсы – структурно и функционально оформленные места контактов одной клетки с другой.

Какие клетки более совершенны – униполярные или биполярные? Униполярные нейроны могут быть определённым этапом в развитии биполярных клеток. В то же время у моллюсков, которые на эволюционной лестнице занимают далеко не верхний этаж, нейроны униполярные. Новыми гистологическими исследованиями показано, что даже у человека при развитии нервной системы клетки некоторых структур мозга из униполярных «превращаются» в биполярные. Подробное исследование онтогенеза и филогенеза нервных клеток убедительно показало, что униполярное строение клетки является вторичным явлением и что во время эмбрионального развития можно шаг за шагом проследить постепенное превращение биполярных форм нервных клеток в униполярные. Рассматривать биполярный или униполярный тип строения нервной клетки как признак сложности строения нервной системы вряд ли верно.

Отростки-проводники придают нервным клеткам способность объединяться в нервные сети различной сложности, что является основой для создания из элементарных нервных клеток всех систем мозга. Для приведения в действие этого основного механизма и его использования нервные клетки должны обладать вспомогательными механизмами. Назначением одного из них является превращение энергии различных внешних воздействий в тот вид энергии, который может включить процесс электрического возбуждения. У рецепторных нервных клеток таким вспомогательным механизмом являются особые сенсорные структуры мембраны, позволяющие изменять её ионную проводимость при действии тех или иных внешних факторов (механических, химических, световых). У большинства других нервных клеток – это хемочувствительные структуры тех участков поверхностной мембраны, к которым прилежат окончания отростков других нервных клеток (постсинаптические участки) и которые могут изменять ионную проводимость мембраны при взаимодействии с химическими веществами, выделяемыми нервными окончаниями. Возникающий при таком изменении локальный электрический ток является непосредственным раздражителем, включающим основной механизм электрической возбудимости. Назначение второго вспомогательного механизма – преобразование нервного импульса в процесс, который позволяет использовать принесённую этим сигналом информацию для запуска определённых форм клеточной активности.

Цвет нейронов

Следующая внешняя характеристика нервных клеток – это их цвет. Он также разнообразен и может указывать на функцию клетки – например, нейроэндокринные клетки имеют белый цвет. Жёлтый, оранжевый, а иногда и коричневый цвет нейронов объясняется пигментами, которые содержатся в этих клетках. Размещение пигментов в клетке неравномерно, поэтому её окраска различна по поверхности – наиболее окрашенные участки часто сосредоточены вблизи аксонного холмика. По-видимому, существует определённая взаимосвязь между функцией клетки, её цветом и её формой. Наиболее интересные данные об этом получены в исследованиях на нервных клетках моллюсков.

Синапсы

Биофизический и клеточно-биологический подход к анализу нейронных функций, возможность идентификации и клонирования генов, существенных для сигнализации, вскрыли тесную связь между принципами, которые лежат в основе синаптической передачи и взаимодействия клеток. В результате было обеспечено концептуальное единство нейробиологии с клеточной биологией.

Когда выяснилось, что ткани мозга состоят из отдельных клеток, соединённых между собой отростками, возник вопрос: каким образом совместная работа этих клеток обеспечивает функционирование мозга в целом? На протяжении десятилетий споры вызывал вопрос о способе передачи возбуждения между нейронами, т.е. каким путём она осуществляется: электрическим или химическим. К середине 20-х гг. большинство учёных приняли ту точку зрения, что возбуждение мышц, регуляция сердечного ритма и других периферийных органов – результат воздействия химических сигналов, возникающих в нервах. Эксперименты английского фармаколога Г. Дейла и австрийского биолога О. Леви были признаны решающими подтверждениями гипотезы о химической передаче.

Усложнение нервной системы развивается по пути установления связей между клетками и усложнения самих соединений. Каждый нейрон имеет множество связей с клетками-мишенями. Эти мишени могут быть нейронами разных типов, нейросекреторными клетками или мышечными клетками. Взаимодействие нервных клеток в значительной мере ограничено специфическими местами, в которые могут приходить соединения – это синапсы. Данный термин произошёл от греческого слова «застёгивать» и был введён Ч. Шеррингтоном в 1897 г. А на полвека раньше К. Бернар уже отмечал, что контакты, которые формируют нейроны с клетками-мишенями, специализированы, и, как следствие, природа сигналов, распространяющихся между нейронами и клетками-мишенями, каким-то образом изменяется в месте этого контакта. Критичные морфологические данные о существовании синапсов появились позже. Их получил С. Рамон-и-Кахал (1911), который показал, что все синапсы состоят из двух элементов – пресинаптической и постсинаптической мембраны. Рамон-и-Кахал предсказал также существование третьего элемента синапса – синаптической щели (пространства между пресинаптическим и постсинаптическим элементами синапса). Совместная работа этих трёх элементов и лежит в основе коммуникации между нейронами и процессами передачи синаптической информации. Сложные формы синаптических связей, формирующихся по мере развития мозга, составляют основу всех функций нервных клеток – от сенсорной перцепции до обучения и памяти. Дефекты синаптической передачи лежат в основе многих заболеваний нервной системы.

Синаптическая передача через большую часть синапсов мозга опосредуется при взаимодействии химических сигналов, поступающих из пресинаптической терминали, с постсинаптическими рецепторами. В течение более чем 100 лет изучения синапса все данные рассматривались с точки зрения концепции динамической поляризации, выдвинутой С. Рамон-и-Кахалом. В соответствии с общепринятой точкой зрения синапс передаёт информацию только в одном направлении: информация течёт от пресинаптической к постсинаптической клетке, антероградно направленная передача информации обеспечивает финальный шаг в сформированных нейронных коммуникациях.

Анализ новых результатов заставляет предполагать, что существенная часть информации передаётся и ретроградно – от постсинаптического нейрона к пресинаптическим терминалям нерва . В некоторых случаях были идентифицированы молекулы, которые опосредуют ретроградную передачу информации. Это целый ряд веществ от подвижных маленьких молекул окиси азота до больших полипептидов, таких, как фактор роста нерва. Даже если сигналы, которые передают информацию ретроградно, различны по своей молекулярной природе, принципы, на основе которых эти молекулы действуют, могут быть сходными. Бидирекциональность передачи обеспечивается и в электрическом синапсе, в котором щель в соединительном канале формирует физическую связь между двумя нейронами, без использования нейромедиатора для передачи сигналов от одного нейрона на другой. Это позволяет осуществлять бидирекциональную передачу ионов и других маленьких молекул. Но реципрокная передача существует также в дендродендритных химических синапсах, где оба элемента имеют приспособления для высвобождения передатчика и ответа. Так как эти формы передачи часто трудно дифференцировать в сложных сетях мозга, случаев бидирекциональной синаптической коммуникации может оказаться значительно больше, чем это кажется сейчас.

Бидирекциональная передача сигналов в синапсе играет важную роль в любом из трёх основных аспектов работы нервной сети: синаптической передаче, пластичности синапсов и созревании синапсов во время развития. Пластичность синапсов – это основа для формирования связей, которые создаются при развитии мозга и при научении. В обоих случаях требуется ретроградная передача сигналов от постк пресинаптической клетке, сетевой эффект которой заключается в том, чтобы сохранить или потенциировать активные синапсы. Ансамбль синапсов вовлекает координированное действие протеинов, высвобождаемых из преи постсинаптической клетки. Первичная функция белков состоит в том, чтобы индуцировать биохимические компоненты, требуемые для высвобождения передатчика из пресинаптической терминали, а также для того, чтобы организовать устройство для передачи внешнего сигнала постсинаптической клетке.

Последнее обновление: 10/10/2013

Научно-популярная статья о нервных клетках: строение, сходства и различия нейронов с другими клетками, принцип передачи электрических и химических импульсов.

Нейрон - это нервная клетка, являющаяся основным строительным блоком для нервной системы. Нейроны во многом схожи с другими клетками, но существует одно важное отличие нейрона от других клеток: нейроны специализируются на передаче информации по всему телу.

Эти узкоспециализированные клетки способны на передачу информации и химическим, и электрическим путем. Существует также несколько различных видов нейронов, выполняющих различные функции в человеческом теле.

Сенсорные (чувствительные) нейроны доносят информацию, поступающую из клеток сенсорных рецепторов в мозг. Моторные (двигательные) нейроны передают команды от мозга к мускулам. Интернейроны (вставочные нейроны) способны сообщать информацию между разными нейронами в теле.

Нейроны в сравнении с другими клетками нашего тела

Сходства с другими клетками:

  • Нейроны, как и другие клетки имеют ядро, содержащее генетическую информацию
  • Нейроны и другие клетки окружены оболочкой, которая защищает клетку.
  • В клеточных телах нейронов и других клеток содержатся органеллы, поддерживающие жизнь клетки: митохондрии, аппарат Гольджи и цитоплазма.

Отличия, которые делают нейроны уникальными

В отличии от других клеток, нейроны перестают воспроизводится вскоре после рождения. Поэтому некоторые отделы мозга имеют большее количество нейронов при рождении, чем потом, т. к. нейроны гибнут, но не перемещаются. Несмотря на то, что нейроны не размножаются, учеными было доказано, что новые связи между нейронами появляются в течении всей жизни.

У нейронов есть мембрана, которая создана для того, чтобы посылать информацию в другие клетки. - это особые устройства, передающие и воспринимающие информацию. Межклеточные связи называются синапсами. Нейроны выпускают химические соединения (нейромедиаторы или нейротрансмиттеры) в синапсы, для коммуникации с другими нейронами.

Строение нейрона

Нейрон имеет всего три основные части: аксон, клеточное тело и дендриты. Однако, все нейроны немного различаются по форме, размеру, и характеристиками в зависимости от роли и функции нейрона. У одних нейронов всего несколько ветвей дендритов, другие сильно разветвляются для того, чтобы получать большое количество информации. У одних нейронов короткие аксоны, у других они могут быть достаточно длинными. Самый длинный аксон в человеческом теле тянется от нижней части позвоночника до большого пальца ноги, его длина - приблизительно 0,91 метра (3 фута)!

Больше о строении нейрона

Потенциал действия

Как нейроны посылают и воспринимают информацию? Чтобы нейроны сообщались, им необходимо передавать информацию и в самом нейроне, и от нейрона к следующему нейрону. Для этого процесса используются и электрические сигналы, и химические передатчики.

Дендриты воспринимают информацию от сенсорных рецепторов или других нейронов. Затем эта информация посылается в клеточное тело и на аксон. Как только эта информация покидает аксон, она передвигается по всей длине аксона, с помощью электрического сигнала, называемого потенциал действия.

Связь между синапсами

Сразу как электрический импульс достигает аксона, информация должна быть подана дендритам прилегающего нейрона через синаптическую щель к. В некоторых случаях, электрический сигнал может преодолеть щель между нейронами почти мгновенно и продолжить свое движение.

В других случаях, нейромедиаторам нужно передать информацию от одного нейрона к следующему. Нейромедиаторы - это химические передатчики, которые выпускаются из аксонов для пересечения синаптической щели и достигают рецепторов других нейронов. В процессе, называемом «обратный захват», нейромедиаторы прикрепляются к рецептору и абсорбируются нейроном для повторного использования.

Нейромедиаторы

Это неотъемлемая часть нашего ежедневного функционирования. Пока что точно неизвестно сколько существует нейромедиаторов, но ученые нашли уже более сотни этих химических передатчиков.

Какой эффект каждый из нейромедиаторов оказывает на тело? Что случается, когда болезнь или медицинские препараты сталкиваются с этими химическими передатчиками? Перечислим некоторые главные нейромедиаторы, их известные эффекты и заболевания, связанные с ними.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари