Подпишись и читай
самые интересные
статьи первым!

Деаэрация воды типы деаэраторов. Конструкция и принцип действия деаэратора

Деаэрация воды в котельных - это докотловая , во время которой из воды удаляются растворенный кислород и углекислота. Дело в том, что при нагревании воды в котельных именно растворенный кислород оказывает отрицательное влияние на оборудование. Но необходимо сказать, что даже после проведения деаэрации может потребоваться применение специальных химических реагентов, чтобы снизить концентрацию растворенных газообразных веществ.

Для связывания в сетевой и питательной среде кислорода можно применять комплексные реагенты, с помощью которых можно не только уменьшить концентрацию углекислоты и кислорода до приемлемого уровня, но также и привести в норму уровень рН котельной воды, а также предотвратить образование известковых отложений. Таким образом, в некоторых случаях приемлемого качества воды в котельных можно достичь даже без использования оборудования для деаэрации.

Химическая деаэрация заключается в добавлении в котловую воду реагентов, с помощью которых можно связать присутствующие там растворенные газообразные вещества, провоцирующие возникновение коррозии. Для водогрейных котлов рекомендуется применять комплексные реагенты - ингибиторы отложений и коррозий. Для удаления растворенного кислорода можно воспользоваться реагентами, специально предназначенными водоподготовки паровых котлов, при этом можно даже обойтись без деаэрации. В некоторых случаях, если оборудование деаэрации работает некорректно, то для нормализации можно использовать специальные реагенты.

В любой воде в больших количествах имеются агрессивные растворенные газы, в основном углекислота и кислород, которые и способствуют появлению коррозии трубопроводов и оборудования. Термическая деаэрация воды в котельных позволяет существенно снизить количество газов. Коррозионно-активные газы проникают в питательную воду из окружающей атмосферы, либо в процессе ионного обмена. Но самое большое негативное воздействие оказывает кислород, являясь причиной коррозии. Что касается углекислоты, то она выступает в качестве своеобразного катализатора, усиливая действие кислорода. Но она и сама в состоянии оказывать негативное воздействие.

Термическая деаэрация используется чаще всего. Во время нагрева воды в котельной при постоянном давлении происходит выделение растворенных газов. По мере увеличения температуры, когда она доходит до кипения, концентрация газов постепенно снижается до минимума, вследствие чего вода полностью от них освобождается. Если воду в котельной не нагреть до температуры кипения, остаточное содержание в ней газов будет увеличиваться. Причем, влияние данного параметра довольно существенное. Существуют определенные нормы, регламентирующие состояние воды в котельных, и если недогреть воду хотя бы на один градус, добиться соответствия этим нормам не удастся.

Поскольку концентрация растворенных газов в воде котельных очень маленькая, то недостаточно просто удалить их из воды - очень важно полностью освободить от них установку деаэрации. Для того, чтобы этого добиться, приходится подавать избыточный пар в установку, в количестве гораздо большем, чем требуется для доведения воды до кипения. Если взять расход пара в количестве обрабатываемой воды в пределах 15-20 кг/т, то выпар будет составлять 2-3 кг/т, а его снижение может привести к значительному ухудшению воды в котельной. Помимо этого емкость установки деаэрации должна быть достаточно большой, чтобы вода могла пробыть в ней не менее 20-30 минут. Такой длительный промежуток времени требуется не только для выведения газов, но и для полного разложения карбонатов.

Вакуумная деаэрация воды в котельных применяется тогда, когда в котельных установлены водогрейные котлы. В этом случае деаэраторы могут работать при температуре в пределах 40-90 градусов.

Но при всех своих положительных качествах путем вакуумной деаэрации обладают и существенными недостатками - высокая металлоемкость, очень много вспомогательного оборудования (вакуумные эжекторы и насосы, баки и т.д.), необходимость монтировать их на возвышенности.

Для того чтобы добиться долговечности и качества работы гидравлической системы необходимо использовать деаэратор. Он применяется во всех котельных, так как налаживает стабильную и правильную работу системы. В нашей статье рассмотрим подробнее, что такое деаэратор в котельной.

Что такое деаэратор и для чего он применяется в котельной

Деаэрация - это процесс очищения жидкости от различных примесей. Например, от углекислого газа и кислорода. Для организации системы водоподготовки в котельной обязательно используют деаэратор. Он помогает улучшить качество работы.

Первым способом является химическая деаэрация. В таком случае в воду добавляют реагенты, вследствие чего из воды удаляются лишние газы. Второй способ называется термическая деаэрация. Воду нагревается до кипения до тех пор, пока она не очистится от газообразных веществ, которые в ней растворились.

Деаэраторы разделяют на атмосферные и вакуумные. Первые применяют с водой или паром. А вакуумные только с паром.

Деаэраторы обладают общим двухступенчатым устройством. Таким образом, в бак попадает вода, где она протекает через мембраны, а затем очищается от примесей. Химическая вода, которая находится в баке, не дает образовываться различным естественным примесям в теплоносителе.

Деаэраторы бывают пониженного и повышенного давления. Так как кислород и углекислый газ относятся к агрессивным газам, то они способствуют образованию коррозии в трубопроводах, а также изнашивают их. Для того чтобы этого не происходила необходимо перед подачей воды по трубопроводам ее подготовить. Именно для этого используют деаэрирущие фильтры.

Из-за загазованности воды возникают различные неисправности в системе. Некоторые из них могут привести к утечке воды или газа или вовсе вывести систему из строя. Наличие газовых пузырей в воде приводит к некачественной работе насосов, форсунков и ухудшает функции гидравлической системы. Установить деаэратор в котельной выйдет дешевле, чем часто ремонтировать систему.

Деаэрация воды в паровой котельной

Деаэрация воды в паровой котельной необходима для защиты всей парогенераторной системы и трубопроводов. При наличии вредных примесей система будет изнашиваться и начнет подвергаться коррозии.

Газообразные и естественные примеси могут вызвать кавитацию насоса. А она в свою очередь может привести к гидравлическим ударам и нарушит работу насосного режима. В худшем случае может произойти разрыв гидравлической системы или вовсе насосы перестанут работать.

Деаэратор, который применяется для парового котла, имеет вид бака со специальными мембранами и тарелками. Они устроены вертикально на емкости для воды. Под маленьким давлением вода поступает из подающей линии в бак, затем протекает через мембраны и тарелки и таким образом происходит очищение от примесей.

Иногда в паровых котельных применяют распылительные деаэраторы. В них вода распыляется таким образом, чтобы примеси сразу уходили в выпар.

Система повышенного давления

Систему повышенного давления применяют для котлов с высокой мощностью. Они подают много пара, а также обеспечивают необходимый температурный режим для централизованной отопительной системы под высоким давлением. Для функционирования системы требуется давления свыше 0,6 Мпа.

Такая установка является термической также как и деаэратор пониженного давления. Это означает, что при повышении температурного режима воды и подачи пара происходит освобождение системы от газообразных примесей.

В систему устанавливают гидрозатворы. Они понижают давление в случае его повышения.

Система пониженного давления

Для системы пониженного давления в основном применяют установки атмосферного и вертикального типа, которые оснащены барботажным дополнительным баком. Через него происходит выпар.

В основном баке системы химически подготовленная смесь смешивается с водой, затем она протекает через мембраны и тарелки и затем происходит отделение всех примесей.

Котельные, которые обеспечивают горячим водоснабжением, нуждаются в вакуумной термической системе. Так как для такой котельной лучше всего подходит дегазация вакуумом. Такая система используется для очистки воды в водонагревательных котлах.

В зависимости от того какой необходим режим подачи пара для паровых котлов применяются деаэраторы повышенного или пониженного давления. Для менее мощных котельных, которые обеспечивают невысокий температурный режим, который подходит для центрального отопления, используют установку с пониженным давлением. Оно может быть 0,025-0,2 Мпа.

Правильная эксплуатация

Для качественной работы котла и для предотвращения аварийных ситуаций необходимо правильно использовать деаэратор и всю систему. Для этого необходимо поддерживать воду в баке на определенном уровне при понижении давления, проверять условия требуемого режима, соблюдать все правила использования и проверять работу приборов более 1 раза за смену.

В химической воде необходимо правильно добавлять вещества, а также вести контроль их уровня. Проверять качество химической воды.

Гидрозатворы должны обладать легким ходом. В случае повышения давления ими нужно воспользоваться без каких-либо помех. Все устройства должны быть аттестованы метрологически и проверены. Они должны соответствовать предварительно установленным графикам. За уровнем воды можно следить при помощи специального водоуказательного стекла. Не стоит забывать про контроль показаний манометра.

Все приборы автоматики должны работать исправно для правильно работы деаэратора. Необходимо проверять работу автоматов и приборов. Для этого проводят регулярные осмотры и проверки.

Деаэратор выступает в роли защиты для всей котельной системы. Поэтому каждая котельная оснащена такой установкой.

Так как кавитация приводит к выходу из строя насоса и гидравлической системы, то деаэратор просто необходим в котельной. Такое устройство полностью очищает воду от всех примесей. Таким образом, система работает без каких-либо повреждений.

Лабораторная работа №4

ИЗУЧЕНИЕ ПРИНЦИПА ДЕЙСТВИЯ И СХЕМ ДЕАЭРАТОРОВ

Цели работы: изучить принцип действия и схемы деаэраторов, лабораторное оборудование, позволяющее произвести деаэрацию, изучить порядок работы деаэратора, произвести рабочее очищение воды.

1. Общие сведения

Деаэрация питательной воды паровых котлов и подпиточной воды тепловых сетей является обязательной для всех котельных. Деаэраторы предназначены для удаления из воды растворенных в ней неконденсирующихся газов. Присутствие в питательной и подпиточной воде кислорода и углекислоты приводят к коррозии питательных трубопроводов, кипятильных труб, барабанов котлов и сетевых трубопроводов, что может привести к тяжелой аварии. Наличие даже таких инертных газов, как азот, также крайне нежелательно, оно препятствует теплопередаче и снижает теплопроизводительность подогревателей.

Количество остаточного содержания О 2 и СО 2 в питательной воде паровых котлов строго регламентируется правилами Госгортехнадзора . Так для котлов со стальным экономайзером при давлении до 1,4 МПа содержание О 2 должно быть не более 30 мкг/кг. Свободная углекислота (СО 2) в питательной воде после деаэраторов должна отсутствовать.

Для деаэрации питательной воды в котельных, применяются струйные смешивающие термические деаэраторы. В зависимости от давления, поддерживаемого в деаэраторе, различают деаэраторы повышенного давления, атмосферные и вакуумные деаэраторы. В котельных установках с паровыми котлами на давление до 4,0 МПа применяют атмосферные деаэраторы.

2. Термическая деаэрация воды

Термическая деаэрация воды. В воде тепло­энергетических установок растворены и требуют удале­ния коррозионно-агрессивные (O2, CO2, NH3) и прочие газы. Удаление газов из воды производят в основном с помощью термических деаэраторов, декарбонизаторов и химическим способом.

Термическая деаэрация (дегазация) воды основана на законе Генри - Дальтона, выражающемся примени­тельно к данному случаю следующим уравнением, спра­ведливым для условий равновесия:

m = kppг = kр (p - pп),

где т - растворимость газов в воде;

р - суммарное давление газа и водяных паров в пространстве над во­дой;

рп, рг - парциальные давления соответственно пара и газа в том же пространстве;

kр-коэффициент раст­воримости газа в воде, зависящий от температуры (чем выше температура, тем меньше коэффициент раствори­мости).

Если воду нагреть до температуры кипения, то, с одной стороны, коэффициенты растворимости газов в воде становятся равными нулю, а с другой стороны, пар­циальное давление пара над поверхностью воды стано­вится равным суммарному давлению смеси. В итоге рав­новесия растворимость газов в воде становится равной нулю. Отсюда вывод: для удаления из воды растворен­ных в ней газов достаточно нагреть ее до температуры кипения. В этом и заключается суть термической дега­зации.

Уравнение (18.2.1) характеризует предельное состоя­ние равновесия, к которому придет система, если будут созданы определенные условия и предоставлено системе достаточно

времени. Рассмотрим вкратце эти условия.

Из изложенного следует, что воду необходимо на­греть. Обычно деаэрируемую воду, стекающую струйка­ми, каплями и пленкой, нагревают протекающим на­встречу паром. Тогда необходимое количество теплоты Q для нагрева в единицу времени воды в количестве W от начальной температуры t1 до температуры кипения tв (и соответствующих значений энтальпии i1, i")

где F - площадь поверхности теплообмена;

t ср - сред­няя для условий теплообмена температура воды;

t - температурный напор;

 - коэффициент теплоотдачи.

Правая часть уравнения (18.2.2) позволяет заклю­чить, что площадь поверхности теплообмена желательно сделать как можно больше. Это дает возможность уско­рить процесс теплообмена и уменьшить габариты аппа­рата. Решая эти задачи, потек воды дробят на струи, капли или тонкие пленки. Для обеспечения максималь­ного температурного напора создают противоток пара и воды. Дробление потока и особенно сток ее тонкими пленками обеспечивают турбулизацию потока и соответ­ственно увеличение коэффициента теплоотдачи.

Этими же средствами добиваются увеличения скорости десорбции газа из воды, поскольку количество уда­ляемого из нее в единицу времени остью концентраций газа в воде и в пространстве над водой, а следовательно, с учетом. (18.2.1), разностью давлений газа в соответствии с уравнением

m = k д F p = k д F (pr .p - pr), (18.2.3)

где pr.p – так называемое равновесное парциальное давление газа в воде, оно отвечает концентрации газа в воде в условиях равновесия в соответствии с (18.2.1.);

pr – парциальное давление газа над водой;

kд – коэффициент десорбции, зависящий от турбулентности потока воды, вязкости, поверхностного натяжения, скорости диффузии газа в воде, а следовательно, от температуры.

Для достижения минимального парциального давле­ния газа в пространстве над водой осуществляют непре­рывное удаление газов (с примесью паров) из рабочего пространства деаэратора через специальный штуцер для отвода выпара деаэратора. Если деаэратор вакуумный (т. е. давление в нем меньше атмосферного), то осуще­ствляют отсос воздуха пароструйными или водоструйны­ми эжекторами.

Примеры конструктивного выполнения деаэраторов приведены на рис. 12.2.3, 12.2.4. В первом из этих случа­ев реализован пленочный принцип дробления потока во­ды, во втором-струйный. На рис. 12.2.4 в качестве вто­рой ступени дегазации применяют барботаж, т. е. пропускают пузырьки пара через слой воды. Барботаж применяется для более полной дегазации воды, особен­но для более полного удаления двуокиси углерода.

На промышленных ТЭЦ деаэраторы чаще всего пи­таются паром из промышленного регулируемого отбора турбины, а на конденсационных электростанциях - из нерегулируемых отборов турбин (рис. 18.2.5). При дега­зации питательной воды на ТЭС деаэратор одновремен­но выполняет функцию подогревателя очередной сту­пени подогрева в системе регенерации.

Деаэраторы типа изображенного на рис. 12.2.4 назы­вают деаэраторами «перегретой» воды. Деаэраторы не требуют подачи на них греющего пара, пар в них обра­зуется в результате

дросселирования нагретой воды до такого давления, температура насыщения при котором меньше температуры воды, поступающей на деаэратор. Эта вода оказывается предварительно как бы перегре­той сверх температуры в деаэраторе, до которой охлаж­дается в результате дросселирования и частичного превращения в пар.

В конденсаторах паровых турбин происходит доста­точно полное удаление газов из основного конденсата» т. е. конденсатор одновременно выполняет роль деаэратора.

Рис. 18.2.5. Схемы включения деаэраторов питательной воды.

а-в качестве самостоятельной ступени регенеративного подогрева воды; б- в качестве предвключенного подогревателя в данной ступени подогрева; в - к регулируемому отбору на ТЭЦ; /-.парогенератор; 2 -турбина; 3-кон­денсатор; 4 - конденсатный насос; 5 - подогреватель низкого давления- 6- деаэратор; 7 - питательный насос; 8 - подогреватель высокого давления- 9- регулятор давления.

Однако из-за присосов воздуха через сальники конденсатных насосов и другие неплотности в вакуумной системе турбин конденсат вновь загрязняется газами. Эти газы затем удаляются в деаэраторах атмосферного типа (с давлением несколько выше атмосферного) или в деаэраторах повышенного давления (с давлением, в несколько раз превышающим атмосферное).

Атмосферный деаэратор состоит из цилиндрической деаэрационной колонки и бака питательной воды. Потоки деаэрируемой воды поступают в распределитель воды, из которого равномерно по кольцевому сечению колонки стекают на перфорированные противни. Проходя через отверстия противней, вода, разбивается на мелкие струйки и падает вниз. В нижнюю часть деаэраторной колонки подводится пар для нагрева деаэрируемой воды до температуры кипения. При температуре воды, равной температуре кипения, растворимость газов в воде равна нулю, чем и обусловливается удаление из воды кислорода и углекислоты. Выделяющийся кислород и углекислота с небольшим количеством пара удаляется через вестовую трубу вверху деаэрационной колонки. Для эффективной работы деаэрационной колонки необходимо, чтобы выделяющиеся из воды газы достаточно быстро удалялись из колонки, что обеспечивается выпаром. Количество выпара принимают равным 2 кг на 1 т деаэрированной воды.

Деаэрационные колонки не рассчитаны на подогрев воды более чем на 10-40 о С. Оптимальный режим работы деаэраторной колонки, т.е. наилучшее удаление газов из питательной воды, имеет место, когда средняя температура всех потоков воды, входящих в колонку, на 10-15 о С ниже температуры кипения при давлении, поддерживаемом в деаэраторе. Для полной деаэрации питательной воды совершенно необходимым условием является нагрев ее до температуры кипения. Недогрев воды даже на несколько градусов приводит к резкому увеличению остаточного содержания в ней кислорода. Поэтому деаэраторы обязательно снабжаются автоматическими регуляторами, поддерживающими соответствие между поступлением пара и воды в колонку.

Схемы деаэраторов

а – атмосферного; б – барботажного; 1 – бак; 2 – выпуск питательной воды;

3 – водоуказательное стекло; 4 – предохранительный клапан; 5 – тарелки; 6 – вход химически очищенной воды; 7 – вестовая труба; 8 – вход конденсата; 9 – деаэраторная колонка; 10 – вход пара; 11 – гидравлический затвор; 12 – лоток; 13 – решетка; 14 – перегородка с жалюзи.

Количество и производительность устанавливаемых деаэраторов питательной воды выбираются из расчета полного покрытия расхода питательной воды котлами с учетом их продувки и расхода питательной воды на впрыск в РОУ при максимально-зимнем режиме. Должно быть установлено не меньше двух деаэраторов. Резервные деаэраторы не устанавливаются. Полезная суммарная емкость баков питательной воды должна обеспечивать запас ее не менее чем на 15 мин при максимально-зимнем режиме. Полезная емкость баков принимается равной 85% их геометрической емкости.

Подпиточная вода также во всех случаях должна подвергаться деаэрации. Содержание кислорода в подпиточной воде должно быть не более 50 мкг/кг, а свободная углекислота должна полностью отсутствовать. В системах теплоснабжения с непосредственным водоразбором качество подпиточной воды, кроме того, должно удовлетворять ГОСТ 2874-82 «Вода питьевая».

Деаэрация подпиточной воды осуществляется либо в термических смешивающих атмосферных деаэраторах, либо в вакуумных деаэраторах.

Деаэраторы должны устанавливаться на площадках с отметкой, превышающей отметку установки питательных насосов. Величина этого превышения определяется суммой требуемого подпора воды при входе в насос, задаваемого заводом-изготовителем насоса, и требуемого гидростатического напора для преодоления сопротивления трубопроводов от деаэратора до насоса. Для котлов на давления ~4,0 и 1,4 МПа (40 и 14 кгс/см2) отметка площадки деаэраторов соответственно 10 и 6 м.

В центральных котельных установках, работающих на крупные системы теплоснабжения с открытым водоразбором, требующие деаэрации подпиточной воды в количествах, измеряемых сотнями тонн, предпочтительна установка вакуумных подпиточных деаэраторов. Подпиточная установка с атмосферными деаэраторами при больших расходах подпиточной воды из-за ограниченной единичной производительности атмосферных деаэраторов (максимум 300 т/ч) и необходимости установки за ними охладителей подпиточной воды (до 70 о С) получается очень громоздкой и дорогой. Кроме того, подпиточные установки с атмосферными деаэраторами обладают еще одним существенным недостатком: в целях сохранения конденсата греющего пара химически очищенную воду, подаваемую в деаэраторы, необходимо предварительно подогревать до 90 о С.

Подогрев ее производится в водо-водяных теплообменниках-охладителях деаэрированной подпиточной воды и в пароводяных подогревателях. Эти подогреватели, а также трубопроводы за ними подвержены интенсивному коррозионному разрушению и не обеспечивают необходимой длительности эксплуатации узла подпитки теплосети.

Деаэрация подпиточной воды под вакуумом позволяет избавиться от перечисленных выше недостатков подпиточной установки. Промышленность выпускает вакуумные деаэраторы единичной производительностью до 2000 т/ч, температура выдаваемой деаэратором подпиточной воды 40 о С, при этом не требуется установка специальных охладителей. При вакууме в деаэраторе ~0,0075 МПа (0,075 кгс/см2) при температуре деаэрации 40 о С не требуется предварительный подогрев подаваемой в деаэратор химически очищенной воды, конструкция ДСВ обеспечивает подогрев деаэрируемой воды в самом аппарате на 15-25 о С.

При использовании для деаэрации подпиточной воды в небольших вакуумных деаэраторах, работающих под вакуумом – давление ~0,03 МПа (0,3 кгс/см2), создаваемый водоструйными эжекторами или водокольцевыми насосами, процесс деаэрации протекает при температуре 70оС. При этом подаваемую в деаэраторы химически очищенную воду нужно предварительно подогревать только до 50оС.

В паровых промышленно-отопительных котельных при закрытых системах теплоснабжения, где расход подпиточной воды определяется только утечками теплосети, подпитку теплосети разрешается производить водой из деаэраторов питательной воды. Технические характеристики деаэраторов приведены в таблицах 10.1 и 10.2 (см. приложение).

3. Охладители выпара деаэраторов

Удаление из деаэраторной колонки выделившихся кислорода и углекислоты производится через вестовую трубу в крышке деаэраторной колонки. Вместе с кислородом и углекислотой из колонки выходит некоторое количество пара и уносит с собой тепло, которое при сбросе выпара в атмосферу теряется. В целях использования тепла выпара деаэраторы снабжаются специальными поверхностными теплообменниками-охладителями выпара, в которых производится конденсация выпара химочищенной водой, подаваемой в деаэратор.

4. Питательные насосы

Питательные устройства являются ответственными элементами котельной установки, обеспечивающими безопасность ее эксплуатации. Правила Госгортехнадзора предъявляют ряд требований к питательным установкам.

Питательные устройства должны обеспечивать необходимый расход питательной воды, при давлении, соответствующем полному открытию рабочих предохранительных клапанов, установленных на паровом котле. Суммарная производительность основных насосов должна быть не менее 110% для всех рабочих котлов при их номинальной паропроизводительности с учетом расходов на непрерывную продувку, на пароохладители, редукционно-охладительные и охладительные установки. Суммарная производительность питательных резервных насосов должна обеспечивать 50% нормальной производительности всех работающих котлов с учетом продувки, расхода воды на редукционно-охладительные и охладительные установки. При выборе насоса надо стремиться к тому, чтобы в рабочих условиях загрузка насоса была близкой к номинальной. При установке нескольких центробежных насосов для параллельной работы нужно устанавливать насосы с одинаковой характеристикой. Загрузка насосов с разными характеристиками в процессе регулирования производительности изменяется неравномерно, и насосы могут не обеспечить нужную подачу воды в режимах, отличных от номинального (на которую они выбраны), либо будут работать неэкономично.

Расчетный напор питательного насоса Рнас, Па, определяется из следующего выражения:

Рнас = Рк (1 + Р) + Рэк + Рп.в.д +
,

где Рк – избыточное давление в барабане котла;

р – запас давления на открытие предохранительных клапанов, принимаемый равным 5%;

Рк – сопротивление водяного экономайзера котла;

Рп.в.д – сопротивление регенеративных подогревателей высокого давления;

Рнаг тр – сопротивление питательных трубопроводов от насоса до котла с учетом сопротивления автоматических регуляторов питания котлов;

Рвсос тр – сопротивление всасывающих трубопроводов;

Рс.в – давление, создаваемое столбом воды, равным по высоте расстоянию между осью барабана котла и осью деаэратора;

Рдр – давление в деаэраторе.

При подсчете сопротивлений плотность воды принимается по средней температуре ее в нагнетательном тракте, включая водяной экономайзер.

Определенное расчетом давление в нагнетательном патрубке питательных насосов должно быть увеличено на 5-10% для запаса на непредвиденное увеличение сопротивления питательного тракта. На напорном патрубке питательного центробежного насоса обязательно устанавливается обратный клапан.

Работа питательных насосов с производительностью ниже 10-15% номинального расхода не разрешается, так как это приводит к «запариванию» насосов. Для защиты от снижения расхода питательной воды сверх допустимого насосы снабжаются специальными сбросными клапанами и линиями рециркуляции, соединяющими их с деаэраторами, куда производится сброс воды. Рециркуляционные линии включаются при запуске и остановке насосов. Запорные клапаны на этих линиях имеют ручное управление. Обратные клапаны, устанавливаемые за насосами, имеют патрубки для подключения рециркуляционных линий.

Номенклатура питательных насосов для котлов, используемых в котельных, приведена в таблице 10.5. Как питательные центробежные насосы, так и паровые должны устанавливаться на отметке 0,0 под деаэраторами или при небольшом удалении от них, чтобы сопротивление всасывающих трубопроводов было по возможности малым, согласно нормам технологического проектирования – не более 10000 Па (1000 мм вод. ст.).

Н.Н. Громов, главный инженер АП «Теплосеть» Красногорского района

В последнее время большое количество паровых котлов (ДКВр, ДЕ, Е и т.д.) переводится в водогрейный режим, при этом деаэраторы котельных остаются без пара. Эффективный метод, разработанный и апробированный в течение 10 лет в АП «Теплосеть» Красногорского района, позволяет без переделок деаэратора дегазировать воду без подвода пара и без недостатков вакуумной деаэрации.

Термическая деаэрация

В воде всегда содержатся растворенные агрессивные газы, прежде всего кислород и углекислота, которые вызывают коррозию оборудования и трубопроводов. Коррозионно-активные газы попадают в исходную воду в результате контакта с атмосферой и других процессов, например, ионном обмене. Основное коррозионное воздействие на металл оказывает кислород. Углекислота ускоряет действие кислорода, а также обладает самостоятельными коррозионными свойствами.

Для защиты от газовой коррозии применяется деаэрация (дегазация) воды. Наибольшее распространение нашла термическая деаэрация. При нагреве воды при постоянном давлении растворенные в ней газы постепенно выделяются. Когда температура повышается до температуры насыщения (кипения), концентрация газов снижается до нуля. Вода освобождается от газов.

Недогрев воды до температуры насыщения, соответствующей данному давлению, увеличивает остаточное содержание в ней газов. Влияние этого параметра весьма существенно. Недогрев воды даже на 1 °С не позволит достичь требований «Правил...» для питательной воды паровых и водогрейных котлов.

Концентрация растворенных в воде газов очень мала (порядка мг/кг), поэтому недостаточно выделять их из воды, а важно еще удалить их из деаэратора. Для этого приходится подавать в деаэратор избыточный пар или выпар, сверх количества, необходимого для нагрева воды до кипения. При общем расходе пара 15-20 кг/т обрабатываемой воды, выпар составляет 2-3 кг/т. Снижение выпара может существенно ухудшить качество деаэрированной воды. Кроме того, бак деаэратора должен иметь значительный объем, обеспечивающий пребывание в нем воды не менее 20 ... 30 минут. Длительное время необходимо не только для удаления газов, но и для разложения карбонатов.

Деаэраторы атмосферного типа с подводом пара

Для деаэрации воды в котельных с паровыми котлами применяются в основном термические двухступенчатые деаэраторы атмосферного типа (ДСА), работающие при давлении 0,12 МПа и температуре 104 °С. Такой деаэратор состоит из деаэрационной головки, имеющей две или более перфорированные тарелки, или другие специальные устройства, благодаря которым исходная вода, разбиваясь на капли и струи, падает в аккумуляторный бак, встречая на своем пути движущийся противотоком пар. В колонке происходит нагрев воды и первая стадия ее деаэрации. Такие деаэраторы требуют установки паровых котлов, которые усложняют тепловую схему водогрейной котельной и схему химводоподготовки.

Вакуумная деаэрация

В котельных с водогрейными котлами, как правило, применяются вакуумные деаэраторы, которые работают при температурах воды от 40 до 90 °С.

Вакуумные деаэраторы имеют множество существенных недостатков: большая металлоемкость, большое количество дополнительного вспомогательного оборудования (вакуумные насосы или эжекторы, баки, насосы), необходимость расположения на значительной высоте для обеспечения работоспособности подпиточных насосов. Главным же недостатком является наличие существенного количества оборудования и трубопроводов, находящихся под разряжением. В результате через уплотнения валов насосов и арматуры, неплотности во фланцевых соединениях и сварных стыках в воду поступает воздух. При этом эффект деаэрации полностью пропадает и даже возможен рост концентрации кислорода в подпиточной воде по сравнению с исходной.

Атмосферная деаэрация без подвода пара

В последнее время большое количество паровых котлов переводится в водогрейный режим. Эффективный способ деаэрации в котельных с такими котлами разработан и прошел длительную проверку в АП «Теплосеть» Красногорского района.

Вода после натрий-катионитной установки подогревается до 106-110 °С и впрыскивается в головку атмосферного деаэратора, где капли воды за счет снижения давления вскипают. При кипении из воды вместе с паром удаляются и коррозионно-агрессивные газы, причем более активно, чем в деаэраторах с подводом пара. Схема реализована на оборудовании, которое эксплуатировалось в паровой котельной с тремя котлами ДКВр 10/13, при переводе в водогрейный режим с параметрами теплоносителя 115/70 °С. При этом деаэратор типа ДСА не требует доработок. Для нагрева подпиточной воды использованы паровые сетевые подогреватели, доработанные для работы на греющей воде с температурой 110-113 °С, а не на паре. На технические решения, примененные в котельных Красногорского района, получен патент РФ.

Данная схема исключает недостатки вакуумной деаэрации и деаэрации с подводом пара. Достоинством новой схемы деаэрации является ее простота и надежность, позволяющая ей устойчиво работать в любой водогрейной котельной.

Кроме того

При переводе в водогрейный режим котлов ДКВр 10/13 с параметрами теплоносителя 115/70 °С по схеме ЦКТИ мы столкнулись с уменьшением теплопроизводительности котлоагрегата (она не уменьшается при графике 150/70). Такое уменьшение было недопустимо по нагрузке на теплосеть, поэтому нами были разработаны и внедрены изменения в схему ЦКТИ. Конструктивно изменения не значительны, но позволили улучшить циркуляцию в задних экранах и увеличить теплопроизводительность котла до требуемой. Схема движения воды в контуре котла запатентована. Котлы эксплуатируются уже 10 лет без нареканий.

Деаэратор -- техническое устройство, реализующее процесс деаэрации некоторой жидкости (обычно воды или жидкого топлива), то есть её очистки от присутствующих в ней нежелательных газовых примесей. На многих электрических станциях также играет роль ступени регенерации и бака запаса питательной воды.

Устройство деаэратор предназначено:

* Для защиты насосов от кавитации.

* Для защиты оборудования и трубопроводов от коррозии.

* Для защиты системы от попадания в нее воздуха, который нарушает гидравлику и нормальную работу форсунок.

Рис.2.

1 -- бак (аккумулятор), 2 -- выпуск питательной воды из бака, 5 -- водоуказательное стекло, 4 -- манометр, 5, 6 и 12 -- тарелки, 7 -- спуск воды в дренаж, 8 -- автоматический регулятор подачи химически очищенной воды, 9 -- охладитель пара, 10 -- выпуск пара в атмосферу, 11 я 15 -- трубы,13 -- деаэраторная колонка, 14 -- парораспределитель, 16 -- впуск воды в гидравлический затвор,17 -- гидравлический затвор, 18 -- выпуск лишней воды из гидравлического затвора

Термический деаэратор основан на принципе диффузионной десорбции, когда жидкость, находящаяся в системе нагревается до момента кипения. Во время такого процесса в термическом деаэраторе, растворимость газов равняется нулю. Образующийся пар уносит газы из системы, а коэффициент диффузии растет.

В вихревом деаэраторе используются гидродинамические эффекты, которые вызывают принудительную десорбцию, то есть приводят к разрыву жидкости в самых слабых местах - под действием разности плотности. В данном случае не происходит обогрев жидкости.

По давлению, термические деаэраторы классифицируются на:

* Вакуумные (ДВ)

* Атмосферные (ДА).

* Повышенного давления (ДП).

Деаэратор атмосферный - используется в наименьшей толщине стенок. Под действием избытка давления над атмосферным - пар удаляется из стенок самотеком. Атмосферный деаэратор ДСА предназначен для вывода агрессивных газов из системы паровых котлов и котельных установок. Деаэраторы атмосферного типа устанавливаются, как на открытых площадках, так и в помещениях. Числа, обозначенные на деаэраторе атмосферного типа ДСА 75 и деаэраторе ДА 25 - определяют производительность устройства.

Деаэратор вакуумный - используются в условиях, когда у котельных нет выпускаемого пара. Вакуумные деаэраторы ДВ - вынуждены работать совместно с устройствами для отсоса выпара. Деаэратор ДВ питательной воды обладает большой толщиной стенок, а также позволяют разлагать бикарбонаты при низком давлении. В зависимости от производительности обозначаются цифрами (Пример: Вакуумный деаэратор ДВ 25).

Деаэраторы ДП (высокого давления) - обладают большой толщиной стенок, зато деаэраторы ДП позволяют использовать выпар, как легкую рабочую среду для эжекторов конденсатора. Также деаэраторы избыточного высокого давления позволяют сократить количество металлоемких ПВД.

Устройство деаэратора и принцип работы

В деаэраторной колонке осуществляется нагрев и обработка воды паром. После прохождения двух ступеней дегазации (1-ая ступень - струйная, 2-ая - барботажная) из колонки вода струями стекает в деаэраторный бак БДА.

Конструкция деаэратора обеспечивает удобство внутреннего осмотра деаэрационной колонки. Материал перфорированных листов внутренних устройств колонки деаэратора - коррозионно-стойкая сталь.

Бак деаэрационный размещает в себе третью ступень дегазации после деаэрационной колонки в виде затопленного барботажного устройства.

В деаэраторном баке происходит выделение из воды мельчайших пузырьков газов за счет отстоя.

Охладитель выпара деаэратора служит только для утилизации тепла конденсации выпара. Внутри трубок охладителя выпара проходит химочищенная вода и направляется в деаэрационную колонку. В межтрубное пространство поступает парогазовая смесь (выпар), где пар из нее практически полностью конденсируется. Оставшиеся газы отводятся в атмосферу, конденсат выпара сливается в деаэратор или дренажный бак

Материал трубок - латунь либо коррозионно-стойкая сталь.

Работа деаэратора осуществляется автоматически. Давление в деаэраторе постоянно регулируется на уровне 0,02 МПа. Водный уровень в деаэраторе так же поддерживается постоянно. Пуск и остановка деаэраторов производится вручную

Рис.3.

Деаэрационная установка состоит из:

· Деаэратор вакуумный;

· ОВВ(охладитель выпара, кожухотрубный теплообменник, предназначенный для конденсации максимального количества пара и утилизации его тепловой энергии);

· ЭВ (эжектор водоструйный, воздухоотсасывающее устройство).

В ДВ применяется двухступенчатая система дегазации. 1-я ступень струйная, 2-я -- барботажная, непровальная дырчатая тарелка.

Включайся в дискуссию
Читайте также
Салат с кукурузой и мясом: рецепт
Римские акведуки - водное начало цивилизации С какой целью строили акведуки
Мыс крестовый лиинахамари